Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (514)

Search Parameters:
Keywords = epigenetic silencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 632 KiB  
Review
DNA Methylation in Bladder Cancer: Diagnostic and Therapeutic Perspectives—A Narrative Review
by Dragoş Puia, Marius Ivănuță and Cătălin Pricop
Int. J. Mol. Sci. 2025, 26(15), 7507; https://doi.org/10.3390/ijms26157507 (registering DOI) - 3 Aug 2025
Viewed by 60
Abstract
Bladder cancer pathogenesis is closely linked to epigenetic alterations, particularly DNA methylation and demethylation processes. Environmental carcinogens and persistent inflammatory stimuli—such as recurrent urinary tract infections—can induce aberrant DNA methylation, altering gene expression profiles and contributing to malignant transformation. This review synthesizes current [...] Read more.
Bladder cancer pathogenesis is closely linked to epigenetic alterations, particularly DNA methylation and demethylation processes. Environmental carcinogens and persistent inflammatory stimuli—such as recurrent urinary tract infections—can induce aberrant DNA methylation, altering gene expression profiles and contributing to malignant transformation. This review synthesizes current evidence on the role of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b) and the hypermethylation of key tumour suppressor genes, including A2BP1, NPTX2, SOX11, PENK, NKX6-2, DBC1, MYO3A, and CA10, in bladder cancer. It also evaluates the therapeutic application of DNA-demethylating agents such as 5-azacytidine and highlights the impact of chronic inflammation on epigenetic regulation. Promoter hypermethylation of tumour suppressor genes leads to transcriptional silencing and unchecked cell proliferation. Urine-based DNA methylation assays provide a sensitive and specific method for non-invasive early detection, with single-target approaches offering high diagnostic precision. Animal models are increasingly employed to validate these findings, allowing the study of methylation dynamics and gene–environment interactions in vivo. DNA methylation represents a key epigenetic mechanism in bladder cancer, with significant diagnostic, prognostic, and therapeutic implications. Integration of human and experimental data supports the use of methylation-based biomarkers for early detection and targeted treatment, paving the way for personalized approaches in bladder cancer management. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

16 pages, 6361 KiB  
Article
The Study of Chromobox Protein Homolog 4 in 3D Organoid Models of Colon Cancer as a Potential Predictive Marker
by Vincenza Ciaramella, Valentina Belli, Francesco Izzo, Andrea Belli, Antonio Avallone, Alfonso De Stefano, Andrea Soricelli and Anna Maria Grimaldi
Int. J. Mol. Sci. 2025, 26(15), 7385; https://doi.org/10.3390/ijms26157385 - 30 Jul 2025
Viewed by 129
Abstract
The Chromobox (CBX) family comprises key epigenetic regulators involved in transcriptional repression through chromatin modifications. Dysregulation of polycomb CBX proteins has been linked to epigenetic gene silencing and cancer progression. However, the specific roles and prognostic value of CBX family members in colorectal [...] Read more.
The Chromobox (CBX) family comprises key epigenetic regulators involved in transcriptional repression through chromatin modifications. Dysregulation of polycomb CBX proteins has been linked to epigenetic gene silencing and cancer progression. However, the specific roles and prognostic value of CBX family members in colorectal cancer (CC) remain unclear. In this study, we show that CBX genes are significantly dysregulated in CC tissues and cell models compared to normal colorectal tissue. Among them, CBX4 and CBX8 emerged as the most upregulated isoforms in tumors. Functional analyses revealed that CBX4 overexpression enhances CC cell proliferation, while its silencing reduces tumor growth. Similarly, pharmacological inhibition of CBX4 in patient-derived tumor organoids led to decreased proliferation, supporting its pro-tumorigenic role. Immunofluorescence analysis further revealed alterations in NF-κB signaling upon CBX4 inhibition, along with reduced mRNA levels of pathway components including NF-κB, TNF, IL-1, and c-Myc. These findings point to a potential interplay between CBX4 and inflammation-related pathways in CC. Overall, our study highlights the oncogenic role of CBX4 in colorectal cancer and supports its potential as a novel therapeutic target and early biomarker for disease progression. Full article
Show Figures

Figure 1

19 pages, 3826 KiB  
Article
Circular RNA circ_0001591 Contributes to Melanoma Cell Migration Through AXL and FRA1 Proteins by Targeting miR-20a-3p and miR-34a-5p
by Elisa Orlandi, Elisa De Tomi, Francesca Belpinati, Marta Menegazzi, Macarena Gomez-Lira, Maria Grazia Romanelli and Elisabetta Trabetti
Genes 2025, 16(8), 921; https://doi.org/10.3390/genes16080921 - 30 Jul 2025
Viewed by 254
Abstract
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma [...] Read more.
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma cell migration. Methods: Three different melanoma cell lines were transfected with siRNA targeting circ_0001591 and with mimic or inhibitor molecules for miR-20a-3p and miR-34a-5p. Gene and protein expression levels were analyzed by RT-qPCR and Western blot, respectively. Dual luciferase reporter assays were performed to confirm the direct interaction of miR-20a-3p and miR-34a-5p with circ_0001591, as well as with the 3’UTRs of AXL (for both miRNAs) and FOSL1 (miR-34a-5p only). Wound healing assays were conducted to assess cell migration velocity. Results: The silencing of circ_0001591 significantly reduces the migration ability of melanoma cell lines. This downregulation was associated with an increased expression of miR-20a-3p and miR-34a-5p. Dual luciferase reporter assays confirmed the direct binding of both miRNAs to circ_0001591, supporting its role as a molecular sponge. The same assays also verified that miR-20a-3p directly targets the 3’UTR of AXL, while miR-34a-5p binds the 3’UTRs of both AXL and FOSL1. Western blot analysis showed that the modulation of this axis affects the expression levels of the AXL and FRA1 oncoproteins. Conclusions: Our findings demonstrate that circ_0001591 promotes melanoma migration by sponging miR-20a-3p and miR-34a-5p, thereby indirectly modulating the expression of AXL and FRA1 oncoprotein. Further investigations of this new regulatory network are needed to better understand its role in melanoma progression and to support the development of targeted therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 3734 KiB  
Article
FMR1 Methylation Pattern and Repeat Expansion Screening in a Cohort of Boys with Autism Spectrum Disorders: Correlation of Genetic Findings with Clinical Presentations
by Maria Dobre, Gisela Gaina, Alina Erbescu, Adelina Glangher, Florentina Ionela Linca, Doina Ioana, Emilia Maria Severin, Florina Rad, Mihaela Catrinel Iliescu, Sorina Mihaela Papuc, Mihail Eugen Hinescu, Aurora Arghir and Magdalena Budișteanu
Genes 2025, 16(8), 903; https://doi.org/10.3390/genes16080903 - 29 Jul 2025
Viewed by 248
Abstract
Background/Objectives: Autism spectrum disorders (ASDs) are neurodevelopmental conditions with early onset of clinical manifestations. ASD etiology is highly heterogeneous, with genetic factors being strong determinants of the behavioral problems and neurodevelopmental deficits. Fragile X syndrome (FXS) (OMIM #300624), caused by the transcriptional silencing [...] Read more.
Background/Objectives: Autism spectrum disorders (ASDs) are neurodevelopmental conditions with early onset of clinical manifestations. ASD etiology is highly heterogeneous, with genetic factors being strong determinants of the behavioral problems and neurodevelopmental deficits. Fragile X syndrome (FXS) (OMIM #300624), caused by the transcriptional silencing of the FMR1 gene, represents the most common monogenic cause of autism. Our study included 226 boys with a diagnosis of ASD, for a systematic screening of genetic and epigenetic defects in the FMR1 gene promoter in a Romanian pediatric cohort. Methods: The methods, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and triplet-primed PCR (TP-PCR)/melt curve analysis (MCA), were chosen for their ability to detect the methylation anomalies (the former) as well as repeat expansions in the FMR1 promoter (the latter). Results: Both methods used in our screening generated concordant results, detecting FMR1 full mutation in 4 out of 226 patients (~1.8%). This yield is similar to data obtained in larger studies. Three out of four boys presented the typical clinical features, in correlation with genetic findings. Conclusions: The combined use of MS-MLPA and TP-PCR/MCA-based assay was, in our experience, useful to fully describe the genetic defects responsible for FXS. A significant variability of clinical presentations was observed in our small group of children with FXS, from mild to severe intellectual disability and from atypical to characteristic dysmorphic features, as well as various behavioral problems. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

21 pages, 3446 KiB  
Article
Targeting the Kynureninase–HDAC6–Complement Axis as a Novel Therapeutic Strategy in Glioblastoma
by Arif Ul Hasan, Sachiko Sato, Mami Obara, Yukiko Kondo and Eiichi Taira
Epigenomes 2025, 9(3), 27; https://doi.org/10.3390/epigenomes9030027 - 28 Jul 2025
Viewed by 321
Abstract
Background/Objectives: Glioblastoma (GBM) is an aggressive brain tumor known for its profound heterogeneity and treatment resistance. Dysregulated complement signaling and epigenetic alterations have been implicated in GBM progression. This study identifies kynureninase (KYNU), a key enzyme in the kynurenine pathway, as a novel [...] Read more.
Background/Objectives: Glioblastoma (GBM) is an aggressive brain tumor known for its profound heterogeneity and treatment resistance. Dysregulated complement signaling and epigenetic alterations have been implicated in GBM progression. This study identifies kynureninase (KYNU), a key enzyme in the kynurenine pathway, as a novel regulator of complement components and investigates its interaction with histone deacetylase 6 (HDAC6) in the context of therapeutic targeting. Methods: KYNU expression, and its association with complement signaling in GBM, were analyzed using publicly available datasets (TCGA, GTEx, HPA). Pathway enrichment was performed via LinkedOmics. In vitro studies in GBM cell lines (U87, U251, T98G) assessed the effects of KYNU silencing and treatment with an HDAC6 inhibitor (tubastatin) and a BET inhibitor (apabetalone) on gene expression and cell viability. Results: Bioinformatic analyses revealed significant overexpression of KYNU in GBM tissues compared to normal brain tissue. KYNU expression was positively associated with genes involved in complement and coagulation cascades. In vitro experiments demonstrated that KYNU silencing reduced the expression of C3, C3AR1, and C5AR1 and suppressed GBM cell viability. Treatment with tubastatin, while reducing viability, paradoxically upregulated complement genes, suggesting potential limitations in therapeutic efficacy. However, this effect was mitigated by KYNU knockdown. Combined treatment with apabetalone and tubastatin effectively suppressed KYNU expression and enhanced cytotoxicity, particularly in cells with high complement expression. Conclusions: Our findings establish the KYNU–HDAC6–complement axis as a critical regulatory pathway in GBM. Targeting KYNU-mediated complement activation through combined epigenetic approaches—such as HDAC6 and BET inhibition—represents a promising strategy to overcome complement-driven resistance in GBM therapy. Full article
Show Figures

Figure 1

24 pages, 1080 KiB  
Review
Epigenetic and Genotoxic Mechanisms of PFAS-Induced Neurotoxicity: A Molecular and Transgenerational Perspective
by Narimane Kebieche, Seungae Yim, Claude Lambert and Rachid Soulimani
Toxics 2025, 13(8), 629; https://doi.org/10.3390/toxics13080629 - 26 Jul 2025
Viewed by 387
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that continue to raise concern owing to their ability to accumulate in living organisms. In recent years, a growing body of research has shown that PFAS can exert their toxicity through disruption of both DNA integrity and epigenetic regulation. This includes changes in DNA methylation patterns, histone modifications, chromatin remodeling, and interference with DNA repair mechanisms. These molecular-level alterations can impair transcriptional regulation and cellular homeostasis, contributing to genomic instability and long-term biological dysfunction. In neural systems, PFAS exposure appears particularly concerning. It affects key regulators of neurodevelopment, such as BDNF, synaptic plasticity genes, and inflammatory mediators. Importantly, epigenetic dysregulation extends to non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which mediate post-transcriptional silencing and chromatin remodeling. Although direct evidence of transgenerational neurotoxicity is still emerging, animal studies provide compelling hints. Persistent changes in germline epigenetic profiles and transcriptomic alterations suggest that developmental reprogramming might be heritable by future generations. Additionally, PFAS modulate nuclear receptor signaling (e.g., PPARγ), further linking environmental cues to chromatin-level gene regulation. Altogether, these findings underscore a mechanistic framework in which PFAS disrupt neural development and cognitive function via conserved epigenetic and genotoxic mechanisms. Understanding how these upstream alterations affect long-term neurodevelopmental and neurobehavioral outcomes is critical for improving risk assessment and guiding future interventions. This review underscores the need for integrative research on PFAS-induced chromatin disruptions, particularly across developmental stages, and their potential to impact future generations. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
Show Figures

Figure 1

29 pages, 23179 KiB  
Article
Oligodendrocyte-Specific STAT5B Overexpression Ameliorates Myelin Impairment in Experimental Models of Parkinson’s Disease
by Yibo Li, Zhaowen Su, Jitong Zhai, Qing Liu, Hongfang Wang, Jiaxin Hao, Xiaofeng Tian, Jiamin Gao, Dandan Geng and Lei Wang
Cells 2025, 14(15), 1145; https://doi.org/10.3390/cells14151145 - 25 Jul 2025
Viewed by 472
Abstract
Background: Parkinson’s disease (PD) involves progressive dopaminergic neuron degeneration and motor deficits. Oligodendrocyte dysfunction contributes to PD pathogenesis through impaired myelination. Methods: Single-nucleus RNA sequencing (snRNA-seq) of PD mice revealed compromised oligodendrocyte differentiation and STAT5B downregulation. Pseudotemporal trajectory analysis via Monocle2 demonstrated impaired [...] Read more.
Background: Parkinson’s disease (PD) involves progressive dopaminergic neuron degeneration and motor deficits. Oligodendrocyte dysfunction contributes to PD pathogenesis through impaired myelination. Methods: Single-nucleus RNA sequencing (snRNA-seq) of PD mice revealed compromised oligodendrocyte differentiation and STAT5B downregulation. Pseudotemporal trajectory analysis via Monocle2 demonstrated impaired oligodendrocyte maturation in PD oligodendrocytes, correlating with reduced myelin-related gene expression (Sox10, Plp1, Mbp, Mog, Mag, Mobp). DoRothEA-predicted regulon activity identified STAT5B as a key transcriptional regulator. Results: Oligodendrocyte-specific STAT5B activation improved myelin integrity, as validated by Luxol Fast Blue staining and transmission electron microscopy; attenuated dopaminergic neuron loss; and improved motor function. Mechanistically, STAT5B binds the MBP promoter to drive transcription, a finding confirmed by the luciferase assay, while the DNMT3A-mediated hypermethylation of the STAT5B promoter epigenetically silences its expression, as verified by MethylTarget sequencing and methylation-specific PCR. Conclusions: DNMT3A inhibited the expression of STAT5B by affecting its methylation, which reduced the transcription of MBP, caused oligodendrocyte myelin damage, and eventually led to dopamine neuron damage and motor dysfunction in an MPTP-induced mouse model. This DNMT3A-STAT5B-MBP axis underlies PD-associated myelin damage, connecting epigenetic dysregulation with oligodendrocyte dysfunction and subsequent PD pathogenesis. Full article
Show Figures

Graphical abstract

17 pages, 3159 KiB  
Review
The Crucial Role of Epigenetic Modifications in Wharton’s Jelly Stem Cells
by Mao Yang, Juan Wang, Wensheng Deng and Qiang Wu
Int. J. Mol. Sci. 2025, 26(15), 7169; https://doi.org/10.3390/ijms26157169 - 24 Jul 2025
Viewed by 547
Abstract
Wharton’s jelly mesenchymal stem cells (WJ-SCs) are a promising source for regenerative medicine due to their multipotency, low immunogenicity, and ethical acceptability. Epigenetic regulation plays a crucial role in modulating their proliferation, differentiation, and therapeutic potential. Key mechanisms, including DNA methylation, histone modifications, [...] Read more.
Wharton’s jelly mesenchymal stem cells (WJ-SCs) are a promising source for regenerative medicine due to their multipotency, low immunogenicity, and ethical acceptability. Epigenetic regulation plays a crucial role in modulating their proliferation, differentiation, and therapeutic potential. Key mechanisms, including DNA methylation, histone modifications, and non-coding RNAs (e.g., miRNAs and lncRNAs), influence WJ-SC behavior by dynamically altering gene expression without changing the DNA sequence. DNA methylation often silences genes involved in differentiation, while histone acetylation/methylation can activate or repress lineage-specific pathways. Non-coding RNAs further fine-tune these processes by post-transcriptional regulation. Understanding these mechanisms could optimize WJ-SC-based therapies for tissue repair and immune modulation. This review summarizes current insights into epigenetic regulation in WJ-SCs and its implications for regenerative applications. Full article
Show Figures

Figure 1

47 pages, 2075 KiB  
Review
Epigenetic Dysregulation in Cancer: Implications for Gene Expression and DNA Repair-Associated Pathways
by Nina Rembiałkowska, Katarzyna Rekiel, Piotr Urbanowicz, Mateusz Mamala, Karolina Marczuk, Maria Wojtaszek, Marta Żywica, Eivina Radzevičiūtė-Valčiukė, Vitalij Novickij and Julita Kulbacka
Int. J. Mol. Sci. 2025, 26(13), 6531; https://doi.org/10.3390/ijms26136531 - 7 Jul 2025
Viewed by 1038
Abstract
Epigenetic modifications are heritable, reversible alterations that causally reshape chromatin architecture and thereby influence DNA repair without changing nucleotide sequence. DNA methylation, histone modifications and non-coding RNAs profoundly influence DNA repair mechanisms and genomic stability. Aberrant epigenetic patterns in cancer compromise DNA damage [...] Read more.
Epigenetic modifications are heritable, reversible alterations that causally reshape chromatin architecture and thereby influence DNA repair without changing nucleotide sequence. DNA methylation, histone modifications and non-coding RNAs profoundly influence DNA repair mechanisms and genomic stability. Aberrant epigenetic patterns in cancer compromise DNA damage recognition and repair, therefore impairing homologous recombination (HR), non-homologous end joining (NHEJ), and base excision repair (BER) by suppressing key repair genes and lowering access to repair sites. Then it is dissected how loss-of-function mutations in Switch/Sucrose non-fermentable, imitation switch and CHD (Chromodomain helicase DNA-binding) chromatin-remodeling complexes impair nucleosome repositioning, preventing effective damage sensing and assembly of repair machinery. Non-coding RNAs contribute to epigenetic silencing at DNA break sites, exacerbating repair deficiencies. This review evaluates recent advances concerning epigenetic dysfunction and DNA repair impairment. It is also highlighted that nanoparticle-mediated delivery strategies are designed to overcome pharmacologic resistance. It is presented how epigenetic dysregulation of DNA repair can guide more effective and drug-resistant cancer therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms and New Markers of Cancer)
Show Figures

Figure 1

14 pages, 1891 KiB  
Article
HP1-Mediated Silencing of the Doublesex1 Gene for Female Determination in the Crustacean Daphnia magna
by Junya Leim, Nikko Adhitama, Quang Dang Nong, Pijar Religia, Yasuhiko Kato and Hajime Watanabe
J. Dev. Biol. 2025, 13(3), 23; https://doi.org/10.3390/jdb13030023 - 3 Jul 2025
Viewed by 401
Abstract
The crustacean Daphnia magna produces genetically identical females and males by parthenogenesis. Males are produced in response to environmental cues including crowding and lack of food. For male development, the DM-domain containing transcription factor Doublesex1 (DSX1) is expressed spatiotemporally in male-specific traits and [...] Read more.
The crustacean Daphnia magna produces genetically identical females and males by parthenogenesis. Males are produced in response to environmental cues including crowding and lack of food. For male development, the DM-domain containing transcription factor Doublesex1 (DSX1) is expressed spatiotemporally in male-specific traits and orchestrates male trait formation in both somatic and gonadal tissues. However, it remains unknown how the dsx1 gene is silenced in females to avoid male trait development. Heterochromatin Protein 1 (HP1) plays a crucial role in epigenetic gene silencing during developmental processes. Here we report the identification of four HP1 orthologs in D. magna. None of these orthologs exhibited sexually dimorphic expression, and among them, HP1-1 was most abundantly expressed during embryogenesis. The knock-down of HP1-1 in female embryos led to the derepression of dsx1 in the male-specific traits, resulting in the development of male characteristics, such as the elongation of the first antennae. These results suggest that HP1-1 silences dsx1 for female development while environmental cues unlock this silencing to induce male production. We infer the HP1-dependent formation of a sex-specific chromatin structure on the dsx1 locus is a key process in the environmental sex determination of D. magna. Full article
Show Figures

Figure 1

19 pages, 5712 KiB  
Article
Regulation of Mitochondrial Metabolism by Mfn1 Gene Encoding Mitofusin Affects Cellular Proliferation and Histone Modification
by Han Xu, Xiaoyu Zhao, Yuan Yun, Yuxin Gao, Chunjie Bo, Lishuang Song, Chunling Bai, Lei Yang, Guangpeng Li and Guanghua Su
Cells 2025, 14(13), 1015; https://doi.org/10.3390/cells14131015 - 2 Jul 2025
Viewed by 430
Abstract
Mitochondria maintain cellular homeostasis through the dynamic balance of fusion and fission, which relies on nuclear-encoded mitochondrial fusion proteins, mitofusins 1 and 2 (Mfn1, Mfn2). Changes in Mfn1 and Mfn2 expression significantly affect mitochondrial fusion and fission, thereby affecting cellular metabolism. This study [...] Read more.
Mitochondria maintain cellular homeostasis through the dynamic balance of fusion and fission, which relies on nuclear-encoded mitochondrial fusion proteins, mitofusins 1 and 2 (Mfn1, Mfn2). Changes in Mfn1 and Mfn2 expression significantly affect mitochondrial fusion and fission, thereby affecting cellular metabolism. This study investigated the effect of Mfn1 expression on cell proliferation, apoptosis, and mitochondrial function by overexpressing Mfn1 (in OE-Mfn1 cells) and silencing Mfn1 using short hairpin RNA (shRNA) (in shMfn1 cells). Cell proliferation capacity, mitochondrial membrane potential, and mitochondrial ATP content were measured. To investigate the effects of Mfn1 on cellular metabolism and epigenetic modifications, the levels of metabolites α-KG, A-CoA, and SAM, as well as the levels of cellular methylation and acetylation, were detected by ELISA. Differentially expressed genes and metabolites were assessed by RNA-seq and LC-MS. This study demonstrates that alterations in Mfn1 gene expression can significantly affect mitochondrial metabolism and cell proliferation and apoptosis. In addition, Mfn1 affects the expression of genes encoding enzymes that are responsible for histone methylation and acetylation, thereby regulating these modifications. These findings provide a theoretical basis for further elucidation of the mechanisms by which Mfn1 affects cell proliferation, regulates metabolites, and modulates chromatin epigenetic modification. Full article
Show Figures

Graphical abstract

29 pages, 1100 KiB  
Review
Epigenetic Regulation of Erythropoiesis: From Developmental Programs to Therapeutic Targets
by Ninos Ioannis Vasiloudis, Kiriaki Paschoudi, Christina Beta, Grigorios Georgolopoulos and Nikoletta Psatha
Int. J. Mol. Sci. 2025, 26(13), 6342; https://doi.org/10.3390/ijms26136342 - 30 Jun 2025
Viewed by 614
Abstract
Erythropoiesis, the process driving the differentiation of hematopoietic stem and progenitor cells to mature erythrocytes, unfolds through tightly orchestrated developmental stages, each defined by profound epigenetic remodeling. From the initial commitment of hematopoietic progenitors to the terminal enucleation of erythrocytes, dynamic changes in [...] Read more.
Erythropoiesis, the process driving the differentiation of hematopoietic stem and progenitor cells to mature erythrocytes, unfolds through tightly orchestrated developmental stages, each defined by profound epigenetic remodeling. From the initial commitment of hematopoietic progenitors to the terminal enucleation of erythrocytes, dynamic changes in chromatin accessibility, transcription factor occupancy, and three-dimensional genome architecture govern lineage specification and stage-specific gene expression. Advances in our understanding of the regulatory genome have uncovered how non-coding elements, including enhancers, silencers, and insulators, shape the transcriptional landscape of erythroid cells. These elements work in concert with lineage-determining transcription factors to establish and maintain erythroid identity. Disruption of these epigenetic programs—whether by inherited mutations, somatic alterations, or environmental stress—can lead to a wide range of hematologic disorders. Importantly, this growing knowledge base has opened new therapeutic avenues, enabling the development of precision tools that target regulatory circuits to correct gene expression. These include epigenetic drugs, enhancer-targeted genome editing, and lineage-restricted gene therapies that leverage endogenous regulatory logic. As our understanding of erythroid epigenomics deepens, so too does our ability to design rational, cell-type-specific interventions for red blood cell disorders. Full article
(This article belongs to the Special Issue New Advances in Erythrocyte Biology and Functions)
Show Figures

Figure 1

37 pages, 14233 KiB  
Article
Unveiling the Role of Histone Methyltransferases in Psoriasis Pathogenesis: Insights from Transcriptomic Analysis
by Dóra Romhányi, Ágnes Bessenyei, Kornélia Szabó, Lajos Kemény, Rolland Gyulai and Gergely Groma
Int. J. Mol. Sci. 2025, 26(13), 6329; https://doi.org/10.3390/ijms26136329 - 30 Jun 2025
Viewed by 425
Abstract
Psoriasis involves complex epigenetic alterations, but detailed studies on histone methyltransferases and their role in disease progression are limited. We conducted a comprehensive analysis of nearly 300 transcriptomes, focusing mainly on differential expression of protein isoform-coding transcripts within the SET domain family of [...] Read more.
Psoriasis involves complex epigenetic alterations, but detailed studies on histone methyltransferases and their role in disease progression are limited. We conducted a comprehensive analysis of nearly 300 transcriptomes, focusing mainly on differential expression of protein isoform-coding transcripts within the SET domain family of histone methyltransferases. Consistent with previous findings, EZH2 transcripts showed increased expression in lesional skin, indicating altered H3K27 methylation that may enhance gene silencing, promoting keratinocyte proliferation and inflammatory responses. In the SET2 family, ASH1L exhibited reversed expression patterns between non-lesional and lesional skin, while NSD1 and NSD2 were upregulated, and SETD2 downregulated in lesions, suggesting disrupted H3K36 methylation that may affect immune responses and keratinocyte proliferation. Among H3K9 methyltransferases, SUV39 members, SUV39H2 was upregulated in lesions, whereas EHMT1 transcripts increased in non-lesional skin, and SETDB2 decreased in lesions. Additionally, PRDM family members such as PRDM2, MECOM (PRDM3), PRDM6, and PRDM8 showed altered expression in lesional skin. The H4K20 methylating SUV4-20 subfamily member, a SUV420H1 transcript, and SETD8 belonging to the other SET domain-containing family of methyltransferases were significantly increased in non-lesional skin and in lesions, respectively. Overall, aberrant expression and isoform variability of histone methyltransferases likely contribute to psoriasis pathogenesis by dysregulating proliferation, differentiation, and immune responses. Full article
Show Figures

Figure 1

20 pages, 941 KiB  
Review
HIV-1 Tat: Molecular Switch in Viral Persistence and Emerging Technologies for Functional Cure
by Kaixin Yu, Hanxin Liu and Ting Pan
Int. J. Mol. Sci. 2025, 26(13), 6311; https://doi.org/10.3390/ijms26136311 - 30 Jun 2025
Viewed by 713
Abstract
HIV-1 Tat acts as a central molecular switch governing the transition between viral latency and active replication, making it a pivotal target for HIV-1 functional cure strategies. By binding to the viral long terminal repeat (LTR) and hijacking host transcriptional machinery, Tat dynamically [...] Read more.
HIV-1 Tat acts as a central molecular switch governing the transition between viral latency and active replication, making it a pivotal target for HIV-1 functional cure strategies. By binding to the viral long terminal repeat (LTR) and hijacking host transcriptional machinery, Tat dynamically regulates RNA polymerase II processivity to alter viral transcription states. Recent studies reveal its context-dependent variability: while Tat recruits chromatin modifiers and scaffolds non-coding RNAs to stabilize epigenetic silencing in latently infected cells, it also triggers rapid transcriptional amplification upon cellular activation. This review systematically analyzes the bistable regulatory mechanism of Tat and investigates advanced technologies for reprogramming this switch to eliminateviral reservoirs and achieve functional cures. Conventional approaches targeting Tat are limited by compensatory viral evolution and poor bioavailability. Next-generation interventions will employ precision-engineered tools, such as AI-optimized small molecules blocking Tat-P-TEFb interfaces and CRISPR-dCas9/Tat chimeric systems, for locus-specific LTR silencing or reactivation (“block and lock” or “shock and kill”). Advanced delivery platforms, including brain-penetrant lipid nanoparticles (LNPs), enable the targeted delivery of Tat-editing mRNA or base editors to microglial reservoirs. Single-cell multiomics elucidates Tat-mediated clonal heterogeneity, identifying “switchable” subpopulations for timed interventions. By integrating systems-level Tat interactomics, epigenetic engineering, and spatiotemporally controlled delivery, this review proposes a roadmap to disrupt HIV-1 persistence by hijacking the Tat switch, ultimately bridging mechanistic insights to clinical applications. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 2943 KiB  
Article
IFI16 Mediates Deacetylation of KSHV Chromatin via Interaction with NuRD and Sin3A Co-Repressor Complexes
by Anandita Ghosh, Bala Chandran and Arunava Roy
Viruses 2025, 17(7), 921; https://doi.org/10.3390/v17070921 - 28 Jun 2025
Viewed by 1277
Abstract
IFI16 is a well-characterized nuclear innate immune DNA sensor that detects foreign dsDNA, including herpesviral genomes, to activate the inflammasome and interferon pathways. Beyond immune signaling, IFI16 also functions as an antiviral restriction factor, promoting the silencing of invading viral genes through transcriptional [...] Read more.
IFI16 is a well-characterized nuclear innate immune DNA sensor that detects foreign dsDNA, including herpesviral genomes, to activate the inflammasome and interferon pathways. Beyond immune signaling, IFI16 also functions as an antiviral restriction factor, promoting the silencing of invading viral genes through transcriptional and epigenetic mechanisms. We recently demonstrated another role of IFI16, in which it interacts with and recruits the class I histone deacetylases, HDAC1 and 2, to the KSHV latency protein LANA, modulating its acetylation and function. In this study, we asked whether these IFI16-HDAC1/2 interactions contribute to broader epigenetic regulation of the KSHV chromatin. Our findings reveal that IFI16 associates with and facilitates the recruitment of the NuRD and Sin3A co-repressor complexes—both multiprotein, HDAC1/2-containing chromatin regulators—on KSHV episomes. Depletion of IFI16 led to reductions in NuRD and Sin3A occupancy on viral chromatin, accompanied by increased histone acetylation at lytic gene promoters. These results suggest that IFI16 plays a critical role in recruiting or stabilizing these HDAC-containing co-repressor complexes on the KSHV genome, thereby enforcing transcriptional silencing of lytic genes and maintaining latency in KSHV. Our study expands the known functions of IFI16 and identifies a novel epigenetic mechanism by which it modulates herpesviral chromatin states. Full article
(This article belongs to the Special Issue Epigenetic Modifications in Viral Infections, Volume II)
Show Figures

Figure 1

Back to TopTop