Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (375)

Search Parameters:
Keywords = enzyme-assisted extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12122 KB  
Article
A Comparison Study on Polysaccharides Extracted from Citrus reticulata Blanco cv. Tankan Peel Using Five Different Methods: Structural Characterization and Immunological Competence
by Jinming Peng, Guangwei Chen, Ziyuan Lin, Shaoxin Guo, Yue Zeng, Qin Wang, Wenhua Yang and Jun Li
Polymers 2025, 17(18), 2554; https://doi.org/10.3390/polym17182554 - 22 Sep 2025
Viewed by 170
Abstract
This is the first work to screen an optimal extraction method for Citrus reticulata Blanco cv. Tankan peel polysaccharides (CPP). The CPP was extracted using hot water extraction (HWE), acid extraction (AAE), enzyme extraction (EAE), high-pressure extraction (HPE), and ultrasound extraction (UAE), named [...] Read more.
This is the first work to screen an optimal extraction method for Citrus reticulata Blanco cv. Tankan peel polysaccharides (CPP). The CPP was extracted using hot water extraction (HWE), acid extraction (AAE), enzyme extraction (EAE), high-pressure extraction (HPE), and ultrasound extraction (UAE), named CPP-W, CPP-A, CPP-E, CPP-P, and CPP-U, respectively. Results showed that CPP-A and CPP-P had higher extraction yields than other CPPs. The five CPPs varied chemically in molecular weight, monosaccharide composition, and microstructure, but shared similar IR spectra and core glycosidic linkages, indicating differential degradation while preserving core structures during extraction. Among these CPPs, CPP-A, CPP-E, and CPP-U exhibited stronger immunological activities, attributed to high galacturonic acid and low molecular weight. Moreover, CPPs significantly promoted secretion of cytokines (nitric oxide, NO; prostaglandin E2, PGE2; interleukin-6, IL-6; tumor necrosis factor-α, TNF-α) by activating downstream inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)-related mitogen-activated protein kinases (MAPK) pathways. Overall, CPP-E possessed high extraction yield, low molecular weight, and strong immuno-stimulatory activity, suggesting that enzyme-assisted extraction was the optimal approach for extracting CPP. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 1182 KB  
Article
Compositional Analysis and Sustainable Valorization of the Calabrian Hazelnut cv. ‘Tonda Calabrese’ and Its Processing Derivatives
by Federica Turrini, Federica Grasso, Aseel Swaidan, Giosuè Costa, Sonia Bonacci, Antonio Procopio, Carmine Lupia, Raffaella Boggia and Stefano Alcaro
Foods 2025, 14(18), 3269; https://doi.org/10.3390/foods14183269 - 20 Sep 2025
Viewed by 395
Abstract
Hazelnut cultivation is a strategic agricultural sector in Italy, with Calabria contributing through the native “Tonda Calabrese” cultivar, valued for its biodiversity. Despite its importance, data on the nutritional and compositional characteristics of this cultivar remain limited. In this study, hazelnuts from three [...] Read more.
Hazelnut cultivation is a strategic agricultural sector in Italy, with Calabria contributing through the native “Tonda Calabrese” cultivar, valued for its biodiversity. Despite its importance, data on the nutritional and compositional characteristics of this cultivar remain limited. In this study, hazelnuts from three different Calabrian producers were analyzed for morphological traits, proximate composition, and elemental content, using both conventional and non-destructive techniques such as CIELab color profiling and ATR-FTIR spectroscopy. The nuts showed high levels of essential micro-elements (Fe, Cu, Zn), aligning with previous findings on other cultivars, and showed no detectable pesticide residues, confirming their nutritional quality. Moreover, this study also aims to explore sustainable valorization strategies for hazelnut by-products, embracing circular economy principles in a “zero waste” approach, including oils and defatted flours. The extracted oils were evaluated for oxidative stability (peroxide value, p-anisidine, TOTOX index) and acidity, meeting Codex Alimentarius quality standards. The residual defatted flour was upcycled through eco-friendly methods, such as Ultrasound-Assisted Extraction (UAE) and Enzyme-Assisted Extraction (EAE), to isolate the polyphenol and protein fractions, respectively. Both extracts exhibited notable antioxidant activity (34.7–35.3 mmol Fe2+ eq/100 g and 64.3–82.2 mmol Fe2+ eq/100 g, respectively), suggesting their potential use as valuable ingredients for dietetic and nutraceutical applications. Full article
Show Figures

Graphical abstract

63 pages, 828 KB  
Review
Extraction of Marine Bioactive Compounds from Seaweed: Coupling Environmental Concerns and High Yields
by Carlos Cardoso, Joana Matos and Cláudia Afonso
Mar. Drugs 2025, 23(9), 366; https://doi.org/10.3390/md23090366 - 19 Sep 2025
Viewed by 561
Abstract
This review examines recent advances in the extraction of valuable compounds from seaweed biomass, focusing on practical feasibility and environmental sustainability. There is a growing importance of seaweed biomass in terms of the study and acknowledgment of its untapped biotechnological potential (multiple compounds [...] Read more.
This review examines recent advances in the extraction of valuable compounds from seaweed biomass, focusing on practical feasibility and environmental sustainability. There is a growing importance of seaweed biomass in terms of the study and acknowledgment of its untapped biotechnological potential (multiple compounds and biological activities) and in terms of economic impact. Conventional extraction techniques largely fail to address this challenge, even if optimized. This has led to the development and testing of innovative technologies as solutions for a ‘green’ and effective extraction of components from seaweed biomass and to biorefinery processes. There are large differences in outcomes between alternative processes, depending on the matrix, operational parameters, and targeted compounds and activities. Despite the positive results of some techniques, such as those based on physical mechanisms, namely Microwave-Assisted Extraction (MAE) and Ultrasound-Assisted Extraction (UAE), and on enzymatic selectivity, i.e., Enzyme-Assisted Extraction (EAE), there is no universally effective technique and approach, thus justifying integrated approaches combining different techniques. The application of ‘green’ solvents was also assessed and proven to harbor a large potential, just as the wet route. Although technical difficulties, outcome variability, and economic viability problems are relevant, recent progress in seaweed processing paves the way for a future blue economy. Full article
Show Figures

Figure 1

18 pages, 931 KB  
Review
Unlocking the Alkaloid Biological Potential of Chili Pepper (Capsicum spp.), Cacao (Theobroma cacao L.), and Coffee (Coffea spp.) Byproducts: Characterization, Non-Conventional Extraction, Applications, and Future Perspectives
by Anahí Cárdenas, Luis Mojica, Luis Coronado-Cáceres and Gustavo A. Castillo-Herrera
Molecules 2025, 30(18), 3795; https://doi.org/10.3390/molecules30183795 - 18 Sep 2025
Viewed by 206
Abstract
Chili peppers (Capsicum spp.), cacao (Theobroma cacao L.), and coffee (Coffea spp.) are important crops worldwide. Nearly 35%, 80%, and 45% of the respective fruits are underutilized or discarded, representing a considerable economic loss. This work reviews and analyzes the [...] Read more.
Chili peppers (Capsicum spp.), cacao (Theobroma cacao L.), and coffee (Coffea spp.) are important crops worldwide. Nearly 35%, 80%, and 45% of the respective fruits are underutilized or discarded, representing a considerable economic loss. This work reviews and analyzes the environmental factors that influence the concentration of the main alkaloids in these crops, including capsaicin, theobromine, and caffeine. Their reported anti-inflammatory, cardioprotective, neuroprotective, and cytotoxic properties are also reviewed. This work explores strategies for the revalorization of these crops, comparing alkaloid extraction methods that use non-conventional techniques, including supercritical fluid extraction (SFE), ultrasound-assisted extraction (UAE), high-pressure and -temperature extraction (HPTE), pressurized liquid extraction (PLE), pressurized hot water extraction (PHWE), enzyme-assisted extraction (EAE), and pulsed electric field-assisted extraction (PEFAE), and their combination to enhance the recovery of capsaicin, theobromine, and caffeine, leading to sustainable and innovative uses of these crops’ byproducts. Capsaicin, theobromine, and caffeine alkaloids are promising ingredients for the development of functional foods, cosmeceuticals, and pharmaceuticals. Full article
Show Figures

Graphical abstract

20 pages, 1203 KB  
Article
Production and Evaluation of Green Soybean (Glycine max L.) Powder Fortified with Encapsulated Crude Procyanidin Extract Powder
by Saritanot Kosonphong, Noppol Leksawasdi, Sarana Rose Sommano, Charin Techapun, Pornchai Rachtanapun, Nutsuda Sumonsiri and Julaluk Khemacheewakul
Processes 2025, 13(9), 2955; https://doi.org/10.3390/pr13092955 - 17 Sep 2025
Viewed by 326
Abstract
Green soybean (Glycine max L.), commonly known as edamame, is recognized for its rich phytochemical content and nutritional and functional benefits. However, its limited shelf life and susceptibility to quality degradation restrict its commercial potential in fresh form. To address this, green [...] Read more.
Green soybean (Glycine max L.), commonly known as edamame, is recognized for its rich phytochemical content and nutritional and functional benefits. However, its limited shelf life and susceptibility to quality degradation restrict its commercial potential in fresh form. To address this, green soybean seeds can be processed into extract and powder forms, which offer greater stability and added value. The preparation of crude procyanidin extract was examined in this study along with the effects of three distinct extraction techniques: enzyme incubation, ultrasonic-assisted extraction (UAE), and enzymatic hydrolysis followed by ultrasonic-assisted extraction (EUAE). Additionally, the effects of two drying methods (drum-drying and spray-drying) on the retention of bioactive compounds and antioxidant activity were assessed. Optimal conditions for each drying method were selected to enhance antioxidant properties by fortifying instant green soybean powder (GSP) with encapsulated crude procyanidin extract (ECPE). The chemical, physical, and sensory properties of ECPE-fortified GSP were analyzed. Results indicated that the EUAE method was the most effective for procyanidin extraction. Encapsulation allowed for procyanidin retention of over 83% after storage at 25 and 35 °C for 12 weeks. The optimal conditions were determined to be drum-drying at 3 rpm and spray-drying at an inlet temperature of 200 °C for the drying techniques. Fortification of GSP with 3–5% ECPE powder positively correlated with increased phytochemical content and antioxidant activity. Both drum- and spray-dried GSP maintained color integrity comparable to the control. Drum-dried GSP preserved greater concentrations of bioactive compounds and exhibited superior antioxidant activity compared to spray-dried GSP. All powdered products had acceptable water activity (≤0.60) and moisture content (≤12%), suggesting suitability for long-term storage. Although spray-dried powders exhibited greater hygroscopicity, they demonstrated lower emulsion stability and solubility compared to drum-dried powders. Drum-dried GSP retained higher levels of carbohydrate, fat, fiber, and ash compared with spray-dried powder, while protein content was similarly preserved by both methods. In conclusion, ECPE powder serves as a promising functional ingredient in instant green soybean powder. Both drum-dried and spray-dried GSP products exhibit potential for application in a variety of functional food products. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
Show Figures

Graphical abstract

32 pages, 1721 KB  
Review
Optimizing Extraction Methods for Bioactive Polysaccharides from Rosa rugosa and Rosa damascena
by Sawaira Ashraf, Muhammad Zahid Ashraf, Baohe Miao and Xinxin Zhao
Foods 2025, 14(18), 3211; https://doi.org/10.3390/foods14183211 - 15 Sep 2025
Viewed by 397
Abstract
Rosa damascena and Rosa rugosa, which are the two most commercial species in the Rosa genus, are used to make rose oil, cosmetics, and functional foods. The majority of polysaccharide constituents of both species is structurally diverse and demonstrates promising biological activities, [...] Read more.
Rosa damascena and Rosa rugosa, which are the two most commercial species in the Rosa genus, are used to make rose oil, cosmetics, and functional foods. The majority of polysaccharide constituents of both species is structurally diverse and demonstrates promising biological activities, such as moisturizing, immunomodulation, and antioxidant activity. The extraction technique has a significant impact on the yield, purity, and bioactivity of polysaccharides. Traditional extraction methods (hot water, ethanol) are simple and economical, yet they typically produce low yields and degrade sensitive compounds. Novel extraction methods (pressurized liquid extraction, enzyme-assisted extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction) offer higher efficiency, selectivity, and sustainability, while better preserving polysaccharide structure and bioactivity. This review serves as a comparative summary of conventional versus novel extraction methodologies of polysaccharides from R. damascena and R. rugosa, with particular consideration towards the yield, polysaccharide structural integrity, sustainability, and industrial conduct of each methodology. In addition, it summarizes the distribution and functional role of selected polysaccharides in the various organs of the plants, while also providing an overview of their antioxidant mechanisms and potential bioactive applications in health. Challenges and critical factors that surround specific species, standards for processes, and extraction methods, and that therefore appeal to time and economic considerations, are identified. In efforts to optimize the extraction methodology, the high economic and functional potential of the Rosa species can be maximized in the interest of healthy, functional consumables for the pharmaceutical, nutraceutical, and cosmetic industries. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 1780 KB  
Article
Exploring the Impact of Ultrasound-Assisted Extraction on the Phytochemical Composition and Bioactivity of Tamus communis L. Fruits
by Irene Gouvinhas, Maria José Saavedra, Maria José Alves and Juliana Garcia
Pharmaceuticals 2025, 18(9), 1342; https://doi.org/10.3390/ph18091342 - 6 Sep 2025
Viewed by 527
Abstract
Background/Objectives: The health benefits of Tamus communis fruits have been associated with their high phenolic content, which comprises several flavonoids. However, the extraction methods might significantly impact these valuable compounds’ bioactivity. Therefore, the current study assesses how different extraction techniques affect T. [...] Read more.
Background/Objectives: The health benefits of Tamus communis fruits have been associated with their high phenolic content, which comprises several flavonoids. However, the extraction methods might significantly impact these valuable compounds’ bioactivity. Therefore, the current study assesses how different extraction techniques affect T. communis extracts’ antioxidant, anti-aging, antimicrobial, cytotoxic, anti-inflammatory, and phenolic contents. Methods: Conventional method (TCE-CM) and ultrasound-assisted extraction (TCE-UM) were the methods employed. Results: The increased phenolic content of TCE-UM, particularly flavonoids and phenolic acids, was demonstrated to be a contributing factor to its higher biological activity. Key enzymes linked to dermatological conditions, such as elastase, collagenase, hyaluronidase, and tyrosinase, were significantly inhibited by both extracts at 1 mg/mL; TCE-UM showed the highest tyrosinase inhibition (65.61  ±  5.21%) compared to TCE-CM (21.78  ±  2.19%). TCE-UM also demonstrated exceptional antibacterial performance, showing notable antibiofilm and metabolic inactivation effects and potent activity against pathogens such as Staphylococcus aureus, Escherichia coli, and Candida albicans. Both extracts showed concentration-dependent anti-inflammatory properties; TCE-UM had a lower IC50 value (26.46 ± 2.30%) in nitric oxide inhibition tests, suggesting stronger anti-inflammatory capabilities. Conclusions: These findings underscore the superior bioactivity of TCE-UM and suggest that ultrasonic extraction is a more efficient method for isolating bioactive phenolic compounds from T. communis fruits, presenting promising applications in anti-aging and antimicrobial formulations. Full article
Show Figures

Figure 1

44 pages, 2354 KB  
Review
Marine Macroalgae in Topical Formulations: Bioactive Compounds, Variability, Analytical Challenges and Skin Benefits
by Cătălina Bogdan, Mara Molnar, Elena Ines Dima, Andreea Alexandra Olteanu, Diana Antonia Safta and Mirela-Liliana Moldovan
Pharmaceutics 2025, 17(9), 1143; https://doi.org/10.3390/pharmaceutics17091143 - 31 Aug 2025
Viewed by 1089
Abstract
Marine macroalgae, classified into three major groups, brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta), represent a source of structurally diverse compounds relevant for topical applications. This narrative review of the peer-reviewed literature and regulatory databases targets macroalgae-derived active ingredients in cosmetic formulations and [...] Read more.
Marine macroalgae, classified into three major groups, brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta), represent a source of structurally diverse compounds relevant for topical applications. This narrative review of the peer-reviewed literature and regulatory databases targets macroalgae-derived active ingredients in cosmetic formulations and in wound-healing applications. It outlines major compound classes (polyphenols, sulfated polysaccharides, carotenoids, fatty acids, and peptides), along with their documented biological effects on skin (antioxidant, anti-inflammatory, moisturizing, photoprotective, and anti-aging activity) and regulatory/safety aspects with formulation strategies. This review also addresses the variability in compound concentrations resulting from species, environmental conditions, and seasonal factors, which impacts reproducibility and standardization. Common extraction techniques like solvent extraction, ultrasound-assisted extraction, supercritical fluid extraction, and enzyme-assisted methods are described in relation to compound class and yield. Analytical methods used for the identification and quantification of these compounds, including HPLC, GC-MS, and FTIR, are then summarized. Additionally, recent in vitro and in vivo studies evaluating the bioactivity and safety of macroalgae-derived ingredients are discussed. This review compiles relevant evidence to inform formulation strategies and ingredient evaluation in the context of marine-based topical products. Full article
Show Figures

Graphical abstract

24 pages, 4090 KB  
Article
A Comparative Study on Novel-Assisted Extraction Techniques for Retrieving Protein from Moringa oleifera Seeds
by Paul Ndubuisi Anyiam, Pipat Tangjaidee, Wanli Zhang and Saroat Rawdkuen
Foods 2025, 14(17), 3046; https://doi.org/10.3390/foods14173046 - 29 Aug 2025
Viewed by 640
Abstract
Moringa oleifera seeds are rich in protein, yet their potential as plant-based protein in food remains underutilized. This study evaluated the extraction efficiency, composition, and techno-functional properties of moringa seed protein isolate (MSPI) using enzyme-assisted (EAE), ultrasonic-assisted (UAE), and microwave-assisted extraction (MAE) methods, [...] Read more.
Moringa oleifera seeds are rich in protein, yet their potential as plant-based protein in food remains underutilized. This study evaluated the extraction efficiency, composition, and techno-functional properties of moringa seed protein isolate (MSPI) using enzyme-assisted (EAE), ultrasonic-assisted (UAE), and microwave-assisted extraction (MAE) methods, compared to conventional alkaline extraction (CE). EAE was performed with viscozyme (2%, pH 8, 50 °C, 2 h) and papain (1%, pH 7, 50 °C, 1 h), UAE at 40% amplitude (20 kHz, 20 min), and MAE at 800 W (50 °C, 90 s). All methods significantly improved extraction yield (14.60–30.08%), protein content (80.47–86.61%), solubility (40.78–60.09% at pH 10), and techno-functional properties over CE. However, MAE slightly reduced solubility. Phytates (0.83–0.49 g/100 g) and trypsin inhibitor activity significantly decreased (4.48–1.92 U/mg). In vitro protein digestibility improved (p < 0.05) across all samples (88.11–93.81%), with hydrolysis patterns supporting the enhanced digestibility. Structural modifications were indicated by altered surface hydrophobicity and thermal properties. SDS-PAGE showed consistent major protein bands at 17, 25, and 48–63 kDa, with EAE showing reduced intensity at ~63 kDa. While UAE and MAE achieved high protein yield and purity, EAE offered the best balance of functionality and digestibility, making it the most promising method for producing high-quality MSPI. These findings are relevant for guiding the selection of extraction methods for MSPI recovery for food applications. Full article
Show Figures

Graphical abstract

21 pages, 1288 KB  
Article
Vinification Technique Matters: Kinetic Insight into Color, Phenolics, Volatiles, and Aging Potential of Babica Wines
by Živko Skračić, Josipa Marić, Ivica Ljubenkov, Maja Veršić Bratinčević, Petra Brzović, Martina Kukoleča, Lorena Pranjković, Luka Marinov, Ana Mucalo, Goran Zdunić and Ivana Generalić Mekinić
Processes 2025, 13(9), 2734; https://doi.org/10.3390/pr13092734 - 27 Aug 2025
Viewed by 518
Abstract
Unveiling how vinification technique shapes wine identity, this study provides a comparative insight into the chemical and sensory profiles of Babica wines produced using traditional, enzyme-assisted, and thermovinification approaches. The kinetics of color parameters changes and the phenolic extraction were monitored during the [...] Read more.
Unveiling how vinification technique shapes wine identity, this study provides a comparative insight into the chemical and sensory profiles of Babica wines produced using traditional, enzyme-assisted, and thermovinification approaches. The kinetics of color parameters changes and the phenolic extraction were monitored during the first five days of maceration. Individual phenolics and volatiles were determined using high-performance liquid and gas chromatography, respectively, while the overall sensory quality of the wines was evaluated by panelists. Significant differences in the extraction kinetics of compounds of interest were observed among treatments, particularly during the first days of maceration. By the end of the study, the thermovinified wine exhibited the highest color intensity (3.80), redness (52.5%), and approximately two-fold higher concentrations of total phenolics (2205 mg gallic acid equivalents/L) compared to the other two treatments. It contained the lowest concentration of tannins (100 mg catechin equivalents/L), anthocyanins (117 mg of malvidin-3-glucoside equivalents/L), and esters and showed the highest levels of volatile alcohols. It was also characterized by the most intense blueberry aroma and astringency in sensory analysis. The applied maceration technique affects the chemical and sensory profiles of Babica wines, with thermovinification favoring young and highly colored wines, whereas conventional vinification enhances the wine’s aging potential. Full article
(This article belongs to the Special Issue Analysis and Processes of Bioactive Components in Natural Products)
Show Figures

Figure 1

34 pages, 523 KB  
Review
Baicalin: Natural Sources, Extraction Techniques, and Therapeutic Applications Against Bacterial Infections
by Xin Meng, Chao Ning, Mengna Kang, Xiuwen Wang, Zhiyun Yu, Xueyu Hao and Haiyong Guo
Molecules 2025, 30(17), 3464; https://doi.org/10.3390/molecules30173464 - 22 Aug 2025
Viewed by 1335
Abstract
The emergence of bacterial strains resistant to available antibiotics due to overprescription has prompted a search for alternative treatments. Among the most promising is baicalin, a flavonoid extracted from the roots of Scutellaria baicalensis. Roots, the primary natural source of baicalin, have [...] Read more.
The emergence of bacterial strains resistant to available antibiotics due to overprescription has prompted a search for alternative treatments. Among the most promising is baicalin, a flavonoid extracted from the roots of Scutellaria baicalensis. Roots, the primary natural source of baicalin, have been extensively explored using emerging extraction technologies such as ultrasonic-assisted extraction and supercritical fluid extraction. These methods offer significant advantages over traditional reflux extraction for baicalin preparation, including shorter extraction times, lower energy consumption, and improved environmental sustainability. Baicalin exhibits remarkable antibacterial activity in vitro and has demonstrated therapeutic efficacy against gastrointestinal infections, meningitis, pulmonary diseases, and sepsis, among other infectious disorders, in animal models. Documented mechanisms of action include disrupting the Escherichia coli membrane, downregulating quorum-sensing gene expression in Pseudomonas aeruginosa, and inhibiting host inflammatory pathways such as PI3K/Akt/NF-κB. However, its clinical translation faces several bottlenecks, including reliance on animal experiment data, low bioavailability, and regulatory compliance issues. This review compares baicalin extraction yields from different natural sources, summarizes the advantages and disadvantages of various extraction technologies, analyzes possible mechanisms of action in treating different bacterial diseases, and discusses outstanding challenges and best strategies for expanded clinical use against bacterial infection. Our aim is to provide a valuable reference for future research and clinical applications. Full article
Show Figures

Figure 1

23 pages, 8117 KB  
Article
Deep Learning Enabled Optimization and Mass Transfer Mechanism in Ultrasound-Assisted Enzymatic Extraction of Polyphenols from Tartary Buckwheat Hulls
by Yilin Shi, Yanrong Ma, Rong Li, Ruiyu Zhang, Zizhen Song, Yao Lu, Zhigang Chen, Yufu Wang and Yue Wu
Foods 2025, 14(16), 2915; https://doi.org/10.3390/foods14162915 - 21 Aug 2025
Viewed by 499
Abstract
Tartary buckwheat hulls, a phenolic-rich by-product of buckwheat processing, offer great potential for resource utilization. In this study, ultrasound-assisted enzymatic extraction with two temperatures (40 °C and 50 °C) was employed to obtain phenolics from Tartary buckwheat hulls. Compared with the traditional extraction [...] Read more.
Tartary buckwheat hulls, a phenolic-rich by-product of buckwheat processing, offer great potential for resource utilization. In this study, ultrasound-assisted enzymatic extraction with two temperatures (40 °C and 50 °C) was employed to obtain phenolics from Tartary buckwheat hulls. Compared with the traditional extraction method (207 mg/100 g), ultrasound-assisted enzymatic extraction increased the total phenolic yield by 91.3% at 50 °C. Numerical simulations based on Fick’s law indicated that enzyme pretreatment concentration positively correlated with the effective diffusion coefficient (De), which increased from 9.15 × 10−7 to 2.00 × 10−6 m2/s at 40 °C. Meanwhile, the neuro-fuzzy inference system (ANFIS) successfully predicted the extraction yield under various ultrasonic conditions (R2 > 0.98). Regarding quantitative analysis of phenolic compounds in extracts, the results revealed that catechins and epicatechins were the most abundant in Tartary buckwheat hull. Additionally, phenolic acids rapidly diffused at higher temperatures (50 °C), and flavonoids were highly sensitive to temperature and enzyme synergy. Phenolic extracts exhibit significant potential for value-added applications in food processing, particularly in improving antioxidative stability, prolonging shelf life. This study provides a theoretical basis for green, efficient phenolic extraction from plant residues. Full article
Show Figures

Figure 1

16 pages, 5296 KB  
Article
The Effect of the Fresh Latex Ratio on the Composition and Properties of Bio-Coagulated Natural Rubber
by Jianwei Li, Honghai Huang, Li Ding, Tuo Dai, Haoran Geng, Tao Zhao, Liguang Zhao, Fan Wu and Hongxing Gui
Polymers 2025, 17(16), 2211; https://doi.org/10.3390/polym17162211 - 13 Aug 2025
Viewed by 643
Abstract
By proportionally blending fresh latex from PR107, Reyan 72059, and Reyan 73397, and employing both acid- and enzyme-assisted microbial coagulation methods, this study analyzed the effects of the specific latex formulation on the following: physicochemical properties, non-rubber components, molecular weight and distribution, vulcanization [...] Read more.
By proportionally blending fresh latex from PR107, Reyan 72059, and Reyan 73397, and employing both acid- and enzyme-assisted microbial coagulation methods, this study analyzed the effects of the specific latex formulation on the following: physicochemical properties, non-rubber components, molecular weight and distribution, vulcanization characteristics of compounded rubber, and physical–mechanical properties of vulcanized natural rubber. The results indicate that, compared to acid-coagulated natural rubber, enzyme-assisted microbial coagulated natural rubber exhibits slightly lower levels of volatile matter, impurities, plasticity retention index (PRI), nitrogen content, calcium ions (Ca2+), iron ions (Fe3+), and fatty acid content. Conversely, it demonstrates higher values in ash content, initial plasticity (P0), Mooney viscosity (ML(1+4)), acetone extract, magnesium ions (Mg2+), copper ions (Cu2+), manganese ions (Mn2+), gel content, molecular weight and distribution, and glass transition temperature (Tg). With the increase in the proportion of PR107 and Reyan 72059 fresh latex, the ash content, volatile matter content, fatty acid content, gel content, and dispersion coefficient (PDI) of natural rubber gradually decrease, while the impurity content, PRI, nitrogen content, weight-average molecular weight (Mw), and number-average molecular weight (Mn) gradually increase. Compared to acid-coagulated natural rubber compounds, enzyme-assisted microbial-coagulated natural rubber compounds exhibit higher minimum torque (ML) and maximum torque (MH), but shorter scorch time (t10) and optimum cure time (t90). Furthermore, as the proportion of PR107 and Reyan 72059 fresh latex increases, the ML of the compounds gradually decreases. In pure rubber formulations, enzyme-assisted microbial-coagulated natural rubber vulcanizates demonstrate higher tensile strength, tear strength, modulus at 300%, and Shore A hardness compared to acid-coagulated natural rubber vulcanizates. When the fresh latex ratio of PR107, Reyan 72059, and Reyan 73397 is 1:1:3, the tensile strength and 300% modulus of the natural rubber vulcanizates reach their maximum values. In carbon black formulations, the tensile strength and tear strength of enzyme-assisted microbial-coagulated natural rubber vulcanizates are significantly higher than those of acid-coagulated natural rubber vulcanizates in pure rubber formulations, with the increase exceeding that of other samples. Full article
(This article belongs to the Special Issue Polymer Functionalization Modification)
Show Figures

Figure 1

27 pages, 2726 KB  
Article
Comparative Effects of Microwave and Ultrasonic Pretreatments on the Antioxidant, Anti-Aging, and Moisturizing Activities of Yellow Silkworm Cocoon Extracts (Bombyx mori L., var. Nang Lai)
by Sarocha Chareegun, Suvimol Somwongin, Jirasit Inthorn, Saranya Juntrapirom, Watchara Kanjanakawinkul and Wantida Chaiyana
Cosmetics 2025, 12(4), 170; https://doi.org/10.3390/cosmetics12040170 - 11 Aug 2025
Viewed by 1988
Abstract
Background: Silkworm cocoons are rich in bioactive compounds beneficial for cosmetic applications. This study presented a novel approach by comparing microwave and ultrasonic pretreatments to enhance silk protein extraction efficiency. The aim was to evaluate the effects of pretreatment methods and extraction solvents [...] Read more.
Background: Silkworm cocoons are rich in bioactive compounds beneficial for cosmetic applications. This study presented a novel approach by comparing microwave and ultrasonic pretreatments to enhance silk protein extraction efficiency. The aim was to evaluate the effects of pretreatment methods and extraction solvents on the bioactive components, physicochemical properties, and biological activities of silkworm cocoon extracts for cosmetic applications. Methods: Cocoons of Bombyx mori (Nang Lai) were pretreated using conventional soaking (12 h), microwave (3 min), or ultrasonication (30 min), and then subjected to aqueous or enzymatic extraction. The extracts were analyzed for protein, phenolic, and flavonoid content. Structural and thermal properties were characterized using infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. Antioxidant and anti-aging properties were assessed by measuring the inhibition of nitric oxide, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and collagenase. Skin moisturizing effects and irritation potential were tested. Results: Silkworm cocoons pretreated with microwave (ALM) and ultrasonication (ALS), followed by enzymatic extraction, had the highest yields (21.6 ± 0.5% and 21.7 ± 0.4%, respectively). Despite their slightly lower protein contents, these extracts showed elevated phenolic and flavonoid content. ALM and ALS demonstrated strong antioxidant activities, with DPPH scavenging of 65.9 ± 0.2% and 65.2 ± 0.3%, collagenase inhibition of 60.3 ± 0.8% and 59.7 ± 1.7%, and nitric oxide inhibition of 13.5 ± 0.4% and 12.9 ± 0.2%, respectively. Skin moisturizing effects increased by 63.6 ± 2.1% for ALM and 61.2 ± 1.5% for ALS, compared to 1.3 ± 0.6% in the control. All extracts were found to be non-irritating for topical application, indicating their safety for skincare formulations. Conclusions: Microwave and ultrasonication pretreatments, in combination with enzymatic extraction, provide an effective, time-efficient, and sustainable method for producing silkworm cocoon extracts with promising cosmetic applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

15 pages, 1925 KB  
Article
Ultrasound-Assisted Extraction Enhances Enzymatic Activity and Thermal Stability of Bovine Pancreatin: Effect of pH and Temperature
by Gulmira Kenenbay, Urishbay Chomanov and Alibek Tursunov
Processes 2025, 13(8), 2511; https://doi.org/10.3390/pr13082511 - 9 Aug 2025
Viewed by 514
Abstract
The extraction of enzyme preparations from bovine pancreas is a key step in the production of pancreatin used for pharmaceutical and food industry applications. However, conventional methods (CMs) often fail to preserve enzymatic activity (EA) during processing, particularly under variable temperature and pH [...] Read more.
The extraction of enzyme preparations from bovine pancreas is a key step in the production of pancreatin used for pharmaceutical and food industry applications. However, conventional methods (CMs) often fail to preserve enzymatic activity (EA) during processing, particularly under variable temperature and pH conditions. This study investigates the potential of ultrasound-assisted extraction (UAM) as an alternative to CMs for improving the recovery, stability, and performance of two essential pancreatic enzymes—α-amylase (AA) and protease (PA). EA was assessed over a broad temperature range (10–50 °C) and pH spectrum (5.5–8.0), with both methods evaluated under identical conditions. UAM consistently yielded higher EA across all tested parameters, with optimal AA and PA observed at pH 6.0 and 38 °C. Notably, UAM-extracted enzymes retained significant activity even at elevated temperatures (46–50 °C), whereas CM-derived samples showed a marked loss of function. These findings demonstrate that UAM enhances enzyme release and thermal resilience by minimizing denaturation and structural degradation during extraction. UAM showed improved apparent thermal tolerance under the tested conditions, which may indicate enhanced applicability in temperature-sensitive processing environments. Full article
Show Figures

Figure 1

Back to TopTop