Special Issue "Prevention of Groundwater-related Hazards in Geotechnical Engineering and Mining Engineering"

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydrogeology".

Deadline for manuscript submissions: closed (1 December 2022) | Viewed by 3063

Special Issue Editors

Prof. Dr. Shaoshuai Shi
E-Mail Website
Guest Editor
Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, China
Interests: water inrush; the filling type disaster structure; multi-source information fusion; risk control; dynamic adjustment
Prof. Dr. Zongqing Zhou
E-Mail Website
Guest Editor
1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
2. School of Qilu Transportation, Shandong University, Jinan 250061, China
Interests: numerical analysis method; fluid-solid coupling; mechanism and control of groudwater disasters; prediction and control of geological disasters
Prof. Dr. Dan Ma
E-Mail Website
Guest Editor
Department of Resources Engineering, School of Mines, China University of Mining and Technology, Xuzhou 221006, China
Interests: mining engineering; rock seepage mechanics; water inrush control; Simultaneous exploitation of coal and geothermal energy; backfill mining
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The prevention and control of goundwater-related hazards and disasters in geotechnical engineering and mining engineering are major scientific and technological challenges. Goundwater-related hazards and disasters can lead to delays in construction or the termination of projects, resulting in huge economic losses. 

In this Special Issue, we aim to look into the latest progress on the prevention of goundwater-related hazards and disasters. Contributors are invited to share their original research papers focusing on the topic of the Special Issue.

Potential topics include the following:

  • Mechanisms of groundwater-related disasters
  • Numerical analysis method for fluid–solid coupling of rock and soil
  • Migration controls on groundwater
  • Behavior of groundwater in fractured rocks
  • Groundwater–rock interactions in geotechnical structures
  • Multi-source information identification of groundwater-related disasters
  • Disaster prediction and early warning techniques
  • Risk assessment and dynamic control for groundwater-related hazards

Prof. Dr. Shaoshuai Shi
Prof. Dr. Dan Ma
Prof. Dr. Zongqing Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • goundwater-related hazards and disasters
  • numerical analysis
  • geotechnical structures
  • multi-source information fusion
  • risk assessment
  • dynamic control

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
A Dynamic Modeling Approach to Predict Water Inflow during Karst Tunnel Excavation
Water 2022, 14(15), 2380; https://doi.org/10.3390/w14152380 - 31 Jul 2022
Cited by 2 | Viewed by 775
Abstract
During tunnel construction in strongly developed karst terrain, water inrush hazards often occur due to the complex hydrogeological conditions, which require accurate prediction of water inflow. In this study, a dynamic modeling approach for water inflow prediction of karst tunnels using the conduit [...] Read more.
During tunnel construction in strongly developed karst terrain, water inrush hazards often occur due to the complex hydrogeological conditions, which require accurate prediction of water inflow. In this study, a dynamic modeling approach for water inflow prediction of karst tunnels using the conduit flow process (CFP) is developed that considers both karst duality and changing boundary conditions of the tunnel. The CFP model has a good agreement with field-observed hydraulic head after calibration, and the Nash–Sutcliffe model efficiency (NSE) for the CFP model is 97.3%. Numerical calculation of water inflow was conducted in a successive drilling scenario with permeability change of the surrounding rocks. Additionally, a modular three-dimensional finite-difference ground-water flow model (MODFLOW) has been applied to predict the water inflow, for comparison with the CFP model. The prediction results obtained from the CFP model are generally in close agreement with the field-observed results; the percentage errors were 13.3% and 5.4%, respectively. For the MODFLOW model, the percentage errors were 34.2% and 36.8%, respectively. The proposed CFP model is both closer to reality and more reasonable than the MODFLOW model in predictive analysis of water inflow into karst tunnels, reflecting the influence of karst conduits on the water inflow process. Full article
Show Figures

Figure 1

Article
Advanced Grouting Model and Influencing Factors Analysis of Tunnels with High Stress and Broken Surrounding Rock
Water 2022, 14(4), 661; https://doi.org/10.3390/w14040661 - 20 Feb 2022
Cited by 2 | Viewed by 1171
Abstract
Grouting can effectively seal and reinforce broken rock masses in deep geotechnical engineering, which have an important impact on groundwater-related disaster prevention and control. Based on multi-field coupling mechanics and rotational viscosity experiments, an advance grouting migration model of cement slurry in tunnels [...] Read more.
Grouting can effectively seal and reinforce broken rock masses in deep geotechnical engineering, which have an important impact on groundwater-related disaster prevention and control. Based on multi-field coupling mechanics and rotational viscosity experiments, an advance grouting migration model of cement slurry in tunnels with high-stress broken surrounding rock is built against the background of the Xianglushan Tunnel for water diversion in central Yunnan Province. The influence characteristics of water–cement ratio, grouting pressure, and initial permeability on the process of grouting material migration are analyzed by combining classical column theory and spherical theory. The results show the following: Overall, the growth rate of grouting radius is fast during the earlier 5 min and slows down later. At the fifth minute, the normal grouting ranges are 22 cm, 51 cm, and 58 cm, at water–cement ratios 0.6, 0.8, and 1.0, respectively, while the normal grouting ranges are 58 cm, 51 cm, and 36 cm at grouting pressures 2 MPa, 1 MPa, and 0.5 MPa, respectively; the normal grouting ranges are 58 cm, 24 cm, and 11 cm at initial permeabilities 5D, 0.5D, and 0.05D, respectively. At the 60th minute, the normal grouting ranges are 47 cm, 133 cm, and 155 cm at water–cement ratios 0.6, 0.8, and 1.0, respectively; the normal grouting ranges are 155 cm, 131 cm, and 96 cm at grouting pressures 2 MPa, 1 MPa, and 0.5 MPa, respectively; meanwhile, the normal grouting ranges are 155 cm, 63 cm, and 29 cm at initial permeabilities 5D, 0.5D, and 0.05D, respectively. This study can provide theoretical guidance for on-site grouting design in unfavorable geological treatment projects. Full article
Show Figures

Figure 1

Back to TopTop