Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = enzymatic cleavage patterns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 703 KiB  
Review
Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Functional Adaptation and Biotechnological Perspectives
by Alex Graça Contato and Carlos Adam Conte-Junior
Eng 2025, 6(8), 177; https://doi.org/10.3390/eng6080177 (registering DOI) - 1 Aug 2025
Abstract
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation [...] Read more.
Fungal lytic polysaccharide monooxygenases (LPMOs) have revolutionized the field of biomass degradation by introducing an oxidative mechanism that complements traditional hydrolytic enzymes. These copper-dependent enzymes catalyze the cleavage of glycosidic bonds in recalcitrant polysaccharides such as cellulose, hemicellulose, and chitin, through the activation of molecular oxygen (O2) or hydrogen peroxide (H2O2). Their catalytic versatility is intricately modulated by structural features, including the histidine brace active site, surface-binding loops, and, in some cases, appended carbohydrate-binding modules (CBMs). The oxidation pattern, whether at the C1, C4, or both positions, is dictated by subtle variations in loop architecture, amino acid microenvironments, and substrate interactions. LPMOs are embedded in a highly synergistic fungal enzymatic system, working alongside cellulases, hemicellulases, lignin-modifying enzymes, and oxidoreductases to enable efficient lignocellulose decomposition. Industrial applications of fungal LPMOs are rapidly expanding, with key roles in second-generation biofuels, biorefineries, textile processing, food and feed industries, and the development of sustainable biomaterials. Recent advances in genome mining, protein engineering, and heterologous expression are accelerating the discovery of novel LPMOs with improved functionalities. Understanding the balance between O2- and H2O2-driven mechanisms remains critical for optimizing their catalytic efficiency while mitigating oxidative inactivation. As the demand for sustainable biotechnological solutions grows, this narrative review highlights how fungal LPMOs function as indispensable biocatalysts for the future of the Circular Bioeconomy and green industrial processes. Full article
Show Figures

Figure 1

20 pages, 10073 KiB  
Article
Role of Glycans in Equine Endometrial Cell Uptake of Extracellular Vesicles Derived from Amniotic Mesenchymal Stromal Cells
by Giulia Gaspari, Anna Lange-Consiglio, Fausto Cremonesi and Salvatore Desantis
Int. J. Mol. Sci. 2025, 26(4), 1784; https://doi.org/10.3390/ijms26041784 - 19 Feb 2025
Cited by 1 | Viewed by 757
Abstract
Extracellular vesicles (EVs) are important mediators of cell–cell communication thanks to their ability to transfer their bioactive cargo, thus regulating a variety of physiological contexts. EVs derived from amniotic mesenchymal/stromal cells (eAMC-EVs) are internalized by equine endometrial cells (eECs) with positive effects on [...] Read more.
Extracellular vesicles (EVs) are important mediators of cell–cell communication thanks to their ability to transfer their bioactive cargo, thus regulating a variety of physiological contexts. EVs derived from amniotic mesenchymal/stromal cells (eAMC-EVs) are internalized by equine endometrial cells (eECs) with positive effects on regenerative medicine treatments. As the cellular uptake of EVs is influenced by the glycan profile of both EVs and target cells, this study is focused on the role of surface glycans in the uptake of eAMC-EVs by recipient eECs. Equine ECs were obtained by enzymatic digestion of uteri from healthy mares. Equine AMC-EVs were isolated from amniotic cell cultures according to a standardized protocol. The glycan pattern was studied using a panel of lectins in combination with fucosidase and neuraminidase treatment. Both eECs and eAMC-EVs expressed N-linked high mannose glycans, as well as fucosylated and sialylated glycans. All these glycans were involved in the uptake of eAMC-EVs by eECs. The internalization of eAMC-EVs was strongly reduced after cleavage of α1,2-linked fucose and α2,3/α2,6-linked sialic acids. These results demonstrate that surface glycans are involved in the internalization of eAMC-EVs by eECs and that fucosylated and sialylated glycans are highly relevant in the transfer of bioactive molecules with effects on regenerative medicine treatments. Full article
Show Figures

Figure 1

20 pages, 1699 KiB  
Review
The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development
by Quan Li, Yanan Wang, Zhihui Sun, Haiyang Li and Huan Liu
Int. J. Mol. Sci. 2024, 25(14), 7680; https://doi.org/10.3390/ijms25147680 - 12 Jul 2024
Cited by 7 | Viewed by 2595
Abstract
In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of [...] Read more.
In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of enzymatic pathways that meticulously process double-stranded RNA (dsRNA) precursors into sRNA molecules, typically 20 to 30 nucleotides in length. These sRNAs, chiefly microRNAs (miRNAs) and small interfering RNAs (siRNAs), are integral in guiding the RNA-induced silencing complex (RISC) to selectively target messenger RNAs (mRNAs) for post-transcriptional modulation. This regulation is achieved either through the targeted cleavage or the suppression of translational efficiency of the mRNAs. In plant development, sRNAs are integral to the modulation of key pathways that govern growth patterns, organ differentiation, and developmental timing. The biogenesis of sRNA itself is a fine-tuned process, beginning with transcription and proceeding through a series of processing steps involving Dicer-like enzymes and RNA-binding proteins. Recent advances in the field have illuminated the complex processes underlying the generation and function of small RNAs (sRNAs), including the identification of new sRNA categories and the clarification of their involvement in the intercommunication among diverse regulatory pathways. This review endeavors to evaluate the contemporary comprehension of sRNA biosynthesis and to underscore the pivotal role these molecules play in directing the intricate performance of plant developmental processes. Full article
(This article belongs to the Collection Advances in Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 3989 KiB  
Article
Human RPF1 and ESF1 in Pre-rRNA Processing and the Assembly of Pre-Ribosomal Particles: A Functional Study
by Alexander Deryabin, Anastasiia Moraleva, Kira Dobrochaeva, Diana Kovaleva, Maria Rubtsova, Olga Dontsova and Yury Rubtsov
Cells 2024, 13(4), 326; https://doi.org/10.3390/cells13040326 - 10 Feb 2024
Cited by 3 | Viewed by 2475
Abstract
Ribosome biogenesis is essential for the functioning of living cells. In higher eukaryotes, this multistep process is tightly controlled and involves a variety of specialized proteins and RNAs. This pool of so-called ribosome biogenesis factors includes diverse proteins with enzymatic and structural functions. [...] Read more.
Ribosome biogenesis is essential for the functioning of living cells. In higher eukaryotes, this multistep process is tightly controlled and involves a variety of specialized proteins and RNAs. This pool of so-called ribosome biogenesis factors includes diverse proteins with enzymatic and structural functions. Some of them have homologs in yeast S. cerevisiae, and their function can be inferred from the structural and biochemical data obtained for the yeast counterparts. The functions of human proteins RPF1 and ESF1 remain largely unclear, although RPF1 has been recently shown to participate in 60S biogenesis. Both proteins have drawn our attention since they contribute to the early stages of ribosome biogenesis, which are far less studied than the later stages. In this study, we employed the loss-of-function shRNA/siRNA-based approach to the human cell line HEK293 to determine the role of RPF1 and ESF1 in ribosome biogenesis. Downregulating RPF1 and ESF1 significantly changed the pattern of RNA products derived from 47S pre-rRNA. Our findings demonstrate that RPF1 and ESF1 are associated with different pre-ribosomal particles, pre-60S, and pre-40S particles, respectively. Our results allow for speculation about the particular steps of pre-rRNA processing, which highly rely on the RPF1 and ESF1 functions. We suggest that both factors are not directly involved in pre-rRNA cleavage but rather help pre-rRNA to acquire the conformation favoring its cleavage. Full article
Show Figures

Figure 1

18 pages, 7811 KiB  
Article
Specificity Enhancement of Glutenase Bga1903 toward Celiac Disease-Eliciting Pro-Immunogenic Peptides via Active-Site Modification
by Yu-You Liu, Rui-Ling Ye and Menghsiao Meng
Int. J. Mol. Sci. 2024, 25(1), 505; https://doi.org/10.3390/ijms25010505 - 29 Dec 2023
Cited by 1 | Viewed by 1876
Abstract
Celiac disease is an autoimmune disease triggered by oral ingestion of gluten, with certain gluten residues resistant to digestive tract enzymes. Within the duodenum, the remaining peptides incite immunogenic responses, including the generation of autoantibodies and inflammation, leading to irreversible damage. Our previous [...] Read more.
Celiac disease is an autoimmune disease triggered by oral ingestion of gluten, with certain gluten residues resistant to digestive tract enzymes. Within the duodenum, the remaining peptides incite immunogenic responses, including the generation of autoantibodies and inflammation, leading to irreversible damage. Our previous exploration unveiled a glutenase called Bga1903 derived from the Gram-negative bacterium Burkholderia gladioli. The cleavage pattern of Bga1903 indicates its moderate ability to mitigate the toxicity of pro-immunogenic peptides. The crystal structure of Bga1903, along with the identification of subsites within its active site, was determined. To improve its substrate specificity toward prevalent motifs like QPQ within gluten peptides, the active site of Bga1903 underwent site-directed mutagenesis according to structural insights and enzymatic kinetics. Among the double-site mutants, E380Q/S387L exhibits an approximately 34-fold increase in its specificity constant toward the QPQ sequence, favoring glutamines at the P1 and P3 positions compared to the wild type. The increased specificity of E380Q/S387L not only enhances its ability to break down pro-immunogenic peptides but also positions this enzyme variant as a promising candidate for oral therapy for celiac disease. Full article
(This article belongs to the Special Issue Recent Advances in Gluten-Related Disorders)
Show Figures

Figure 1

16 pages, 3048 KiB  
Article
Exploring the Release of Elastin Peptides Generated from Enzymatic Hydrolysis of Bovine Elastin via Peptide Mapping
by Jianan Zhang, Yang Liu, Liwen Jiang, Tiantian Zhao, Guowan Su and Mouming Zhao
Molecules 2023, 28(22), 7534; https://doi.org/10.3390/molecules28227534 - 10 Nov 2023
Cited by 2 | Viewed by 2258
Abstract
To enhance the understanding of enzymatic hydrolysis and to accelerate the discovery of key bioactive peptides within enzymatic products, this research focused on elastin as the substrate and investigated the variations in peptide profiles and the production of key bioactive peptides (those exceeding [...] Read more.
To enhance the understanding of enzymatic hydrolysis and to accelerate the discovery of key bioactive peptides within enzymatic products, this research focused on elastin as the substrate and investigated the variations in peptide profiles and the production of key bioactive peptides (those exceeding 5% of the total) and their impacts on the biological activity of the hydrolysates. Through the application of advanced analytical techniques, such as stop-flow two-dimensional liquid chromatography and ultra-high-performance liquid chromatography-tandem mass spectrometry, the research tracks the release and profiles of peptides within elastin hydrolysates (EHs). Despite uniform peptide compositions, significant disparities in peptide concentrations were detected across the hydrolysates, hinting at varying levels of bioactive efficacy. A comprehensive identification process pinpointed 403 peptides within the EHs, with 18 peptides surpassing 5% in theoretical maximum content, signaling their crucial role in the hydrolysate’s bioactivity. Of particular interest, certain peptides containing sequences of alanine, valine, and glycine were released in higher quantities, suggesting Alcalase® 2.4L’s preference for these residues. The analysis not only confirms the peptides’ dose-responsive elastase inhibitory potential but also underscores the nuanced interplay between peptide content, biological function, and their collective synergy. The study sets the stage for future research aimed at refining enzymatic treatments to fully exploit the bioactive properties of elastin. Full article
(This article belongs to the Special Issue Study on Physicochemical Properties of Food Protein, 2nd Edition)
Show Figures

Figure 1

19 pages, 3028 KiB  
Article
Chitosanase Production from the Liquid Fermentation of Squid Pens Waste by Paenibacillus elgii
by Chien Thang Doan, Thi Ngoc Tran, Thi Phuong Hanh Tran, Thi Thanh Nguyen, Huu Kien Nguyen, Thi Kim Thi Tran, Bich Thuy Vu, Thi Huyen Trang Trinh, Anh Dzung Nguyen and San-Lang Wang
Polymers 2023, 15(18), 3724; https://doi.org/10.3390/polym15183724 - 11 Sep 2023
Cited by 10 | Viewed by 2212
Abstract
Chitosanases play a significant part in the hydrolysis of chitosan to form chitooligosaccharides (COS) that possess diverse biological activities. This study aimed to enhance the productivity of Paenibacillus elgii TKU051 chitosanase by fermentation from chitinous fishery wastes. The ideal parameters for achieving maximum [...] Read more.
Chitosanases play a significant part in the hydrolysis of chitosan to form chitooligosaccharides (COS) that possess diverse biological activities. This study aimed to enhance the productivity of Paenibacillus elgii TKU051 chitosanase by fermentation from chitinous fishery wastes. The ideal parameters for achieving maximum chitosanase activity were determined: a squid pens powder amount of 5.278% (w/v), an initial pH value of 8.93, an incubation temperature of 38 °C, and an incubation duration of 5.73 days. The resulting chitosanase activity of the culture medium was 2.023 U/mL. A chitosanase with a molecular weight of 25 kDa was isolated from the culture medium of P. elgii TKU051 and was biochemically characterized. Liquid chromatography with tandem mass spectrometry analysis revealed that P. elgii TKU051 chitosanase exhibited a maximum amino acid identity of 43% with a chitosanase of Bacillus circulans belonging to the glycoside hydrolase (GH) family 46. P. elgii TKU051 chitosanase demonstrated optimal activity at pH 5.5 while displaying remarkable stability within the pH range of 5.0 to 9.0. The enzyme displayed maximum efficiency at 60 °C and demonstrated considerable stability at temperatures ≤40 °C. The presence of Mn2+ positively affected the activity of the enzyme, while the presence of Cu2+ had a negative effect. Thin-layer chromatography analysis demonstrated that P. elgii TKU051 chitosanase exhibited an endo-type cleavage pattern and hydrolyzed chitosan with 98% degree of deacetylation to yield (GlcN)2 and (GlcN)3. The enzymatic properties of P. elgii TKU051 chitosanase render it a promising candidate for application in the production of COS. Full article
Show Figures

Figure 1

12 pages, 1100 KiB  
Article
Antisense Gapmers with LNA-Wings and (S)-5′-C-Aminopropyl-2′-arabinofluoro-nucleosides Could Efficiently Suppress the Expression of KNTC2
by Yujun Zhou, Shuichi Sakamoto and Yoshihito Ueno
Molecules 2022, 27(21), 7384; https://doi.org/10.3390/molecules27217384 - 30 Oct 2022
Cited by 2 | Viewed by 2134
Abstract
Previously reported (S)-5′-C-aminopropyl-2′-arabinofluoro-thymidine (5ara-T) and newly synthesized (S)-5′-C-aminopropyl-2′-arabinofluoro-5-methyl-cytidine (5ara-MeC) analogs were incorporated into a series of antisense gapmers containing multiple phosphorothioate (PS) linkages and locked nucleic acids (LNAs) in [...] Read more.
Previously reported (S)-5′-C-aminopropyl-2′-arabinofluoro-thymidine (5ara-T) and newly synthesized (S)-5′-C-aminopropyl-2′-arabinofluoro-5-methyl-cytidine (5ara-MeC) analogs were incorporated into a series of antisense gapmers containing multiple phosphorothioate (PS) linkages and locked nucleic acids (LNAs) in their wing regions. The functional properties of the gapmers were further evaluated in vitro. Compared with the positive control, for the LNA-wing full PS gapmer without 5ara modification, it was revealed that each gapmer could have a high affinity and be thermally stable under biological conditions. Although the cleavage pattern was obviously changed; gapmers with 5ara modification could still efficiently activate E. coli RNase H1. In addition, incorporating one 5ara modification into the two phosphodiester linkages could reverse the destabilization in enzymatic hydrolysis caused by fewer PS linkages. In vitro cellular experiments were also performed, and the Lipofectamine® 2000 (LFA)+ group showed relatively higher antisense activity than the LFA-free group. KN5ara-10, which contains fewer PS linkages, showed similar or slightly better antisense activity than the corresponding full PS-modified KN5ara-3. Hence, KN5ara-10 may be the most promising candidate for KNTC2-targeted cancer therapy. Full article
(This article belongs to the Special Issue Organic Synthesis and Functional Evaluation of Nucleic Acids)
Show Figures

Graphical abstract

13 pages, 3905 KiB  
Article
Straightforward Analysis of Sulfated Glycosaminoglycans by MALDI-TOF Mass Spectrometry from Biological Samples
by Lynn Krüger, Karina Biskup, Vasileios Karampelas, Antje Ludwig, Antje-Susanne Kasper, Wolfram C. Poller and Véronique Blanchard
Biology 2022, 11(4), 506; https://doi.org/10.3390/biology11040506 - 25 Mar 2022
Cited by 2 | Viewed by 3153
Abstract
Glycosaminoglycans (GAGs) are considered to be the most difficult type of glycoconjugates to analyze as they are constituted of linear long polysaccharidic chains having molecular weights reaching up to several million daltons. Bottom-up analysis of glycosaminoglycans from biological samples is a long and [...] Read more.
Glycosaminoglycans (GAGs) are considered to be the most difficult type of glycoconjugates to analyze as they are constituted of linear long polysaccharidic chains having molecular weights reaching up to several million daltons. Bottom-up analysis of glycosaminoglycans from biological samples is a long and work-extensive procedure due to the many preparation steps involved. In addition, so far, only few research articles have been dedicated to the analysis of GAGs by means of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) because their intact ionization can be problematic due to the presence of labile sulfate groups. In this work, we had the aim of exploring the sulfation pattern of monosulfated chondroitin/dermatan sulfate (CS/DS) disaccharides in human tissue samples because they represent the most abundant form of sulfation in disaccharides. We present here an optimized strategy to analyze on-target derivatized CS/DS disaccharides via MALDI-TOF-MS using a fast workflow that does not require any purification after enzymatic cleavage. For the first time, we show that MALDI-TOF/TOF experiments allow for discrimination between monosulfated CS disaccharide isomers via specific fragments corresponding to glycosidic linkages and to cross-ring cleavages. This proof of concept is illustrated via the analysis of CS/DS disaccharides of atherosclerotic lesions of different histological origins, in which we were able to identify their monosulfation patterns. Full article
(This article belongs to the Special Issue Pathological Changes of the Extracellular Matrix as Diagnostic Target)
Show Figures

Figure 1

17 pages, 1842 KiB  
Article
Clinical Evaluation of Pathognomonic Salivary Protease Fingerprinting for Oral Disease Diagnosis
by Garrit Koller, Eva Schürholz, Thomas Ziebart, Andreas Neff, Roland Frankenberger and Jörg W. Bartsch
J. Pers. Med. 2021, 11(9), 866; https://doi.org/10.3390/jpm11090866 - 30 Aug 2021
Cited by 5 | Viewed by 3051
Abstract
Dental decay (Caries) and periodontal disease are globally prevalent diseases with significant clinical need for improved diagnosis. As mediators of dental disease-specific extracellular matrix degradation, proteases are promising analytes. We hypothesized that dysregulation of active proteases can be functionally linked to oral disease [...] Read more.
Dental decay (Caries) and periodontal disease are globally prevalent diseases with significant clinical need for improved diagnosis. As mediators of dental disease-specific extracellular matrix degradation, proteases are promising analytes. We hypothesized that dysregulation of active proteases can be functionally linked to oral disease status and may be used for diagnosis. To address this, we examined a total of 52 patients with varying oral disease states, including healthy controls. Whole mouth saliva samples and caries biopsies were collected and subjected to analysis. Overall proteolytic and substrate specific activities were assessed using five multiplexed, fluorogenic peptides. Peptide cleavage was further described by inhibitors targeting matrix metalloproteases (MMPs) and cysteine, serine, calpain proteases (CSC). Proteolytic fingerprints, supported by supervised machine-learning analysis, were delineated by total proteolytic activity (PepE) and substrate preference combined with inhibition profiles. Caries and peridontitis showed increased enzymatic activities of MMPs with common (PepA) and divergent substrate cleavage patterns (PepE), suggesting different MMP contribution in particular disease states. Overall, sensitivity and specificity values of 84.6% and 90.0%, respectively, were attained. Thus, a combined analysis of protease derived individual and arrayed substrate cleavage rates in conjunction with inhibitor profiles may represent a sensitive and specific tool for oral disease detection. Full article
Show Figures

Figure 1

16 pages, 972 KiB  
Review
Enzymatic Conversion of Mannan-Rich Plant Waste Biomass into Prebiotic Mannooligosaccharides
by Nosipho Hlalukana, Mihle Magengelele, Samkelo Malgas and Brett Ivan Pletschke
Foods 2021, 10(9), 2010; https://doi.org/10.3390/foods10092010 - 26 Aug 2021
Cited by 23 | Viewed by 5896
Abstract
A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered “wastes”, which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). [...] Read more.
A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered “wastes”, which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). MOS can be produced from the degradation of mannan. Mannan has a main backbone consisting of β-1,4-linked mannose residues (which may be interspersed by glucose residues) with galactose substituents. Endo-β-1,4-mannanases cleave the mannan backbone at cleavage sites determined by the substitution pattern and thus give rise to different MOS products. These MOS products serve as prebiotics to stimulate various types of intestinal bacteria and cause them to produce fermentation products in different parts of the gastrointestinal tract which benefit the host. This article reviews recent advances in understanding the exploitation of plant residual biomass via the enzymatic production and characterization of MOS, and the influence of MOS on beneficial gut microbiota and their biological effects (i.e., immune modulation and lipidemic effects) as observed on human and animal health. Full article
(This article belongs to the Special Issue Food Ingredients and Gut Microbiota)
Show Figures

Figure 1

13 pages, 2355 KiB  
Article
Tumor Activated Cell Penetrating Peptides to Selectively Deliver Immune Modulatory Drugs
by Dina V. Hingorani, Maria F. Camargo, Maryam A. Quraishi, Stephen R. Adams and Sunil J. Advani
Pharmaceutics 2021, 13(3), 365; https://doi.org/10.3390/pharmaceutics13030365 - 10 Mar 2021
Cited by 14 | Viewed by 4715
Abstract
Recent advances in immunotherapy have revolutionized cancer therapy. Immunotherapies can engage the adaptive and innate arms of the immune system. Therapeutics targeting immune checkpoint inhibitors (i.e., CTLA-4; PD-1, and PD-L1) have shown efficacy for subsets of cancer patients by unleashing an adaptive antitumor [...] Read more.
Recent advances in immunotherapy have revolutionized cancer therapy. Immunotherapies can engage the adaptive and innate arms of the immune system. Therapeutics targeting immune checkpoint inhibitors (i.e., CTLA-4; PD-1, and PD-L1) have shown efficacy for subsets of cancer patients by unleashing an adaptive antitumor immune response. Alternatively, small molecule immune modulators of the innate immune system such as toll-like receptor (TLR) agonists are being developed for cancer therapy. TLRs function as pattern recognition receptors to microbial products and are also involved in carcinogenesis. Reisquimod is a TLR 7/8 agonist that has antitumor efficacy. However, systemic delivery free resiquimod has proven to be challenging due to toxicity of nonspecific TLR 7/8 activation. Therefore, we developed a targeted peptide-drug conjugate strategy for systemic delivery of resiquimod. We designed an activatable cell penetrating peptide to deliver resiquimod specifically to the tumor tissue while avoiding normal tissues. The activatable cell penetrating peptide (ACPP) scaffold undergoes enzymatic cleavage by matrix metalloproteinases 2/9 in the extracellular matrix followed by intracellular lysosomal cathepsin B mediated release of the free resiquimod. Importantly, when conjugated to ACPP; the tumor tissue concentration of resiquimod was more than 1000-fold greater than that of surrounding non-cancerous tissue. Moreover, systemic ACPP-resiquimod delivery produced comparable therapeutic efficacy to localized free resiquimod in syngeneic murine tumors. These results highlight a precision peptide-drug conjugate delivery. Full article
(This article belongs to the Special Issue Precision Delivery of Drugs and Imaging Agents with Peptides)
Show Figures

Figure 1

33 pages, 1288 KiB  
Review
The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors
by Maciej Sobczak, Marharyta Zyma and Agnieszka Robaszkiewicz
Cells 2020, 9(9), 2040; https://doi.org/10.3390/cells9092040 - 6 Sep 2020
Cited by 20 | Viewed by 6424
Abstract
Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each [...] Read more.
Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing. PARP inhibitors, which prevent protein ADP-ribosylation, and PARP1‒DNA traps, which capture the enzyme on chromatin, may allow us to modulate immune responses and the development of particular cell types. They can be also effective in the treatment of monocytic leukemia and other cancers by reverting the anti- to the proinflammatory phenotype in tumor-associated macrophages. Full article
(This article belongs to the Special Issue Molecular Role of PARP in Health and Disease 2020)
Show Figures

Figure 1

1 pages, 138 KiB  
Abstract
Activation and Antagonism of the OAS–RNase L Pathway
by Susan R. Weiss
Proceedings 2020, 50(1), 14; https://doi.org/10.3390/proceedings2020050014 - 4 Jun 2020
Cited by 1 | Viewed by 2115
Abstract
The oligoadenylate synthetase–ribonuclease L (OAS–RNase L) system is a potent antiviral pathway that severely limits the pathogenesis of many viruses. Upon sensing dsRNA, OASs produce 2′,5′-oligoadenylates (2-5A) that activate RNase L to cleave both host and viral single-stranded RNA, thereby limiting protein production, [...] Read more.
The oligoadenylate synthetase–ribonuclease L (OAS–RNase L) system is a potent antiviral pathway that severely limits the pathogenesis of many viruses. Upon sensing dsRNA, OASs produce 2′,5′-oligoadenylates (2-5A) that activate RNase L to cleave both host and viral single-stranded RNA, thereby limiting protein production, virus replication and spread, leading to apoptotic cell death. Endogenous host dsRNA, which accumulates in the absence of adenosine deaminase acting on RNA (ADAR)1, can also activate RNase L and lead to apoptotic cell death. RNase L activation and antiviral activity during infections with several types of viruses in human and bat cells is dependent on OAS3 but independent of virus-induced interferon (IFN) and, thus, RNase L can be activated even in the presence of IFN antagonists. Differently from other human viruses examined, Zika virus is resistant to the antiviral activity of RNase L and instead utilizes RNase L to enhance its replication factories to produce more infectious virus. Some betacoronaviruses antagonize RNase L activation by expressing 2′,5′-phosphodiesterases (PDEs) that cleave 2-5A and thereby antagonize activation of RNase L. The best characterized of these PDEs is the murine coronavirus (MHV) NS2 accessory protein. Enzymatically active NS2 is required for replication in myeloid cells and in the liver. Interestingly, while wild type mice clear MHV from the liver by 7–10 days post-infection, RNase L knockout mice fail to effectively clear MHV, probably due to diminished apoptotic death of infected cells. We suggest that RNase L antiviral activity stems from direct cleavage of viral genomes and cessation of protein synthesis as well as through promoting death of infected cells, limiting the spread of virus. Importantly, OASs are pattern recognition receptors and the OAS–RNase L pathway is a primary innate response pathway to viruses, capable of early response, coming into play before IFN is induced or when the virus shuts down IFN signaling. Full article
(This article belongs to the Proceedings of Viruses 2020—Novel Concepts in Virology)
15 pages, 4790 KiB  
Article
Characteristics of Cyp11a during Gonad Differentiation of the Olive Flounder Paralichthys olivaceus
by Dongdong Liang, Zhaofei Fan, Yuxia Zou, Xungang Tan, Zhihao Wu, Shuang Jiao, Jun Li, Peijun Zhang and Feng You
Int. J. Mol. Sci. 2018, 19(9), 2641; https://doi.org/10.3390/ijms19092641 - 6 Sep 2018
Cited by 19 | Viewed by 4308
Abstract
The P450 side-chain cleavage enzyme, P450scc (Cyp11a) catalyzes the first enzymatic step for the synthesis of all steroid hormones in fish. To study its roles in gonads of the olive flounder Paralichthys olivaceus, an important maricultured fish species, we isolated the cyp11a [...] Read more.
The P450 side-chain cleavage enzyme, P450scc (Cyp11a) catalyzes the first enzymatic step for the synthesis of all steroid hormones in fish. To study its roles in gonads of the olive flounder Paralichthys olivaceus, an important maricultured fish species, we isolated the cyp11a genomic DNA sequence of 1396 bp, which consists of 5 exons and 4 introns. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) results indicated that the flounder cyp11a was exclusively expressed in gonad and head kidney tissues. Its expression level in the testis was higher than that in the ovary. According to the in situ hybridization patterns, cyp11a was mainly expressed in the Leydig cells of the testis, and the thecal cells of the ovary. Immunofluorescence analysis showed that Cyp11a was located in the cytoplasm of the cultured flounder testis cells. Further quantitative real-time PCR results presented the cyp11a differential expression patterns during gonad differentiation. Among different sampling points of the 17β-estradiol (E2, 5 ppm) treatment group, cyp11a expression levels were relatively high in the differentiating ovary (30 and 40 mm total length, TL), and then significantly decreased in the differentiated ovary (80, 100 and 120 mm TL, p < 0.05). The pregnenolone level also dropped in the differentiated ovary. In the high temperature treatment group (HT group, 28 ± 0.5 °C), the cyp11a expression level fluctuated remarkably in the differentiating testis (60 mm TL), and then decreased in the differentiated testis (80, 100 mm TL, p < 0.05). In the testosterone (T, 5 ppm) treatment group, the cyp11a was expressed highly in undifferentiated gonads and the differentiating testis, and then dropped in the differentiated testis. Moreover, the levels of cholesterol and pregnenolone of the differentiating testis in the HT and T groups increased. The expression level of cyp11a was significantly down-regulated after the cultured flounder testis cells were treated with 75 and 150 μM cyclic adenosine monophosphate (cAMP), respectively (p < 0.05), and significantly up-regulated after treatment with 300 μM cAMP (p < 0.05). Both nuclear receptors NR5a2 and NR0b1 could significantly up-regulate the cyp11a gene expression in a dosage dependent way in the testis cells detected by cell transfection analysis (p < 0.05). The above data provides evidence that cyp11a would be involved in the flounder gonad differentiation and development. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop