Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = enzymatic biofuel cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3446 KB  
Article
Optimizing the Enzymatic Hydrolysis of Microchloropsis salina Biomass for Single-Cell Oil Production
by Felix Melcher, Max Schneider, Michael Paper, Marion Ringel, Daniel Garbe and Thomas Brück
Biomass 2025, 5(3), 56; https://doi.org/10.3390/biomass5030056 - 17 Sep 2025
Viewed by 1256
Abstract
There is an increasing industrial demand for sustainable resources for lipid-based biofuels and platform chemical production. A promising, CO2-efficient resource is autotrophically cultivated microalgae, either for direct single-cell oil (SCO) production or as a biomass substrate for fermentative SCO production via [...] Read more.
There is an increasing industrial demand for sustainable resources for lipid-based biofuels and platform chemical production. A promising, CO2-efficient resource is autotrophically cultivated microalgae, either for direct single-cell oil (SCO) production or as a biomass substrate for fermentative SCO production via organisms like yeasts. Regarding the latter, chemical biomass hydrolysis typically results in high sugar yield and high salt concentrations due to the required neutralization prior to fermentation. In contrast, enzymatic hydrolysis is often lacking in mass efficiency. In this study, the enzymatic hydrolysis of both nutrient-replete and lipid-rich autotrophic Microchloropsis salina biomass was optimized, testing different pre-treatments and enzyme activities. Hereby, the protease treatment to weaken the cell wall integrity and the dosing of the Cellic CTec3 was identified to have the highest effect on hydrolysis efficiency. Sugar yields of 63% (nutrient-replete) and almost 100% (lipid-rich) could be achieved. The process was successfully scaled-up in mini bioreactors at a 250 mL scale. The resulting hydrolysate of the lipid-rich biomass was tested as a substrate of the oleaginous yeast Cutaneotrichosporon oleaginosus in a consumption-based acetic acid fed-batch setup. It outperformed both the model substrate and the glucose control, demonstrating the high potential of the hydrolysate as feedstock for yeast oil production. The presented sequential and circular SCO-producing value chain highlights the potential for mass- and space–time-efficient biofuel production, combining the autotrophic cultivation of oleaginous algae with decoupled yeast oil fermentation for the first time. Full article
Show Figures

Graphical abstract

36 pages, 1432 KB  
Review
Fungal Coculture: Unlocking the Potential for Efficient Bioconversion of Lignocellulosic Biomass
by Rafael Icaro Matos Vieira, Alencar da Silva Peixoto, Antonielle Vieira Monclaro, Carlos André Ornelas Ricart, Edivaldo Ximenes Ferreira Filho, Robert Neil Gerard Miller and Taísa Godoy Gomes
J. Fungi 2025, 11(6), 458; https://doi.org/10.3390/jof11060458 - 17 Jun 2025
Cited by 3 | Viewed by 2769
Abstract
Microbial decomposition of persistent natural compounds such as phenolic lignin and polysaccharides in plant cell walls plays a crucial role in the global carbon cycle and underpins diverse biotechnological applications. Among microbial decomposers, fungi from the Ascomycota and Basidiomycota phyla have evolved specialized [...] Read more.
Microbial decomposition of persistent natural compounds such as phenolic lignin and polysaccharides in plant cell walls plays a crucial role in the global carbon cycle and underpins diverse biotechnological applications. Among microbial decomposers, fungi from the Ascomycota and Basidiomycota phyla have evolved specialized mechanisms for efficient lignocellulosic biomass degradation, employing extracellular enzymes and synergistic fungal consortia. Fungal coculture, defined as the controlled, axenic cultivation of multiple fungal species or strains in a single culture medium, is a promising strategy for industrial processes. This approach to biomass conversion offers potential for enhancing production of enzymes, biofuels, and other high-value bioproducts, while enabling investigation of ecological dynamics and metabolic pathways relevant to biorefinery operations. Lignocellulosic biomass conversion into fuels, energy, and biochemicals is central to the bioeconomy, integrating advanced biotechnology with sustainable resource use. Recent advancements in -omics technologies, including genomics, transcriptomics, and proteomics, have facilitated detailed analysis of fungal metabolism, uncovering novel secondary metabolites and enzymatic pathways activated under specific growth conditions. This review highlights the potential of fungal coculture systems to advance sustainable biomass conversion in alignment with circular bioeconomy goals. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

15 pages, 2947 KB  
Article
Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization
by Olha Demkiv, Nataliya Stasyuk, Galina Gayda, Oksana Zakalska, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(4), 249; https://doi.org/10.3390/bios15040249 - 14 Apr 2025
Viewed by 1437
Abstract
Amperometric biosensors (ABSs) and enzymatic biofuel cells (BFCs) share several fundamental principles in their functionality, despite serving different primary purposes. Both devices rely on biorecognition, redox reactions, electron transfer (ET), and advanced electrode materials, including innovative nanomaterials (NMs). ABSs and BFCs, utilizing microbial [...] Read more.
Amperometric biosensors (ABSs) and enzymatic biofuel cells (BFCs) share several fundamental principles in their functionality, despite serving different primary purposes. Both devices rely on biorecognition, redox reactions, electron transfer (ET), and advanced electrode materials, including innovative nanomaterials (NMs). ABSs and BFCs, utilizing microbial oxidoreductases in combination with electroactive NMs, are both efficient and cost-effective. In the current study, several laboratory prototypes of BFCs have been developed with bioanodes based on yeast flavocytochrome b2 (Fcb2) and alcohol oxidase (AO), and a cathode based on fungal laccase. For the first time, BFCs have been developed featuring anodes based on Fcb2 co-immobilized with redox NMs on a glassy carbon electrode (GCE), and cathode-utilizing laccase combined with gold–cerium–platinum nanoparticles (nAuCePt). The most effective lactate BFC, which contains gold–hexacyanoferrate (AuHCF), exhibited a specific power density of 1.8 µW/cm2. A series of BFCs were developed with an AO-containing anode and a laccase/nAuCePt/GCE cathode. The optimal configuration featured a bioanode architecture of AO/nCoPtCu/GCE, achieving a specific power density of 3.2 µW/cm2. The constructed BFCs were tested using lactate-containing food product samples as fuels. Full article
(This article belongs to the Special Issue Advances in Biosensing and Bioanalysis Based on Nanozymes)
Show Figures

Figure 1

15 pages, 3378 KB  
Article
Dendritic Gold Nanoparticles Loaded on 3D Graphene-like Surface and Layer-by-Layer Assembly for Enhanced Glucose Biosensing
by Zifeng Zhu, Yiming Zhao, Yongming Ruan, Xuexiang Weng and Gesmi Milcovich
Biosensors 2025, 15(4), 246; https://doi.org/10.3390/bios15040246 - 12 Apr 2025
Cited by 2 | Viewed by 1190
Abstract
Background/Objectives: In this study, AuDNs/EPLE composite electrodes with hierarchical dendritic nanogold structures were fabricated using the in situ electrodeposition of gold nanoparticles through the i-t method. Methods: A conductive polymer composite membrane, PEDOT, was synthesized via the electropolymerization of EDOT and [...] Read more.
Background/Objectives: In this study, AuDNs/EPLE composite electrodes with hierarchical dendritic nanogold structures were fabricated using the in situ electrodeposition of gold nanoparticles through the i-t method. Methods: A conductive polymer composite membrane, PEDOT, was synthesized via the electropolymerization of EDOT and the negatively charged PSS. The negatively charged SO3 groups on the surface of the PEDOT membrane were electrostatically adsorbed with the glucose oxidase (GOD) enzyme and a positively charged chitosan co-solution (GOD/chit+). Using a layer-by-layer self-assembly approach, GOD was incorporated into the multilayers of the composite electrode to create the composite GOD/chit+/PEDOT/AuDNs/EPLE. Results: Electrochemical analysis revealed a GOD surface coverage of 8.5 × 10−10 mol cm−2 and an electron transfer rate of 1.394 ± 0.02 s−1. The composite electrode exhibited a linear response to glucose in the concentration range of 6.923 × 10−2 mM to 1.54 mM, with an apparent Michaelis constant of 0.352 ± 0.02 mM. Furthermore, the GOD/chit+/PEDOT/AuDNs/EPLE also showed good accuracy of glucose determination in human serum samples. Conclusions: These findings highlight the potential of the GOD/chit+/PEDOT/AuDNs/EPLE composite electrode in the development of efficient enzymatic biofuel cells for glucose sensing and energy harvesting applications. Full article
(This article belongs to the Special Issue Nanosensors for Bioanalysis)
Show Figures

Figure 1

46 pages, 10314 KB  
Review
Recent Advances in Enzymatic Biofuel Cells to Power Up Wearable and Implantable Biosensors
by Zina Fredj, Guoguang Rong and Mohamad Sawan
Biosensors 2025, 15(4), 218; https://doi.org/10.3390/bios15040218 - 28 Mar 2025
Cited by 10 | Viewed by 6902
Abstract
Enzymatic biofuel cells (EBFCs) have emerged as a transformative solution in the quest for sustainable energy, offering a biocatalyst-driven alternative for powering wearable and implantable self-powered biosensors. These systems harness renewable enzyme activity under mild conditions, positioning them as ideal candidates for next-generation [...] Read more.
Enzymatic biofuel cells (EBFCs) have emerged as a transformative solution in the quest for sustainable energy, offering a biocatalyst-driven alternative for powering wearable and implantable self-powered biosensors. These systems harness renewable enzyme activity under mild conditions, positioning them as ideal candidates for next-generation biosensing applications. Despite their promise, their practical deployment is limited by challenges such as low power density, restricted operational lifespan, and miniaturization complexities. This review provides an in-depth exploration of the evolving landscape of EBFC technology, beginning with fundamental principles and the latest developments in electron transfer mechanisms. A critical assessment of enzyme immobilization techniques, including physical adsorption, covalent binding, entrapment, and cross-linking, underscores the importance of optimizing enzyme stability and catalytic activity for enhanced bioelectrode performance. Additionally, we examine advanced bioelectrode materials, focusing on the role of nanostructures such as carbon-based nanomaterials, noble metals, conducting polymers, and metal–organic frameworks in improving electron transfer and boosting biosensor efficiency. Also, this review includes case studies of EBFCs in wearable self-powered biosensors, with particular attention to the real-time monitoring of neurotransmitters, glucose, lactate, and ethanol through sweat analysis, as well as their integration into implantable devices for continuous healthcare monitoring. Moreover, a dedicated discussion on challenges and trends highlights key limitations, including durability, power management, and scalability, while presenting innovative approaches to address these barriers. By addressing both technical and biological constraints, EBFCs hold the potential to revolutionize biomedical diagnostics and environmental monitoring, paving the way for highly efficient, autonomous biosensing platforms. Full article
Show Figures

Graphical abstract

27 pages, 1100 KB  
Review
Use of Nicotinamide Mononucleotide as Non-Natural Cofactor
by Tahseena Naaz and Beom Soo Kim
Catalysts 2025, 15(1), 37; https://doi.org/10.3390/catal15010037 - 3 Jan 2025
Cited by 4 | Viewed by 9519
Abstract
Nicotinamide mononucleotide (NMN) has emerged as a promising non-natural cofactor with significant potential to transform biocatalysis, synthetic biology, and therapeutic applications. By modulating NAD⁺ metabolism, NMN offers unique advantages in enzymatic reactions, metabolic engineering, and regenerative medicine. This review provides a comprehensive analysis [...] Read more.
Nicotinamide mononucleotide (NMN) has emerged as a promising non-natural cofactor with significant potential to transform biocatalysis, synthetic biology, and therapeutic applications. By modulating NAD⁺ metabolism, NMN offers unique advantages in enzymatic reactions, metabolic engineering, and regenerative medicine. This review provides a comprehensive analysis of NMN’s biochemical properties, mechanisms of action, and diverse applications. Emphasis is placed on its role in addressing challenges in multi-enzyme cascades, biofuel production, and the synthesis of high-value chemicals. The paper also highlights critical research gaps, including the need for scalable NMN synthesis methods, improved integration into enzymatic systems, and comprehensive toxicity studies for therapeutic use. Emerging technologies such as AI-driven enzyme design and CRISPR-based genome engineering are discussed as transformative tools for optimizing NMN-dependent pathways. Furthermore, the synergistic potential of NMN with synthetic biology innovations, such as cell-free systems and dynamic regulatory networks, is explored, paving the way for precise and modular biotechnological solutions. Looking forward, NMN’s versatility as a cofactor positions it as a pivotal tool in advancing sustainable bioprocessing and precision medicine. Addressing current limitations through interdisciplinary approaches will enable NMN to redefine the boundaries of metabolic engineering and therapeutic innovation. This review serves as a roadmap for leveraging NMN’s potential across diverse scientific and industrial domains. Full article
(This article belongs to the Special Issue Feature Review Papers in Biocatalysis and Enzyme Engineering)
Show Figures

Figure 1

32 pages, 5818 KB  
Review
Cell Walls of Lipid-Rich Microalgae: A Comprehensive Review on Characterisation, Ultrastructure, and Enzymatic Disruption
by Sneha Shivakumar, Nicholas Serlini, Sara M. Esteves, Svitlana Miros and Ronald Halim
Fermentation 2024, 10(12), 608; https://doi.org/10.3390/fermentation10120608 - 28 Nov 2024
Cited by 28 | Viewed by 10280
Abstract
Certain microalgae species have gained traction in the biofuel and food/feed sectors due to their ability to accumulate large amounts of intracellular lipids. However, the extraction of lipids from microalgae is hindered by the presence of complex and recalcitrant cell walls that act [...] Read more.
Certain microalgae species have gained traction in the biofuel and food/feed sectors due to their ability to accumulate large amounts of intracellular lipids. However, the extraction of lipids from microalgae is hindered by the presence of complex and recalcitrant cell walls that act as a barrier to mass transfer. This paper examines the intricate details of microalgae cell walls of species belonging to three genera—Nannochloropsis, Scenedesmus, and Schizochytrium—known for their high total lipid contents and omega-3 polyunsaturated fatty acid contents, thus having dual potential for both biofuel and food/feed application. An overview of the techniques used to analyse the cell walls, followed by a detailed description of the cell wall architecture of the three genera and the growth conditions that affect the ultrastructure and composition of their cell walls, is presented. Since cell wall disruption is a crucial step in recovering intracellular products from microalgae biomass, different cell-disruption technologies are also reviewed, focusing specifically on approaches that can be applied directly to wet biomass without the need for biomass drying, thus exerting a low-energy footprint. Enzymatic treatment is operated under mild conditions and offers a promising wet route for targeted recovery of intracellular products from microalgae with minimal side reactions and risk of product degradation. The high cost of enzymes can be mitigated by reducing enzyme requirements through the adoption of a minimal design approach that uses the cell wall composition as the basis to direct enzyme choice and dosage. Different enzyme-recycling and immobilisation strategies to reduce enzyme requirements and improve commercial scalability are also reviewed. Finally, the paper provides a summary of the current state-of-the-art in direct biological approaches using algicidal bacteria and fungi to achieve cell disruption. Overall, the paper provides a roadmap for a more efficient cell disruption of microalgae. Full article
(This article belongs to the Special Issue Algae—The Medium of Bioenergy Conversion: 2nd Edition)
Show Figures

Figure 1

10 pages, 1699 KB  
Article
Development of Malate Biosensor-Containing Hydrogels and Living Cell-Based Sensors
by Nathan J. Ricks, Monica Brachi, Kevin McFadden, Rohit G. Jadhav, Shelley D. Minteer and Ming C. Hammond
Int. J. Mol. Sci. 2024, 25(20), 11098; https://doi.org/10.3390/ijms252011098 - 16 Oct 2024
Cited by 2 | Viewed by 2384
Abstract
Malate is a key intermediate in the citric acid cycle, an enzymatic cascade that is central to cellular energy metabolism and that has been applied to make biofuel cells. To enable real-time sensing of malate levels, we have engineered a genetically encoded, protein-based [...] Read more.
Malate is a key intermediate in the citric acid cycle, an enzymatic cascade that is central to cellular energy metabolism and that has been applied to make biofuel cells. To enable real-time sensing of malate levels, we have engineered a genetically encoded, protein-based fluorescent biosensor called Malon specifically responsive to malate by performing structure-based mutagenesis of the Cache-binding domain of the Citron GFP-based biosensor. Malon demonstrates high specificity and fluorescence activation in response to malate, and has been applied to monitor enzymatic reactions in vitro. Furthermore, we successfully incorporated Malon into redox polymer hydrogels and bacterial cells, enabling analysis of malate levels in these materials and living systems. These results show the potential for fluorescent biosensors in enzymatic cascade monitoring within biomaterials and present Malon as a novel tool for bioelectronic devices. Full article
Show Figures

Graphical abstract

20 pages, 5565 KB  
Article
Biocatalytic Screening of the Oxidative Potential of Fungi Cultivated on Plant-Based Resources
by Alina Kinner, Stephan Lütz and Katrin Rosenthal
AppliedChem 2024, 4(3), 282-301; https://doi.org/10.3390/appliedchem4030018 - 8 Aug 2024
Cited by 1 | Viewed by 3401
Abstract
The environmental impacts of the postindustrial era, which rely on fossil fuels, have compelled a reconsideration of the future of energy and chemical industries. Fungi are a valuable resource for improving a circular economy through the enhanced valorization of biomass and plant waste. [...] Read more.
The environmental impacts of the postindustrial era, which rely on fossil fuels, have compelled a reconsideration of the future of energy and chemical industries. Fungi are a valuable resource for improving a circular economy through the enhanced valorization of biomass and plant waste. They harbor a great diversity of oxidative enzymes, especially in their secretome. Enzymatic breakdown of the plant cell wall complex and lignocellulosic biomass yields sugars for fermentation and biofuel production, as well as aromatic compounds from lignin that can serve as raw materials for the chemical industry. To harness the biocatalytic potential, it is essential to identify and explore wild-type fungi and their secretomes. This study successfully combined genome mining and activity screening to uncover the oxidative potential of a collection of underexploited ascomycetes and basidiomycetes. The heme peroxidase and laccase activities of four promising candidates, Bipolaris victoriae, Colletotrichum sublineola, Neofusicoccum parvum and Moesziomyces antarcticus, were investigated to gain a deeper insight into their enzyme secretion. Furthermore, a plant-based medium screening with the phytopathogen C. sublineola revealed that soybean meal is a beneficial component to trigger the production and secretion of enzymes that catalyze H2O2-dependent oxidations. These results demonstrate that understanding fungal secretomes and their enzymatic potential opens exciting avenues for sustainable biotechnological applications across various industries. Full article
Show Figures

Figure 1

13 pages, 7891 KB  
Review
Fueling the Future: The Emergence of Self-Powered Enzymatic Biofuel Cell Biosensors
by Akhilesh Kumar Gupta and Alexey Viktorovich Krasnoslobodtsev
Biosensors 2024, 14(7), 316; https://doi.org/10.3390/bios14070316 - 24 Jun 2024
Cited by 13 | Viewed by 4735
Abstract
Self-powered biosensors are innovative devices that can detect and analyze biological or chemical substances without the need for an external power source. These biosensors can convert energy from the surrounding environment or the analyte itself into electrical signals for sensing and data transmission. [...] Read more.
Self-powered biosensors are innovative devices that can detect and analyze biological or chemical substances without the need for an external power source. These biosensors can convert energy from the surrounding environment or the analyte itself into electrical signals for sensing and data transmission. The self-powered nature of these biosensors offers several advantages, such as portability, autonomy, and reduced waste generation from disposable batteries. They find applications in various fields, including healthcare, environmental monitoring, food safety, and wearable devices. While self-powered biosensors are a promising technology, there are still challenges to address, such as improving energy efficiency, sensitivity, and stability to make them more practical and widely adopted. This review article focuses on exploring the evolving trends in self-powered biosensor design, outlining potential advantages and limitations. With a focal point on enzymatic biofuel cell power generation, this article describes various sensing mechanisms that employ the analyte as substrate or fuel for the biocatalyst’s ability to generate current. Technical aspects of biofuel cells are also examined. Research and development in the field of self-powered biosensors is ongoing, and this review describes promising areas for further exploration within the field, identifying underexplored areas that could benefit from further investigation. Full article
Show Figures

Figure 1

17 pages, 5458 KB  
Article
Investigation of Direct Electron Transfer of Glucose Oxidase on a Graphene-CNT Composite Surface: A Molecular Dynamics Study Based on Electrochemical Experiments
by Taeyoung Yoon, Wooboum Park, Juneseok You and Sungsoo Na
Nanomaterials 2024, 14(13), 1073; https://doi.org/10.3390/nano14131073 - 24 Jun 2024
Cited by 3 | Viewed by 2884
Abstract
Graphene and its variants exhibit excellent electrical properties for the construction of enzymatic interfaces. In particular, the direct electron transfer of glucose oxidase on the electrode surface is a very important issue in the development of enzyme-based bioelectrodes. However, the number of studies [...] Read more.
Graphene and its variants exhibit excellent electrical properties for the construction of enzymatic interfaces. In particular, the direct electron transfer of glucose oxidase on the electrode surface is a very important issue in the development of enzyme-based bioelectrodes. However, the number of studies conducted to assess how pristine graphene forms different interfaces with other carbon materials is insufficient. Enzyme-based electrodes (formed using carbon materials) have been extensively applied because of their low manufacturing costs and easy production techniques. In this study, the characteristics of a single-walled carbon nanotube/graphene-combined enzyme interface are analyzed at the atomic level using molecular dynamics simulations. The morphology of the enzyme was visualized using an elastic network model by performing normal-mode analysis based on electrochemical and microscopic experiments. Single-carbon electrodes exhibited poorer electrical characteristics than those prepared as composites with enzymes. Furthermore, the composite interface exhibited 4.61- and 2.45-fold higher direct electron efficiencies than GOx synthesized with single-carbon nanotubes and graphene, respectively. Based on this study, we propose that pristine graphene has the potential to develop glucose oxidase interfaces and carbon-nanotube–graphene composites for easy fabrication, low cost, and efficient electrode structures for enzyme-based biofuel cells. Full article
(This article belongs to the Topic Application of Graphene-Based Materials, 2nd Edition)
Show Figures

Graphical abstract

30 pages, 8540 KB  
Review
Yarrowia lipolytica Yeast: A Treasure Trove of Enzymes for Biocatalytic Applications—A Review
by Bartłomiej Zieniuk, Karina Jasińska, Katarzyna Wierzchowska, Şuheda Uğur and Agata Fabiszewska
Fermentation 2024, 10(5), 263; https://doi.org/10.3390/fermentation10050263 - 18 May 2024
Cited by 13 | Viewed by 8114
Abstract
Yarrowia lipolytica is a robust yeast species that has gained significant attention as a biofactory for various biotechnological applications and undoubtedly can be referred to as a hidden treasure trove due to boasting a diverse array of enzymes with wide-ranging applications in multiple [...] Read more.
Yarrowia lipolytica is a robust yeast species that has gained significant attention as a biofactory for various biotechnological applications and undoubtedly can be referred to as a hidden treasure trove due to boasting a diverse array of enzymes with wide-ranging applications in multiple industries, including biofuel production, food processing, biotechnology, and pharmaceuticals. As the biotechnology field continues to expand, Y. lipolytica is poised to play a pivotal role in developing eco-friendly and economically viable bioprocesses. Its versatility and potential for large-scale production make it a promising candidate for sustainably addressing various societal and industrial needs. The current review article aimed to highlight the diverse enzymatic capabilities of Y. lipolytica and provide a detailed analysis of its relevance in biocatalysis, including the use of whole-cell catalysts and isolated enzymes. The review focused on wild-type yeast strains and their species-dependant properties and selected relevant examples of Y. lipolytica used as a host organism for overexpressing some enzymes. Furthermore, the application of Y. lipolytica’s potential in enantiomers resolution, lipids processing, and biodiesel synthesis, as well as the synthesis of polymers or esterification of different substrates for upgrading biologically active compounds, was discussed. Full article
Show Figures

Figure 1

14 pages, 1102 KB  
Article
Towards a Self-Powered Amperometric Glucose Biosensor Based on a Single-Enzyme Biofuel Cell
by Asta Kausaite-Minkstimiene, Algimantas Kaminskas, Galina Gayda and Almira Ramanaviciene
Biosensors 2024, 14(3), 138; https://doi.org/10.3390/bios14030138 - 8 Mar 2024
Cited by 12 | Viewed by 4655
Abstract
This paper describes the study of an amperometric glucose biosensor based on an enzymatic biofuel cell consisting of a bioanode and a biocathode modified with the same enzyme—glucose oxidase (GOx). A graphite rod electrode (GRE) was electrochemically modified with a layer of Prussian [...] Read more.
This paper describes the study of an amperometric glucose biosensor based on an enzymatic biofuel cell consisting of a bioanode and a biocathode modified with the same enzyme—glucose oxidase (GOx). A graphite rod electrode (GRE) was electrochemically modified with a layer of Prussian blue (PB) nanoparticles embedded in a poly(pyrrole-2-carboxylic acid) (PPCA) shell, and an additional layer of PPCA and was used as the cathode. A GRE modified with a nanocomposite composed of poly(1,10-phenanthroline-5,6-dione) (PPD) and gold nanoparticles (AuNPs) entrapped in a PPCA shell was used as an anode. Both electrodes were modified with GOx by covalently bonding the enzyme to the carboxyl groups of PPCA. The developed biosensor exhibited a wide linear range of 0.15–124.00 mM with an R2 of 0.9998 and a sensitivity of 0.16 μA/mM. The limit of detection (LOD) and quantification (LOQ) were found to be 0.07 and 0.23 mM, respectively. The biosensor demonstrated exceptional selectivity to glucose and operational stability throughout 35 days, as well as good reproducibility, repeatability, and anti-interference ability towards common interfering substances. The studies on human serum demonstrate the ability of the newly designed biosensor to determine glucose in complex real samples at clinically relevant concentrations. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

20 pages, 3196 KB  
Article
Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications
by Federica Torrigino, Marcel Nagel, Zhujun Peng, Martin Hartmann and Katharina Herkendell
Catalysts 2023, 13(11), 1415; https://doi.org/10.3390/catal13111415 - 4 Nov 2023
Cited by 3 | Viewed by 3375
Abstract
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are [...] Read more.
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated. Full article
Show Figures

Figure 1

13 pages, 2117 KB  
Article
Urea-Self Powered Biosensors: A Predictive Evolutionary Model for Human Energy Harvesting
by Javad Mohebbi Najm Abad, Afshin Farahbakhsh, Massoud Mir, Rasool Alizadeh and Amin Hekmatmanesh
Sensors 2023, 23(19), 8180; https://doi.org/10.3390/s23198180 - 29 Sep 2023
Cited by 2 | Viewed by 2447
Abstract
The objective of this study is to create a reliable predictive model for the electrochemical performance of self-powered biosensors that rely on urea-based biological energy sources. Specifically, this model focuses on the development of a human energy harvesting model based on the utilization [...] Read more.
The objective of this study is to create a reliable predictive model for the electrochemical performance of self-powered biosensors that rely on urea-based biological energy sources. Specifically, this model focuses on the development of a human energy harvesting model based on the utilization of urea found in sweat, which will enable the development of self-powered biosensors. In the process, the potential of urea hydrolysis in the presence of a urease enzyme is employed as a bioreaction for self-powered biosensors. The enzymatic reaction yields a positive potential difference that can be harnessed to power biofuel cells (BFCs) and act as an energy source for biosensors. This process provides the energy required for self-powered biosensors as biofuel cells (BFCs). To this end, initially, the platinum electrodes are modified by multi-walled carbon nanotubes to increase their conductivity. After stabilizing the urease enzyme on the surface of the platinum electrode, the amount of electrical current produced in the process is measured. The optimal design of the experiments is performed based on the Taguchi method to investigate the effect of urea concentration, buffer concentration, and pH on the generated electrical current. A general equation is employed as a prediction model and its coefficients calculated using an evolutionary strategy. Also, the evaluation of effective parameters is performed based on error rates. The obtained results show that the established model predicts the electrical current in terms of urea concentration, buffer concentration, and pH with high accuracy. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

Back to TopTop