Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = engineering waste slurry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4856 KiB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 266
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 629
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

29 pages, 6425 KiB  
Article
Experimental and Explicit FE Studies on Flexural Behavior of Superposed Slabs
by Qi Ye, Ping Zhang, Ke Ye, Wei Wang, Zeshen Li, Yueqing Gao, Tianyu Xie and Chaofeng Liang
Buildings 2025, 15(10), 1758; https://doi.org/10.3390/buildings15101758 - 21 May 2025
Viewed by 456
Abstract
This study explores the use of recycled brick powder (PRB), derived from waste bricks, and calcined recycled slurry powder (PCRS), sourced from waste cement blocks, as partial replacements for cement and fly ash in concrete. These materials can be [...] Read more.
This study explores the use of recycled brick powder (PRB), derived from waste bricks, and calcined recycled slurry powder (PCRS), sourced from waste cement blocks, as partial replacements for cement and fly ash in concrete. These materials can be utilized to produce concrete with favorable engineering properties. Five concrete mixtures with varying PRB/PCRS proportions were prepared. Uniaxial monotonic compression tests were conducted to generate stress-strain curves for each mixture. Corresponding physical superposed slabs were fabricated, and finite element (FE) models were developed for each slab. Both physical testing and explicit FE simulations were performed to evaluate the flexural performance of the slabs. The results demonstrated that the flexural performance of the PRB/PCRS recycled micro-powder concrete slabs was comparable to that of conventional concrete slabs. Notably, the slab incorporating a 1:1 mixture of PRB and PCRS instead of fly ash exhibited the highest yield and ultimate bearing capacities, reaching 99.3% and 98.4% of those of the conventional concrete slab, respectively. The FE simulations accurately predicted the flexural performance, with maximum deviations of 8.9% for the yield load and 6.5% for the ultimate load. Additionally, the simulation-based energy time-history curve provides valuable insights into the progression of slab cracking. This study contributes to the advancement of research on the engineering and mechanical performance of concrete members incorporated with PRB/PCRS. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 3806 KiB  
Article
Analysis and Research on the Flow Characteristics of Ice-Containing Filling Slurry Based on the Population Balance Model
by Mei Wang, Fan Zhang, Lang Liu, Guoming Wen, Wanying Ni and Deyang Kong
Energies 2025, 18(6), 1430; https://doi.org/10.3390/en18061430 - 13 Mar 2025
Viewed by 511
Abstract
In practical engineering applications, the cold storage functional backfill cooling system is prone to pipe clogging due to the agglomeration and crushing effects of the components of the ice particle-containing filling slurry. In addition, the fluidity of the slurry becomes more complex due [...] Read more.
In practical engineering applications, the cold storage functional backfill cooling system is prone to pipe clogging due to the agglomeration and crushing effects of the components of the ice particle-containing filling slurry. In addition, the fluidity of the slurry becomes more complex due to the change in the particle size distribution (PSD) during the pipeline transportation of the filling slurry, which limits the practical application effectiveness of the system. In order to promote the application and sustainable development of mining solid waste resources, a CFD–PBM coupling model was established to simulate the flow of the ice-containing filling slurry in horizontal circular tubes. On this basis, the effects of the initial ice content, inlet flow rate, initial particle size of tailings, and filling slurry concentration on the caking phenomenon during pipeline transportation were analyzed. The distribution of the pressure drop along the pipeline was also analyzed and calculated. The results show that the higher the flow velocity, the lower the slurry concentration, the larger the tailings’ particle size, the lower the ice content, and the lower the likelihood of agglomeration during transportation of the filling slurry. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

24 pages, 54509 KiB  
Article
Stability and Rheological Properties of Grouts with Waste Glass Powder as Cement Replacement: Influences of Content and Alkali Activator
by Liuxi Li, Chao Deng, Yi Zhou, Qundong Tan, Wenqin Yan, Dequan Zhou and Yi Zhou
Materials 2025, 18(2), 353; https://doi.org/10.3390/ma18020353 - 14 Jan 2025
Cited by 1 | Viewed by 834
Abstract
Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace [...] Read more.
Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0–40%), the addition of NaOH activator (Na2O content of 4%) or not, and water–solid ratio (w/s = 0.5, 0.65, 0.8, 1.0). The results indicate that, in the absence of activator, the addition of WGP generally increases the amount of free liquid exudation in the grout, reducing its stability; however, under low w/s ratios, appropriate amounts of WGP can enhance stability. When the w/s ratio is high and the WGP content is large, the grout stability decreases significantly. The addition of NaOH activator (Na2O content of 4%) significantly reduces free liquid exudation, enhancing the stability of the grout, especially when the w/s ratio is less than 1.0. Furthermore, the Herschel–Bulkley Model was experimentally validated to accurately describe the rheological behavior of waste glass–cement slurries, with all R2 values exceeding 0.99. WGP and alkaline activator have significant effects on the rheological properties of the grout. Although they do not change its flow pattern, they significantly affect shear stress and viscosity. The viscosity of the slurry is influenced by the combined effects of w/s ratio, WGP content, and alkaline activator, with complex interactions among the three. The application of these research findings in the field of grouting engineering not only contributes to significantly reducing glass waste but also promotes the production of sustainable cement-based composites, lowering carbon dioxide emissions by reducing cement usage, and thereby alleviating environmental burdens. Full article
Show Figures

Figure 1

24 pages, 22739 KiB  
Article
Macro–Micro Properties of Remodeled Waste Slurry Under Freeze–Thaw Cycles
by Long Wang, Houren Xiong, Junguang Huang, Minjie Wen, Pan Ding and Yiming Zhang
Materials 2025, 18(1), 178; https://doi.org/10.3390/ma18010178 - 3 Jan 2025
Cited by 1 | Viewed by 886
Abstract
Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze–thaw environments, which can induce frost heave and thaw settlement, and the mechanism of [...] Read more.
Waste slurry, a major by-product of urban construction, is produced in rapidly increasing volumes each year. Dehydrated waste slurry has potential as a roadbed material; however, its performance in freeze–thaw environments, which can induce frost heave and thaw settlement, and the mechanism of the influence of freeze–thaw cycles on its macro and micro properties are still unclear and need thorough investigation. This study explores the macroscopic and microscopic properties of waste slurry subjected to freeze–thaw cycles. We conducted unconfined compressive strength (UCS) and triaxial unconsolidated undrained (UU) shear tests, focusing on fissure compaction, elastic deformation, plastic yielding, and strain hardening stages. The results reveal a decrease in strength and elastic modulus with increasing freeze–thaw cycles, as well as in the damage degree generated by freeze–thaw cycles. To uncover the underlying microscopic mechanisms, we performed Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and mercury intrusion porosimetry (MIP) analyses. These tests highlighted the evolution of pores and microcracks during freeze–thaw cycles. These results have important reference values for the reutilization of waste slurry discharged from large-diameter bored piles for roadbed backfill materials that need to be repaired quickly in seasonally frozen areas. Full article
(This article belongs to the Special Issue Recycling and Sustainability of Industrial Solid Waste)
Show Figures

Figure 1

27 pages, 10631 KiB  
Article
Bearing Characteristics of Deep Cement Mixing Integrated Drilling, Mixing and Jetting Piles Based on Numerical Simulation
by Yang Wang, Yuhe Zhang, Kaixing Zhang, Yu Rong, Runze Xu, Jie Li, Weizhe Feng, Zihan Sang, Zhanyong Yao and Kai Yao
Sustainability 2024, 16(21), 9198; https://doi.org/10.3390/su16219198 - 23 Oct 2024
Cited by 3 | Viewed by 1434
Abstract
The Deep Cement Mixing Integrated Drilling, Mixing and Jetting (DMJ) technique has been developed through the installation of high-pressure spray holes at the mixing blades, with the objective of enhancing the bearing capacity of deep-mixed piles in the Yellow River floodplain. In order [...] Read more.
The Deep Cement Mixing Integrated Drilling, Mixing and Jetting (DMJ) technique has been developed through the installation of high-pressure spray holes at the mixing blades, with the objective of enhancing the bearing capacity of deep-mixed piles in the Yellow River floodplain. In order to enhance the bearing capacity of the foundation, variable-modulus piles and capped piles were incorporated within the DMJ piles. Engineering applications have demonstrated that DMJ piles can effectively address the issue of foundation reinforcement in the Yellow River floodplain region, minimize the wastage of cement, and reduce the environmental pollution associated with waste slurry. Nevertheless, a comprehensive study of the relevant factors is still lacking in the available literature. This study addresses this gap by conducting a numerical simulation of these two types of DMJ piles based on the preliminary field test data, with the objective of analyzing both the single-pile-bearing characteristics and the composite foundation-bearing characteristics. Furthermore, the study seeks to optimize the DMJ pile’s structure based on the simulation results. The findings demonstrate that the premature failure of a single pile during the bearing process can be averted if the modulus of the pile core reaches a minimum of 0.3 GPa or if the pile cap thickness exceeds 1 m. The utilization of large-diameter drilling, stirring and spraying piles can markedly enhance the bearing capacity of the composite foundation and mitigate the differential settlement of pile and soil. The spacing of the pile has been identified as a significant factor influencing the differential settlement of pile and soil. Consequently, this study also examines the impact of pile spacing on the differential settlement of piles and soil. Full article
Show Figures

Figure 1

22 pages, 11883 KiB  
Article
Experimental Study on the Suspending Mechanism of Suspending Agent in Coal-Based Solid Waste Slurry for Long-Distance Pipeline Transportation
by Tao Li, Tao Yang, Heng Min, Min Cao and Jingyan Hu
Processes 2024, 12(9), 1937; https://doi.org/10.3390/pr12091937 - 9 Sep 2024
Cited by 3 | Viewed by 1091
Abstract
The transportation of coal-based solid waste filling slurry (CSWFS) through pipelines for underground goaf injection is essential for enhancing mine safety and promoting green, low-carbon coal mining. To address the issue of pipeline blockage caused by the suspension sensitivity of CSWFS during long-distance [...] Read more.
The transportation of coal-based solid waste filling slurry (CSWFS) through pipelines for underground goaf injection is essential for enhancing mine safety and promoting green, low-carbon coal mining. To address the issue of pipeline blockage caused by the suspension sensitivity of CSWFS during long-distance transportation, this study proposes the addition of the suspending agent hydroxypropyl methyl cellulose (HPMC) to transform the filling slurry into a stable suspending slurry. The mechanism by which the suspending agent modifies the rheological property of CSWFS was elucidated and verified. Firstly, an evaluation index system for the suspending state of CSWFS based on the “experimental test and theoretical calculation” was established. The values for layering degree, bleeding rate time-loss, and the corresponding average time-loss rate over 0 to 120 min of A1–A5 CSWFS were recorded as 24 mm–2 mm, 3.0–0.2%, 252.4–54.2%, and 149.6–14.6%, respectively. The concentration gradient evaluation result, C/CA = 0.91 (≥0.8), confirmed that the suspending agent maintained a stable suspending state over time for CSWFS. Secondly, it was demonstrated that the suspending agent HPMC modified the rheological property of A1–A5 CSWFS by increasing its plastic viscosity, which strengthened the viscous resistance to particle settling, thereby transforming a semi-stable slurry into a stable one. Additionally, the formation of a spatial suspending network by the suspending agent ensures that no pipeline blockage accidents occured in practical engineering applications. Furthermore, the XRD and SEM tests were utilized to verify the microstructure of the top (T) and bottom (B) samples in A4 block. It was concluded that the type of hydration products, occurrence forms, lapping compactness, and microstructural development were consistent, ultimately forming a high-strength, dense, hardened filling block. Finally, numerical simulation confirmed that the addition of suspending agent in A4 slurry formed a comprehensive spatial suspending network and a well-structured, unified system. This is one effective approach which could contribute to addressing the technical issue of pipeline blockage during long-distance pipeline transportation. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Figure 1

34 pages, 12607 KiB  
Review
Analysis of Experience in the Use of Micro- and Nanoadditives from Silicon Production Waste in Concrete Technologies
by Antonina I. Karlina, Yuliya I. Karlina and Vitaliy A. Gladkikh
Minerals 2023, 13(12), 1525; https://doi.org/10.3390/min13121525 - 7 Dec 2023
Cited by 17 | Viewed by 2996
Abstract
The integration of nanotechnology across various industries has significantly enhanced product quality and manufacturing technologies for diverse materials. Within the construction sector, the adoption of nanomaterials has sparked the advent of innovative construction methods. Extensive studies have been conducted on various nanomaterials, particularly [...] Read more.
The integration of nanotechnology across various industries has significantly enhanced product quality and manufacturing technologies for diverse materials. Within the construction sector, the adoption of nanomaterials has sparked the advent of innovative construction methods. Extensive studies have been conducted on various nanomaterials, particularly micro- and nanosilica, exploring their use as partial substitutes for cement in concrete formulations. This study aimed to furnish a comprehensive overview of silica’s impact on concrete properties in civil engineering and road construction. Environmental concerns and potential hazards necessitate the development of strategies for managing industrial by-products. Metallurgical processes generate several such by-products, among which is silica fume—a residue from smelting in the silicon and ferrosilicon industries. Waste silica dust and slurries have proven highly effective in creating high-strength, high-performance concrete. The study presents a literature review focusing on micro- and nanosilica derived from production waste at ferroalloy and silicon plants. It includes a comparative analysis of the primary characteristics of microsilica from various sources and examines the extensive use of microsilica as a modifying additive in building materials. Analyzing different concrete compositions with and without fumed silica determined the ranges of results for each indicator. The incorporation of micro- and nanosilica into the concrete mix demonstrated its efficacy. The morphology of waste silica particles, characterized by the smooth and spherical surfaces of micro- and nanosilica particles, significantly influences the workability properties of the concrete. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Graphical abstract

27 pages, 8920 KiB  
Article
An Assessment of the Development of a Mobile Agricultural Biogas Plant in the Context of a Cogeneration System
by Zbigniew Jarosz, Magdalena Kapłan, Kamila Klimek, Barbara Dybek, Marcin Herkowiak and Grzegorz Wałowski
Appl. Sci. 2023, 13(22), 12447; https://doi.org/10.3390/app132212447 - 17 Nov 2023
Cited by 2 | Viewed by 2171
Abstract
This article presents examples of cogeneration systems, which are standard equipment for biogas installations, based on the production of heat and electricity. It has been shown that in the case of microgeneration, ease of servicing and low installation costs are crucial. Characteristic aspects [...] Read more.
This article presents examples of cogeneration systems, which are standard equipment for biogas installations, based on the production of heat and electricity. It has been shown that in the case of microgeneration, ease of servicing and low installation costs are crucial. Characteristic aspects of developing concepts for mobile installations (small scale) that produce biogas, often with a simple container structure that is ready to be located in the economic infrastructure of the agricultural industry, were indicated. Recommendations for the operation of micro-biogas models are presented, which have the greatest impact on the advisability of using agricultural waste for energy purposes. A characteristic farm was selected, which has a substrate necessary for the process of methane fermentation of slurry from pig farming. The cogenerator, which constitutes a potential energy demand from the point of view of Polish agriculture in the context of renewable energy production, was analyzed. The research goal was to adapt the cogenerator to the conditions existing on a farm, which should meet the technical and technological expectations for the process of managing the produced methane with a value of 80% in agricultural biogas. The assessment of the impact of the amount of biogas on the level of CO, NO, NO2 and PM emissions was carried out at a constant engine speed for various load levels; the percentage of biogas was changed from 40 to approximately 70–80%, i.e., until significant knocking combustion was detected in the tested engines. As a result, the existing control and control system for the operation of the cogeneration unit prevents the most effective mode of operation of the research installation as a prosumer micro-installation. When the AG20P biogas unit operated in parallel with the grid with an active power of up to 11.7 kW, the electricity produced by the unit met the adopted assumptions and requirements. What is new in this article is the use of a cogeneration unit that has been adapted to its functionality, taking into account the assessment of the prospects for optimizing the cogeneration system in the context of the use of renewable energy sources as agricultural biogas. The best method was to attempt to determine the operating conditions of the cogenerator to develop the optimization of a biogas cogeneration unit producing electricity and heat in a micro-installation for the needs of an individual farm. Full article
Show Figures

Figure 1

13 pages, 7509 KiB  
Article
Influence of Some Key Parameters on the Efficiency of Flocculation–Solidification–Filter Press Combined Method for Sustainable Treatment of Waste Mud Slurry
by Chao Han, Hongping Xie, Bin Bai, Shuai Li, Rongjun Zhang and Yue Huang
Sustainability 2023, 15(21), 15658; https://doi.org/10.3390/su152115658 - 6 Nov 2023
Cited by 4 | Viewed by 1845
Abstract
The flocculation–solidification–filter-press combined method is a new type of method for treating waste slurry that combines flocculation and chemical curing with a mechanical filter press. Among these processes, the mechanical filter-press process is key to the efficient disposal of waste engineering slurries by [...] Read more.
The flocculation–solidification–filter-press combined method is a new type of method for treating waste slurry that combines flocculation and chemical curing with a mechanical filter press. Among these processes, the mechanical filter-press process is key to the efficient disposal of waste engineering slurries by the flocculation–solidification–filter-press combined method. In the mechanical filter-press process, parameters including the initial thickness of filtration mud, the magnitude of filtration pressure, and the duration of press filtration have important impacts on the dewatering and strength after subsequent curing. In this work, a series of laboratory tests were conducted to study the influence of filter-press parameters on flocculated–solidified mud by measuring the properties of treated and cured mud. The test results showed that the initial mud bag thickness is an important factor in the mud treatment effect. As the initial mud bag thickness increases, the greater the water content of the mud at the end of the filter-press process after applying the same amount of time and the same amount of pressure, the lower the post-conservation strength will be. The increase in filtration pressure and filtration time within a certain range can reduce the water content of the mud brick after filtration and significantly improve its shear strength. In the actual process of filtering in the project, the thickness of the initial mud bag should be no more than 140 mm, the filtration pressure is about 0.35 MPa, and the filtration time is suitable for 2 min. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

26 pages, 475 KiB  
Review
Developments and Prospects of Farmland Application of Biogas Slurry in China—A Review
by Zichen Wang, Isaac A. Sanusi, Jidong Wang, Xiaomei Ye, Evariste B. Gueguim Kana, Ademola O. Olaniran and Hongbo Shao
Microorganisms 2023, 11(11), 2675; https://doi.org/10.3390/microorganisms11112675 - 31 Oct 2023
Cited by 19 | Viewed by 3953
Abstract
Biogas slurry (BS) is an attractive agricultural waste resource which can be used to regulate soil microbial communities, enhance nutrient absorption capacity of crops, promote plant–soil interactions, and consequently, increase crop productivity. Presently, BS discharge is not environmentally friendly. It is therefore necessary [...] Read more.
Biogas slurry (BS) is an attractive agricultural waste resource which can be used to regulate soil microbial communities, enhance nutrient absorption capacity of crops, promote plant–soil interactions, and consequently, increase crop productivity. Presently, BS discharge is not environmentally friendly. It is therefore necessary to explore alternative efficient utilization of BS. The use of BS as fertilizer meets the requirements for sustainable and eco-friendly development in agriculture, but this has not been fully actualized. Hence, this paper reviewed the advantages of using BS in farmland as soil fertilization for the improvement of crop production and quality. This review also highlighted the potential of BS for the prevention and control of soil acidification, salinization, as well as improve microbial structure and soil enzyme activity. Moreover, this review reports on the current techniques, application methods, relevant engineering measures, environmental benefits, challenges, and prospects associated with BS utilization. Lastly, additional research efforts require for optimal utilization of BS in farmlands were elucidated. Full article
Show Figures

Graphical abstract

18 pages, 9651 KiB  
Article
Strength and Deformation Characteristics of Fiber and Cement-Modified Waste Slurry
by Jiahao Ye, Ping Jiang, Lejie Chen, Xuhui Zhou, Fei Rao and Xinyi Tang
Polymers 2023, 15(16), 3435; https://doi.org/10.3390/polym15163435 - 17 Aug 2023
Cited by 2 | Viewed by 1727
Abstract
Using fiber and cement to modify waste slurry and apply it to roads is an effective way to recycle waste slurry. A new type of road material, fiber–cement-modified waste slurry (FRCS), was prepared in this study. The static and dynamic characteristics of the [...] Read more.
Using fiber and cement to modify waste slurry and apply it to roads is an effective way to recycle waste slurry. A new type of road material, fiber–cement-modified waste slurry (FRCS), was prepared in this study. The static and dynamic characteristics of the cement soil were studied using an unconfined compressive strength test and dynamic triaxial test. The results show that the optimum fiber content of FRCS is 0.75%. In the unconfined compressive strength test, under this fiber content, the unconfined compressive strength (UCS) of the FRCS is the largest, and the elastic modulus and modulus strength ratio are both the smallest, indicating that the tensile properties of the cement slurry have been enhanced. In the dynamic triaxial test, the hysteretic curve of the FRCS tends to be stable with the increase in the number of cycles, the dynamic elastic modulus of the FRCS decreases first and then increases with the increase in the dosage, while the damping ratio becomes stable after a rapid decline, and the fiber incorporation increases the cumulative strain of the soil–cement under low-stress cycles, indicating that the ductility of the FRCS is improved. In addition, a cumulative strain prediction model of the FRCS is established in this paper, which can provide a reference for the resource application of waste slurry in road engineering. Full article
Show Figures

Figure 1

31 pages, 10058 KiB  
Review
Process Water Management and Seepage Control in Tailings Storage Facilities: Engineered Environmental Solutions Applied in Chile and Peru
by Carlos Cacciuttolo, Alvar Pastor, Patricio Valderrama and Edison Atencio
Water 2023, 15(1), 196; https://doi.org/10.3390/w15010196 - 3 Jan 2023
Cited by 18 | Viewed by 13062
Abstract
In the past thirty years many mining projects in Chile and Peru have used: (i) polymeric geomembranes and (ii) design-and-build cutoff trenches, plastic concrete slurry walls, and grout curtain systems to control seepage at tailings storage facilities (TSFs). Geosynthetics are a viable alternative [...] Read more.
In the past thirty years many mining projects in Chile and Peru have used: (i) polymeric geomembranes and (ii) design-and-build cutoff trenches, plastic concrete slurry walls, and grout curtain systems to control seepage at tailings storage facilities (TSFs). Geosynthetics are a viable alternative at a TSF dam for clay cores or impermeable materials, mainly because of their marked advantages in cost, installation, and construction time. This article describes the use of geosynthetics liners and cutoff trench–plastic concrete slurry walls–grout curtain systems in TSF dams in Chile and Peru mining, with the objective to decrease seepage to the environment, considering different dam material cases such as: cycloned tailings sand dams, borrow dams, and mine waste rock dams. Finally, this article discusses aspects of geosynthetic technology acceptance in the local regulatory frameworks, lessons learned, and advances. It focuses on the use and implementation of geosynthetics in TSFs in Chile and Peru, which have some of the highest TSF dams in the world, as well as a wet environment, dry environment, extreme topography, and severe seismic conditions. These conditions constitute a challenge for manufacturers, engineers, and contractors, who must achieve optimal technical solutions, while being environmentally aware and economic. Full article
Show Figures

Figure 1

18 pages, 5352 KiB  
Article
Research and Application of Fast-Strengthening Environment-Friendly Sulfoaluminate Cement Slurry on Taguchi Method
by Yue Wu, Huini Liu, Chao Tang, Yinge Zhu and Xiaoli Zhang
Processes 2022, 10(5), 965; https://doi.org/10.3390/pr10050965 - 11 May 2022
Cited by 3 | Viewed by 1749
Abstract
Most of the existing research on cement slurry materials are not environmentally friendly and environmental pollution is significant. Most researchers only test its performance, but do not conduct engineering feasibility verification. In this study, the materials extracted from various wastes were used to [...] Read more.
Most of the existing research on cement slurry materials are not environmentally friendly and environmental pollution is significant. Most researchers only test its performance, but do not conduct engineering feasibility verification. In this study, the materials extracted from various wastes were used to replace part of the sulfoaluminate cement, and orthogonal experiments were designed to analyze the reaction mechanism between different materials. Finally, the optimal mixing ratio was obtained. Then, through the regression equation analysis method, digital photograph restoration technology, the finite element method and various practical engineering conditions, the feasibility of the slurry under different applicable engineering conditions was compared and analyzed. The comparison between the experimental and numerical simulation results shows that the cement slurry obtained in this study has good reliability and feasibility. It can carry out rapid grouting reinforcement. The results of this study not only provide a feasible and environmentally friendly cement slurry for a wide range of construction projects, but also provide an effective method for the treatment of various wastes. Full article
Show Figures

Figure 1

Back to TopTop