Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (160)

Search Parameters:
Keywords = environmental management (EM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1674 KB  
Article
Analysis of Factors Affecting the Results of the Embodied Environmental Footprint of a Built Environment Using a Selected Office Building as an Example
by Aleksandra Pacholska, Michał Pierzchalski and Anna Wojcieszek
Sustainability 2025, 17(24), 11154; https://doi.org/10.3390/su172411154 - 12 Dec 2025
Viewed by 594
Abstract
The huge impact of construction on the environment is becoming increasingly apparent, and it is unacceptable to many engineers and designers. A growing interest in sustainable construction has been observed for several years. This is especially true for commercial buildings, where achieving an [...] Read more.
The huge impact of construction on the environment is becoming increasingly apparent, and it is unacceptable to many engineers and designers. A growing interest in sustainable construction has been observed for several years. This is especially true for commercial buildings, where achieving an appropriate standard is often the main criterion for investment. Many current publications deal with the topic of energy related to building use. In contrast, knowledge of the so-called embodied carbon footprint is not yet widespread but increasingly important in the context of low-carbon construction. The study created six different building types by juxtaposing different construction variants with different facade variants. The analysis was given to the “cradle to grave” phases, i.e., A1–A4, B4–B5 and C1–C4. Module D (material recycling) is omitted, as well as phases B1–B3 and B6–B7 related to use, maintenance, repair and energy and water consumption. Phases B1–B3 refer to maintenance repair and use activities that are the responsibility of the building manager, so they are taken as estimates at the concept stage. Phase B6 and B7 were excluded from the study, due to the fact that they are not responsible for the embodied carbon footprint, but the operational one. It was assumed that the values for B6 would be shown independently in the building’s energy performance and the final values would be comparable. The purpose of the study was to verify the factors that have the greatest impact on the results of the embodied environmental footprint. The study showed that changes in the building’s design and facade have the greatest impact on the embodied carbon footprint. Furthermore, not only the quantity of materials used but also their durability is crucial, so using durable finishes to minimize the need for repair and replacement can play a key role in reducing the building’s embodied carbon footprint. Differences between the variants reached approximately 107 kg CO2e/m2 (about 15%). The comparison of impact categories further indicates that solutions optimized for global warming potential are not necessarily favorable in other environmental dimensions. Finally, the relatively moderate spread between the most and least favorable variants within the analyzed scope indicates that material substitution alone is insufficient to achieve deep decarbonization of office buildings. Comprehensive strategies addressing material selection, durability, service life and design for disassembly and reuse are therefore required. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

32 pages, 4849 KB  
Systematic Review
Artificial Intelligence in Solar-Assisted Greenhouse Systems: A Technical, Systematic and Bibliometric Review of Energy Integration and Efficiency Advances
by Edwin Villagran, John Javier Espitia, Fabián Andrés Velázquez, Andres Sarmiento, Diego Alejandro Salinas Velandia and Jader Rodriguez
Technologies 2025, 13(12), 574; https://doi.org/10.3390/technologies13120574 - 6 Dec 2025
Viewed by 918
Abstract
Protected agriculture increasingly requires solutions that reduce energy consumption and environmental impacts while maintaining stable microclimatic conditions. The integration of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) with solar technologies has emerged as a pathway toward autonomous and energy-efficient greenhouses [...] Read more.
Protected agriculture increasingly requires solutions that reduce energy consumption and environmental impacts while maintaining stable microclimatic conditions. The integration of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) with solar technologies has emerged as a pathway toward autonomous and energy-efficient greenhouses and solar dryers. This study analyzes the scientific and technological evolution of this convergence using a mixed review approach bibliometric and systematic, following PRISMA 2020 guidelines. From Scopus records (2012–2025), 115 documents were screened and 79 met the inclusion criteria. Bibliometric results reveal accelerated growth since 2019, led by Engineering, Computer Science, and Energy, with China, India, Saudi Arabia, and the United Kingdom as dominant contributors. Thematic analysis identifies four major research fronts: (i) thermal modeling and energy efficiency, (ii) predictive control and microclimate automation, (iii) integration of photovoltaic–thermal (PV/T) systems and phase change materials (PCMs), and (iv) sustainability and agrivoltaics. Systematic evidence shows that AI, ML, and DL based models improve solar forecasting, microclimate regulation, and energy optimization; model predictive control (MPC), deep reinforcement learning (DRL), and energy management systems (EMS) enhance operational efficiency; and PV/T–PCM hybrids strengthen heat recovery and storage. Remaining gaps include long-term validation, metric standardization, and cross-context comparability. Overall, the field is advancing toward near-zero-energy greenhouses powered by Internet of Things (IoT), AI, and solar energy, enabling resilient, efficient, and decarbonized agro-energy systems. Full article
Show Figures

Figure 1

37 pages, 12217 KB  
Article
A Pareto Multiobjective Optimization Power Dispatch for Rural and Urban AC Microgrids with Photovoltaic Panels and Battery Energy Storage Systems
by Jhon Montano, John E. Candelo-Becerra and Fredy E. Hoyos
Electricity 2025, 6(4), 68; https://doi.org/10.3390/electricity6040068 - 30 Nov 2025
Viewed by 365
Abstract
This paper presents an economic–environmental power dispatch approach for a grid-connected microgrid (MG) with photovoltaic (PV) generation and battery energy storage systems (BESSs). The problem was formulated as a multiobjective optimization problem with functions such as minimizing fixed and variable generation costs, power [...] Read more.
This paper presents an economic–environmental power dispatch approach for a grid-connected microgrid (MG) with photovoltaic (PV) generation and battery energy storage systems (BESSs). The problem was formulated as a multiobjective optimization problem with functions such as minimizing fixed and variable generation costs, power losses, and CO2 emissions. This study addresses the problem of intelligent energy management in microgrids with PV generation and BESSs to optimize their performance based on multiple criteria. This study focuses on optimizing the Energy Management System (EMS) with metaheuristic algorithms to achieve practical implementation with simpler algorithms to solve a complex optimization problem. This study employs four multiobjective optimization algorithms: Nondominated Sorting Genetic Algorithm II (NSGA-II), Harris Hawks Optimization (HHO), multiverse optimizer (MVO), and Salp Swarm Algorithm (SSA), which are classified as robust techniques for obtaining Pareto fronts. The computational resources employed to simulate the problem are presented. The optimal dispatch obtained from the Pareto front achieved reductions of 0.067% in fixed costs, 0.288% in variable costs, 3.930% in power losses, and 0.067% in CO2 emissions, demonstrating the effectiveness of the proposed approach in optimizing both economic and environmental performance. The SSA stood out for its stability and computational efficiency, establishing itself as a promising method for energy management in urban and rural microgrids (MGs) and providing a solid framework for optimization in alternating current systems. Full article
Show Figures

Figure 1

16 pages, 557 KB  
Article
Transition Pathways Towards Electromagnetic Sustainability in the Built and Lived Environment
by Riadh Habash and George Y. Baho
Sustainability 2025, 17(22), 10252; https://doi.org/10.3390/su172210252 - 16 Nov 2025
Viewed by 709
Abstract
Electromagnetic (EM) fields, as one of the basic forms of energy in the built and lived environment (BLE), present an environmental health challenge, yet they often remain an overlooked concern, particularly with the development of information and communication technologies (ICT) and energy systems. [...] Read more.
Electromagnetic (EM) fields, as one of the basic forms of energy in the built and lived environment (BLE), present an environmental health challenge, yet they often remain an overlooked concern, particularly with the development of information and communication technologies (ICT) and energy systems. Although these fields are essential for the contemporary infrastructure, society needs to engage in a thorough discussion regarding their potential impact on health. In light of this, a commitment should be made to design and manage technologies and infrastructure that strive to lower EM pollution, while ensuring optimal functionality. Achieving this goal requires viable urban planning and sustainability strategies. The motivation of this study is to examine various instances to foster a deeper understanding of the EM in the BLE. It explores significant sources of exposure and major safety guidelines. A literature review and EM field audits in three locations within two cities in Canada and the UK have been provided to understand the trends and serve as a comparative sample. Key transition pathways towards EM sustainability have been proposed, including the establishment of observatory systems in urban locations, hygiene practices, risk governance, and an interplay between sustainability and technology. Full article
Show Figures

Figure 1

49 pages, 14256 KB  
Review
Energy Conversion and Management Strategies for Electro-Hydraulic Hybrid Systems: A Review
by Lin Li, Tiezhu Zhang, Liqun Lu, Kehui Ma and Zehao Sun
Sustainability 2025, 17(22), 10074; https://doi.org/10.3390/su172210074 - 11 Nov 2025
Viewed by 959
Abstract
The electro-hydraulic hybrid system has emerged as a critical technology in new energy vehicles, owing to the remarkable power density and efficient energy regeneration capabilities of hydraulic technology, coupled with the high energy density of electric power. This system effectively enhances vehicle range [...] Read more.
The electro-hydraulic hybrid system has emerged as a critical technology in new energy vehicles, owing to the remarkable power density and efficient energy regeneration capabilities of hydraulic technology, coupled with the high energy density of electric power. This system effectively enhances vehicle range and battery life. We developed an energy management strategy (EMS) for the electro-hydraulic hybrid system (EHHS) to ensure smooth energy conversion, while ensuring the full utilization of electrical and hydraulic energy within a reasonable and efficient range. To enhance the system’s overall performance, it is imperative to address pivotal technologies, including power coupling and energy management. In this research, the structure of an electro-hydraulic hybrid vehicle (EHHV) is classified, compared and discussed. The application of existing EHHVs is studied. Subsequently, an analysis and summary are conducted on the current status and development trends of EMSs and collaborative operation control strategies (COCSs), and a novel mechanical-electro-hydraulic power-coupled system (MEHPCS) is put forward that successfully converts mechanical, electrical, and hydraulic energy in performance. Simultaneously, other applications of the system are forecasted. Finally, some suggestions for the electro-hydraulic hybrid systems’ future development are made. This study can promote the development of sustainable transportation technologies. The system integrates mechanical engineering, control theory, and environmental science, enabling interdisciplinary methodological innovation. In addition, relevant studies provide data support for policy makers by quantifying energy consumption indicators. Full article
Show Figures

Figure 1

31 pages, 7893 KB  
Article
A Capacity Optimization Method of Ship Integrated Power System Based on Comprehensive Scenario Planning: Considering the Hydrogen Energy Storage System and Supercapacitor
by Fanzhen Jing, Xinyu Wang, Yuee Zhang and Shaoping Chang
Energies 2025, 18(19), 5305; https://doi.org/10.3390/en18195305 - 8 Oct 2025
Cited by 1 | Viewed by 573
Abstract
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the [...] Read more.
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the economic and long-term energy efficiency of ships, as well as the uncertainty of the output power of renewable energy units, this paper proposes an improved design for an integrated power system for large cruise ships, combining renewable energy and a hybrid energy storage system. An energy management strategy (EMS) based on time-gradient control and considering load dynamic response, as well as an energy storage power allocation method that considers the characteristics of energy storage devices, is designed. A bi-level power capacity optimization model, grounded in comprehensive scenario planning and aiming to optimize maximum return on equity, is constructed and resolved by utilizing an improved particle swarm optimization algorithm integrated with dynamic programming. Based on a large-scale cruise ship, the aforementioned method was investigated and compared to the conventional planning approach. It demonstrates that the implementation of this optimization method can significantly decrease costs, enhance revenue, and increase the return on equity from 5.15% to 8.66%. Full article
Show Figures

Figure 1

19 pages, 5993 KB  
Review
Research Progress on Methane Emission Reduction Strategies for Dairy Cows
by Yu Wang, Kuan Chen, Shulin Yuan, Jianying Liu, Jianchao Guo and Yongqing Guo
Dairy 2025, 6(5), 48; https://doi.org/10.3390/dairy6050048 - 26 Aug 2025
Viewed by 3275
Abstract
Methane (CH4) is the second largest greenhouse gas (GHG) after carbon dioxide (CO2), and ruminant production is an important source of CH4 emissions. Among the six types of livestock animal species that produce GHGs, cattle (including beef cattle [...] Read more.
Methane (CH4) is the second largest greenhouse gas (GHG) after carbon dioxide (CO2), and ruminant production is an important source of CH4 emissions. Among the six types of livestock animal species that produce GHGs, cattle (including beef cattle and dairy cows) are responsible for 62% of livestock-produced GHGs. Compared to beef cattle, continuous lactation in dairy cows requires sustained energy intake to drive rumen fermentation and CH4 production, making it a key mitigation target for balancing dairy production and environmental sustainability. Determining how to safely and efficiently reduce CH4 emissions from dairy cows is essential to promote the sustainable development of animal husbandry and environmental friendliness and plays an important role in improving feed conversion, reducing environmental pollution, and improving the performance of dairy cows. Combined with the factors influencing CH4 emissions from dairy cows and previous research reports, this paper reviews the research progress on reducing the enteric CH4 emissions (EMEs) of dairy cows from the perspectives of the CH4 generation mechanism and emission reduction strategies, and it summarizes various measures for CH4 emission reduction in dairy cows, mainly including accelerating genetic breeding, improving diet composition, optimizing feeding management, and improving fecal treatment. Future research should focus on optimizing the combination of strategies, explore more innovative methods, reduce EME without affecting the growth performance of dairy cows and milk safety, and scientifically and effectively promote the sustainable development of animal husbandry. Full article
(This article belongs to the Section Dairy Farm System and Management)
Show Figures

Figure 1

15 pages, 5152 KB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Cited by 1 | Viewed by 1475
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

25 pages, 2661 KB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Cited by 2 | Viewed by 1563
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Graphical abstract

53 pages, 1950 KB  
Article
Redefining Energy Management for Carbon-Neutral Supply Chains in Energy-Intensive Industries: An EU Perspective
by Tadeusz Skoczkowski, Sławomir Bielecki, Marcin Wołowicz and Arkadiusz Węglarz
Energies 2025, 18(15), 3932; https://doi.org/10.3390/en18153932 - 23 Jul 2025
Cited by 6 | Viewed by 1655
Abstract
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth [...] Read more.
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth from fossil energy consumption. This study proposes a redefinition of EM to support carbon-neutral supply chains within the European Union’s EIIs, addressing critical limitations of conventional EM frameworks under increasingly stringent carbon regulations. Using a modified systematic literature review based on PRISMA methodology, complemented by expert insights from EU Member States, this research identifies structural gaps in current EM practices and highlights opportunities for integrating sustainable innovations across the whole industrial value chain. The proposed EM concept is validated through an analysis of 24 EM definitions, over 170 scientific publications, and over 80 EU legal and strategic documents. The framework incorporates advanced digital technologies—including artificial intelligence (AI), the Internet of Things (IoT), and big data analytics—to enable real-time optimisation, predictive control, and greater system adaptability. Going beyond traditional energy efficiency, the redefined EM encompasses the entire energy lifecycle, including use, transformation, storage, and generation. It also incorporates social dimensions, such as corporate social responsibility (CSR) and stakeholder engagement, to cultivate a culture of environmental stewardship within EIIs. This holistic approach provides a strategic management tool for optimising energy use, reducing emissions, and strengthening resilience to regulatory, environmental, and market pressures, thereby promoting more sustainable, inclusive, and transparent supply chain operations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

24 pages, 17098 KB  
Article
A Combined Energy Management Strategy for Heavy-Duty Trucks Based on Global Traffic Information Optimization
by Haishan Wu, Liang Li and Xiangyu Wang
Sustainability 2025, 17(14), 6361; https://doi.org/10.3390/su17146361 - 11 Jul 2025
Cited by 3 | Viewed by 967
Abstract
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global [...] Read more.
As public concern over environmental pollution and the urgent need for sustainable development grow, the popularity of new-energy vehicles has increased. Hybrid electric vehicles (HEVs) represent a significant segment of this movement, undergoing robust development and playing an important role in the global transition towards sustainable mobility. Among the various factors affecting the fuel economy of HEVs, energy management strategies (EMSs) are particularly critical. With continuous advancements in vehicle communication technology, vehicles are now equipped to gather real-time traffic information. In response to this evolution, this paper proposes an optimization method for the adaptive equivalent consumption minimization strategy (A-ECMS) equivalent factor that incorporates traffic information and efficient optimization algorithms. Building on this foundation, the proposed method integrates the charge depleting–charge sustaining (CD-CS) strategy to create a combined EMS that leverages traffic information. This approach employs the CD-CS strategy to facilitate vehicle operation in the absence of comprehensive global traffic information. However, when adequate global information is available, it utilizes both the CD-CS strategy and the A-ECMS for vehicle control. Simulation results indicate that this combined strategy demonstrates effective performance, achieving fuel consumption reductions of 5.85% compared with the CD-CS strategy under the China heavy-duty truck cycle, 4.69% under the real vehicle data cycle, and 3.99% under the custom driving cycle. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

11 pages, 4207 KB  
Proceeding Paper
Portable, Energy-Autonomous Electrochemical Impedance Spectroscopy (EIS) System Based on Python and Single-Board Computer
by Jhon Alvaro Cuastuza and Carlos Andrés Rosero-Zambrano
Eng. Proc. 2025, 87(1), 89; https://doi.org/10.3390/engproc2025087089 - 9 Jul 2025
Viewed by 931
Abstract
We develop a modular, wireless, solar- and battery-powered system for detecting chlorpyrifos (LorsbanTM 2.5% DP) in water using electrochemical impedance spectroscopy (EIS). The system integrates a Raspberry Pi Zero 2W for data processing, Python-based software (version 3.12.2), and a solar charge manager [...] Read more.
We develop a modular, wireless, solar- and battery-powered system for detecting chlorpyrifos (LorsbanTM 2.5% DP) in water using electrochemical impedance spectroscopy (EIS). The system integrates a Raspberry Pi Zero 2W for data processing, Python-based software (version 3.12.2), and a solar charge manager to power all components via a lithium-ion battery and solar panel. A commercial EmStat Pico Module and an amperometric biosensor with acetylcholinesterase (AChE) detect chlorpyrifos. Nine water samples with varying concentrations were tested using a 20 Hz–200 kHz frequency sweep and 15 mV excitation. Bode plots and statistical analyses confirmed statistically significant impedance variation as a function of chlorpyrifos concentration, validating the system as a portable, sensitive, and effective tool for environmental monitoring. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

19 pages, 2709 KB  
Review
Enabling Sustainable Solar Energy Systems Through Electromagnetic Monitoring of Key Components Across Production, Usage, and Recycling: A Review
by Mahdieh Samimi and Hassan Hosseinlaghab
J. Manuf. Mater. Process. 2025, 9(7), 225; https://doi.org/10.3390/jmmp9070225 - 1 Jul 2025
Viewed by 1412
Abstract
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and [...] Read more.
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and performance optimization throughout the solar lifecycle. During production, eddy current testing and impedance spectroscopy improve quality control while reducing waste. In operational phases, RFID-based monitoring enables continuous performance tracking and early fault detection of photovoltaic panels. For recycling, electrodynamic separation efficiently recovers materials, supporting circular economies. The analysis demonstrates the unique advantages of EM techniques in non-contact evaluation, real-time monitoring, and material-specific characterization, addressing critical sustainability challenges in photovoltaic systems. By examining capabilities and limitations, we highlight EM monitoring’s transformative potential for sustainable manufacturing, from production quality assurance to end-of-life material recovery. The frequency-based framework provides manufacturers with physics-guided solutions that enhance efficiency while minimizing environmental impact. This comprehensive assessment establishes EM technologies as vital tools for advancing solar energy systems, offering practical monitoring approaches that align with global sustainability goals. The review identifies current challenges and future opportunities in implementing these techniques, emphasizing their role in facilitating the renewable energy transition through improved resource efficiency and lifecycle management. Full article
Show Figures

Figure 1

39 pages, 2307 KB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Cited by 1 | Viewed by 1296
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

14 pages, 1261 KB  
Article
Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy
by Sara Moscatelli, Simone Pesaresi, Martin Wikelski, Federico Maria Tardella, Andrea Catorci and Giacomo Quattrini
Geographies 2025, 5(2), 26; https://doi.org/10.3390/geographies5020026 - 16 Jun 2025
Cited by 1 | Viewed by 1366
Abstract
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for [...] Read more.
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for improving grazing management and animal welfare and ensuring the sustainability of these systems. This study evaluated the movement patterns of sheep grazing on pastures with differing vegetation indices in the Sibillini Mountains. Twenty lactating ewes foraging on two different pastures were monitored from June to October 2023 using GPS collars and accelerometers. GPS tracks were segmented using the Expectation Maximization Binary Clustering (EmBC) method to characterize movement behaviors, such as foraging, traveling, and resting. The NDVI was used to characterize vegetation dynamics, showing notable differences between the two pastures and across the grazing season. Additive mixed models were used to analyze data, accounting for individual variability and temporal autocorrelation in the sample. The results suggest that variations in the NDVI influence grazing behavior, with sheep in areas of lower vegetation density exhibiting increased movement during foraging. These findings provide valuable insights for optimizing grazing practices and promoting sustainable land use. Full article
Show Figures

Graphical abstract

Back to TopTop