Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = engineered wood flooring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1128 KB  
Article
Occurrence, Migration Behavior, and Environmental Burden of Phthalate Esters in Flooring Materials Used in Newly Renovated Chinese Homes
by Ying Zhang, Li-Bo Chen, Hao-Yang Shen, Zi-Chao Wu, Ning-Zheng Zhu, Chong-Jing Gao and Ying Guo
Toxics 2025, 13(7), 517; https://doi.org/10.3390/toxics13070517 - 20 Jun 2025
Viewed by 451
Abstract
Phthalic acid esters (PAEs), a class of synthetic semi-volatile organic compounds, are extensively incorporated into decorative materials. However, their specific occurrence, migration behaviors, and environmental impact on these materials—which comprise the largest surface areas in residential settings—remain insufficiently understood. This study investigated the [...] Read more.
Phthalic acid esters (PAEs), a class of synthetic semi-volatile organic compounds, are extensively incorporated into decorative materials. However, their specific occurrence, migration behaviors, and environmental impact on these materials—which comprise the largest surface areas in residential settings—remain insufficiently understood. This study investigated the distribution, emission dynamics, and environmental burdens of PAEs in flooring commonly used in Chinese households. The results showed that PAEs are widespread in flooring, with total concentrations ranging from 1220 to 166,000 ng/g (14,100 ng/g, median value). Solid wood flooring (55,900 ng/g) exhibited significantly higher PAE levels compared to engineered flooring (22,600 ng/g) and laminate flooring (4000 ng/g) (p < 0.05). Migration experiments revealed that solid wood flooring tended to continuously release PAEs, laminate flooring showed a pronounced capacity for PAE absorption, and engineered flooring exhibited both release and absorption behaviors. The initial PAE concentration is the dominant factor influencing migration rates, while the flooring type and substrate density also contribute to varying degrees. The estimated environmental burdens of PAEs resulting from flooring in newly renovated Chinese households ranged from 3.63 × 109 ng to 3.45 × 1011 ng, with a median value of 1.23 × 1010 ng. Households in the eastern and southwestern regions exhibited the highest PAE burdens, while the southern region showed the lowest. Socioeconomic factors such as residential floor area, number of rooms, household income, and renovation budget significantly influenced the environmental burden of PAEs derived from flooring. Full article
(This article belongs to the Special Issue Environmental Behavior and Risks of Organic Pollutants)
Show Figures

Graphical abstract

17 pages, 3044 KB  
Article
Re-Resinated Wood Strand Panels: Enhancing Performance Through Waste Recycling
by Avishek Chanda, Muhammad Khusairy Bin Bakri, Rajan Adhikari and Vikram Yadama
Sustainability 2025, 17(10), 4596; https://doi.org/10.3390/su17104596 - 17 May 2025
Viewed by 620
Abstract
The construction sector’s increasing eco-consciousness is driving the need for higher-performance wood-based engineered products from underutilized timber resources, such as small-diameter trees from hazardous fuel treatments of our forests. Strand-based products, including oriented strand board (OSB) and lumber (OSL), are widely used. However, [...] Read more.
The construction sector’s increasing eco-consciousness is driving the need for higher-performance wood-based engineered products from underutilized timber resources, such as small-diameter trees from hazardous fuel treatments of our forests. Strand-based products, including oriented strand board (OSB) and lumber (OSL), are widely used. However, hot-pressing during their manufacturing generates approximately 10% waste, which includes a substantial amount of resinated strands that are landfilled. The huge potential of using strand-based products has led to many studies and growing interest in strand-based three-dimensional sandwich panels that can be used as wall, floor, or roofing panels. As the market grows, understanding the recyclability of these resinated strands becomes crucial. This study investigates the feasibility of using re-resinated waste strands that were collected during lab-scale production of strand-based panels. Results demonstrate significant improvements in dimensional stability, mechanical properties, and fire resistance. Specifically, recycling increased internal bond strength, flexural strength, time to ignition, time to flameout, mass loss, and time to peak heat release rate by 107%, 44%, 58%, 35%, 51%, and 27%, respectively, and helped decrease water absorption and thickness swell by 51% and 58%, respectively. Full article
(This article belongs to the Special Issue Sustainable Materials: Recycled Materials Toward Smart Future)
Show Figures

Figure 1

14 pages, 4808 KB  
Article
From Crop Residue to Corrugated Core Sandwich Panels as a Building Material
by Aadarsha Lamichhane, Arun Kuttoor Vasudevan, Mostafa Mohammadabadi, Kevin Ragon, Jason Street and Roy Daniel Seale
Materials 2025, 18(1), 31; https://doi.org/10.3390/ma18010031 - 25 Dec 2024
Cited by 2 | Viewed by 1354
Abstract
This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials [...] Read more.
This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance. The average lengths for wood strands and wheat straws were 12–15 cm and 3–7.5 cm, respectively, while rice husks were like particles, about 7 mm long. Due to the high silica content in rice husk and wheat straw, which negatively impacts the bonding performance, polymeric diphenylmethane diisocyanate (pMDI), an effective adhesive for such materials, was used for the fabrication of corrugated panels. Wood strands and phenol formaldehyde (PF) adhesive were used to fabricate flat outer layers. Flat panels were bonded to both sides of the corrugated panels using a polyurethane adhesive to develop corrugated core sandwich panels. Four-point bending tests were conducted to evaluate the panel’s bending stiffness, load-carrying capacity, and failure modes. Results demonstrated that sandwich panels with wood strand corrugated cores exhibited the highest bending stiffness and load-bearing capacity, while those with wheat straw corrugated cores performed similarly. Rice husk corrugated core sandwich panels showed the lowest mechanical performance compared to other sandwich panels. Considering the applications of these sandwich panels as floor, wall, and roof sheathing, all these panels exhibited superior bending performance compared to 11.2 mm- and 17.42 mm-thick commercial OSB (oriented strand board) panels, which are commonly used as building materials. These sandwich structures supported a longer span than commercial OSB panels while satisfying the deflection limit of L/360. The findings suggest the transformative potential of converting renewable yet underutilized materials into an engineered concept, corrugated geometry, leading to the development of high-performance, carbon-negative building materials suitable for flooring and roof applications. Full article
Show Figures

Figure 1

17 pages, 3327 KB  
Article
The Effect of Moderate Temperature Rise on Emitted Chemicals from Modern Building Materials
by Patrick S. Chepaitis, Qian Zhang, David Kalafut, Taryn Waddey, Mark J. Wilson and Marilyn Black
Buildings 2024, 14(11), 3683; https://doi.org/10.3390/buildings14113683 - 19 Nov 2024
Cited by 4 | Viewed by 1982
Abstract
Chemical emissions from building materials may significantly impact indoor air quality and potentially human health, since individuals spend most of their time indoors. With rising global temperatures and more frequent heatwaves, building materials’ resilience becomes more crucial for indoor air quality and structural [...] Read more.
Chemical emissions from building materials may significantly impact indoor air quality and potentially human health, since individuals spend most of their time indoors. With rising global temperatures and more frequent heatwaves, building materials’ resilience becomes more crucial for indoor air quality and structural integrity. However, the effects of temperature rise on building material emissions are not systematically studied. This study investigates the effect of a moderate temperature rise on the volatile organic compound (VOC) and aldehyde emissions of eighteen commonly used building materials, such as engineered hardwood, nylon carpet, terrazzo flooring, and acoustic tile, at two elevated yet realistic temperature points. The chemical emissions were collected using a micro-chamber setup and analyzed using thermal desorption/gas chromatography/mass spectrometry and high-performance liquid chromatography. The results showed that 78% of the materials tested demonstrated increased chemical emissions at higher temperatures. Wood-flooring materials showed statistically significant increases in formaldehyde at elevated temperatures, which could be associated with health risks. Eight of the tested materials, particularly those used in large surface area applications, showed significant increases in emissions at increased temperatures, and half of these were labeled as “low-VOC”. These findings may inform the updating of building standards and third-party certification with respect to temperature variation when assessing building material emissions. This research aims to provide a comprehensive understanding of VOC and aldehyde emissions at emerging indoor environmental conditions due to extreme heat climate scenarios. Full article
(This article belongs to the Special Issue Advances in Indoor Environmental Quality (IEQ))
Show Figures

Graphical abstract

25 pages, 15978 KB  
Article
Flexural Behavior of Cross-Laminated Timber Panels with Environmentally Friendly Timber Edge Connections
by Honghao Ren, Alireza Bahrami, Mathias Cehlin and Marita Wallhagen
Buildings 2024, 14(5), 1455; https://doi.org/10.3390/buildings14051455 - 17 May 2024
Viewed by 1482
Abstract
As a sustainable construction material, timber is more promoted than steel, concrete, and aluminum nowadays. The building industry benefits from using timber based on several perspectives, including decarbonization, improved energy efficiency, and easier recycling and disposal processes. The cross-laminated timber (CLT) panel is [...] Read more.
As a sustainable construction material, timber is more promoted than steel, concrete, and aluminum nowadays. The building industry benefits from using timber based on several perspectives, including decarbonization, improved energy efficiency, and easier recycling and disposal processes. The cross-laminated timber (CLT) panel is one of the widely utilized engineered wood products in construction for floors, which is an ideal alternative option for replacing reinforced concrete. One single CLT panel has an outstanding flexural behavior. However, CLT cannot be extended independently without external connections, which are normally made of steel. This article proposes two innovative adhesive-free edge connections made of timber, the double surface (DS) and half-lapped (HL) connections. These connections were designed to connect two CLT panels along their weak direction. Parametric studies consisting of twenty models were conducted on the proposed edge connections to investigate the effects of different factors and the flexural behavior of CLT panels with these edge connections under a four-point bending test. Numerical simulations of all the models were done in the current study by using ABAQUS 2022. Furthermore, the employed material properties and other relevant inputs (VUSDFLD subroutines, time steps, meshes, etc.) of the numerical models were validated through existing experiments. The results demonstrated that the maximum and minimum load capacities among the studied models were 6.23 kN and 0.35 kN, respectively. The load–displacement responses, strain, stress, and defection distributions were collected and analyzed, as well as their failure modes. It was revealed that the CLT panels’ load capacity was distinctly improved due to the increment of the connectors’ number (55.05%) and horizontal length (80.81%), which also reinforced the stability. Based on the findings, it was indicated that adhesive-free timber connections could be used for CLT panels in buildings and replace traditional construction materials, having profound potential for improving buildings’ sustainability and energy efficiency. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 16038 KB  
Article
Free Vibrations of Sustainable Laminated Veneer Lumber Slabs
by Małgorzata Abramowicz, Marcin Chybiński, Łukasz Polus and Tomasz Wróblewski
Sustainability 2024, 16(1), 166; https://doi.org/10.3390/su16010166 - 23 Dec 2023
Cited by 7 | Viewed by 2007
Abstract
In this paper, the results of dynamic laboratory tests of four laminated veneer lumber (LVL) slabs of different thicknesses, widths, and types were presented. In three of the tested slabs, LVL with all veneers glued lengthwise was used (LVL R). In one LVL [...] Read more.
In this paper, the results of dynamic laboratory tests of four laminated veneer lumber (LVL) slabs of different thicknesses, widths, and types were presented. In three of the tested slabs, LVL with all veneers glued lengthwise was used (LVL R). In one LVL slab, a fifth of the veneers were glued crosswise (LVL X). Laminated veneer lumber slabs are engineering wood products with several important performance characteristics, making them a sustainable and preferred solution in civil engineering. To ensure the safe operation of a building with LVL structural elements, it is important to know their dynamic properties. The basic dynamic characteristics of the slabs obtained from experimental tests made it possible to validate the numerical models of the slabs. The slab models were developed in the Abaqus program using the finite element method. The elastic and shear moduli of laminated veneer lumber used in the four slabs were identified through an optimization process in which the error between the analyzed frequencies from the laboratory tests and the numerical analyses was minimized. In the case of slabs that possess the same thickness and are composed of different LVL types, the elastic modulus of LVL R in the longitudinal direction was 1.16 times higher than the elastic modulus of LVL X in the same direction. However, the elastic moduli of LVL R in tangential and radial directions were lower than the elastic moduli of LVL X in the same directions. The above was the result of the fact that the 45 mm LVL X slab had 3 out of 15 veneers glued crosswise. In the case of slabs possessing different thicknesses but the same width and type, the elastic modulus of the thicker panel was 1.13 times higher than that of the thinner panel. After validating the models, the numerical analyses yielded results consistent with the experimental results. The numerical models of the LVL slabs will be used to develop numerical models of composite floors with LVL panels in future research. Such models will allow for the analysis of floor dynamic characteristics and user-generated vibrations, which is required when verifying the serviceability limit state. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

11 pages, 1648 KB  
Article
The Impact of Top-Layer Sliced Lamella Thickness and Core Type on Surface-Checking in Engineered Wood Flooring
by Victor Grubîi and Jimmy Johansson
Forests 2023, 14(11), 2250; https://doi.org/10.3390/f14112250 - 15 Nov 2023
Cited by 2 | Viewed by 1762
Abstract
Surface-checking is a significant quality issue of veneer and sliced lamellae-based wood products. This study explores how surface-checking in sliced lamellae-based engineered wood Flooring (EWF) is influenced by two key structure parameters: core type and top-layer thickness. The core types assessed were a [...] Read more.
Surface-checking is a significant quality issue of veneer and sliced lamellae-based wood products. This study explores how surface-checking in sliced lamellae-based engineered wood Flooring (EWF) is influenced by two key structure parameters: core type and top-layer thickness. The core types assessed were a standard solid wood lamellae with a veneer back-end layer (S), a standard solid wood lamellae core with veneer back-end layers on the two sides (DS), and a single-layer oriented strand board (OS) core. The EWF element’s top-layer lamellae were plain sliced at nominal dimensions of 1.5, 2.5, 3.5, and 4.5 mm from freshly sawn slabs of European oak (Quercus spp.). The surface-checking of EWF specimens was quantified based on a digital image correlation (DIC) method, which outputs a surface-checking index. The surface-checking results were evaluated using a Tweedie compound Poisson data distribution to fit a general linear model. The model evaluated the impact of individual factors, sliced lamellae thickness and core type, and their interaction. The checking index confidence intervals were estimated using a bootstrapping technique. Findings reveal a significant interaction between studied factors and provide insight into optimizing top-layer thickness and core construction to diminish surface-checking. A low sliced lamella thickness on standard solid wood lamellae core resulted in low surface-checking, deemed relevant for further research. Full article
(This article belongs to the Topic New Challenges in Wood and Wood-Based Materials)
Show Figures

Figure 1

12 pages, 4279 KB  
Article
An Experimental Comparison of Airborne Sound Insulation between Dovetail Massive Wooden Board and Cross-Laminated Timber Elements
by Hüseyin Emre Ilgın, Jesse Lietzén and Markku Karjalainen
Buildings 2023, 13(11), 2809; https://doi.org/10.3390/buildings13112809 - 9 Nov 2023
Cited by 6 | Viewed by 1494
Abstract
Adhesives and metallic fasteners play a pivotal role in the domain of engineered wood products (EWPs). Nevertheless, owing to their origins in petroleum, adhesives can pose environmental hazards, whereas metal fasteners can complicate end-of-life disposal and reusability. Nonetheless, a resolution emerges in the [...] Read more.
Adhesives and metallic fasteners play a pivotal role in the domain of engineered wood products (EWPs). Nevertheless, owing to their origins in petroleum, adhesives can pose environmental hazards, whereas metal fasteners can complicate end-of-life disposal and reusability. Nonetheless, a resolution emerges in the form of dovetail massive wooden board elements (DMWBEs), characterized by their pure wood composition and absence of adhesive metal connections. The existing literature pertaining to DMWBEs has predominantly focused on inadequate structural analysis and model testing of connection specifics rather than appraising the efficacy of a structural member, such as a floor slab. This article presents a comparative analysis between a DMWBE and a correspondingly sized cross-laminated timber (CLT) panel, focusing on their respective airborne sound insulation capabilities. Experimental samples of model scale with dimensions of 200 mm thickness, 1160 mm width, and 1190 mm length were employed for both CLT and DMWBE. The evaluation of airborne sound insulation performance was conducted in accordance with ISO 10140-2 standards. The findings underscored the superior performance of DMWBE (Rw = 43 dB) in contrast to CLT (Rw = 40 dB) concerning airborne sound insulation efficacy. Additionally, the damping of the panel increased due to the different composition of the DMWBE, as evidenced by a higher measured total loss factor (TLF) compared with CLT. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 3371 KB  
Article
The Role of Abrasion Resistance in Determining Suitability of Low-Density Plantation Timber for Engineered Flooring
by Kuluni Millaniyage, Nathan Kotlarewski, Assaad Taoum and Louise Wallis
Forests 2023, 14(7), 1309; https://doi.org/10.3390/f14071309 - 26 Jun 2023
Cited by 1 | Viewed by 2362
Abstract
Abrasion resistance is an important property for the functional performance and serviceability of timber floors. Although hardness is the conventional criterion used in selecting species for flooring applications, it shows greater variations and restricts the use of low-density species, whereas abrasion resistance could [...] Read more.
Abrasion resistance is an important property for the functional performance and serviceability of timber floors. Although hardness is the conventional criterion used in selecting species for flooring applications, it shows greater variations and restricts the use of low-density species, whereas abrasion resistance could generate a more reliable indication of a product’s surface performance. Eucalyptus nitens is a fast-grown global plantation species extensively available in Tasmania, Australia. Until recently, this material has been perceived as unsuitable for appearance applications such as flooring. This study assesses several engineered flooring prototypes comprised of E. nitens—sawlog managed and fibre-managed resources—compared to an existing market product (E. obliqua and a commercial engineered timber flooring product with UV-cured coating). Tests were performed in accordance with the EN 14354:2016, sandpaper method using Taber abraser and further modified to test flooring prototypes. The highest abrasion resistance was observed in the E. nitens veneer composite product. Fibre-managed E. nitens resulted in the greatest level of abrasion, while sawlog-managed E. nitens was comparable to native regrowth E. obliqua, a commonly used flooring species historically used in Australia. Therefore, the findings from this research suggest there are suitable flooring applications for plantation E. nitens as engineered wood products in some domestic and residential dwellings when compared to existing native products. Full article
(This article belongs to the Special Issue Novel Insights into the Assessment of Wood Properties)
Show Figures

Figure 1

12 pages, 11196 KB  
Article
Vibration Performance of Bamboo Bundle/Wood Veneer Composite Floor Slabs for Joist-Type Floor Coverings
by Linbi Chen, Shanyu Han, Deyue Li, Jianchao Deng, Fuming Chen and Ge Wang
Buildings 2023, 13(5), 1265; https://doi.org/10.3390/buildings13051265 - 12 May 2023
Cited by 1 | Viewed by 2321
Abstract
Bamboo engineering materials are green, high-strength, tough, durable, and structurally safe, and have promising application prospects in various modern green and low-carbon buildings. To investigate the vibration behavior of bamboo-bundle laminated veneer lumber (BLVL) for use in floor slabs, this study designed two [...] Read more.
Bamboo engineering materials are green, high-strength, tough, durable, and structurally safe, and have promising application prospects in various modern green and low-carbon buildings. To investigate the vibration behavior of bamboo-bundle laminated veneer lumber (BLVL) for use in floor slabs, this study designed two kinds of full-scale vibration tests under a pedestrian load: an extraction hammer impact test and a static concentrated load test. The results are expected to provide a theoretical foundation and data to support the application of bamboo bundle veneer laminated composite materials in the construction field. The results showed that the self-oscillation frequency and mid-span deflection of the BLVL composite met the requirements of multiple relevant regulations when used as the structural material of floor slabs. The BLVL floor slab had greater flexural stiffness and better vibration-damping performance than the OSB floor slab. The first-order self-oscillation frequency of the BLVL composite floor slab was 13.769 Hz, the damping ratio of the first three orders of modalities was 1.262–2.728%, and the maximum static deflection in the span of the joist was 0.932 mm under a 1 kN concentrated load. The 1 kN static deflection of the BLVL was reduced by 22.33%, and the root mean square (RMS) acceleration of the walking load response was significantly lower than that of the OSB floor slab. The preparation of BLVL composite materials through homogeneous lamination of bamboo bundle veneer and wood veneer may help to improve the vibration behavior of bamboo–wood structures such as floor slabs and walls. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 10409 KB  
Article
Fire Spread in Multi-Storey Timber Building, a CFD Study
by Suhaib M. Hayajneh and Jamal Naser
Fluids 2023, 8(5), 140; https://doi.org/10.3390/fluids8050140 - 28 Apr 2023
Cited by 7 | Viewed by 3461
Abstract
The purpose of this paper is to investigate the fire performance in a multi-storey cross-laminated timber (CLT) structure by the computational fluid dynamics (CFD) technique using the Fire Dynamics Simulator (FDS v.6.7). The study investigates fire temperature, heat release rate (HRR), and gas [...] Read more.
The purpose of this paper is to investigate the fire performance in a multi-storey cross-laminated timber (CLT) structure by the computational fluid dynamics (CFD) technique using the Fire Dynamics Simulator (FDS v.6.7). The study investigates fire temperature, heat release rate (HRR), and gas concentration (O2, CO2). The importance of this research is to ensure that the fire performance of timber buildings is adequate for occupant safety and property protection. Moreover, the proposed technique provides safety measures in advance for engineers when designing buildings with sufficient fire protection by predicting the fire temperature, time to flashover and fire behaviour. The present numerical modelling is designed to represent a 10-storey CLT residential building where each floor has an apartment with 9.14 m length by 9.14 width dimensions. The pyrolysis model was performed with thermal and kinetic parameters where the furniture, wood cribs and CLT were allowed to burn by themselves in simulation. This research is based on a full-scale experiment of a two-storey CLT building. The present results were validated by comparing them with the experimental data. Numerical simulation of CLT building models show a very close accuracy to the experiment performed in the benchmark paper. The results show that the CFD tools such as FDS can be used for predicting fire scenarios in multi-storey CLT buildings. Full article
Show Figures

Figure 1

17 pages, 2987 KB  
Article
Structural Properties of Commercial Australian Plantation Hardwood CLT
by Mateo Gutierrez, Azin Ettelaei, Nathan Kotlarewski and Michael Lee
Buildings 2023, 13(1), 208; https://doi.org/10.3390/buildings13010208 - 12 Jan 2023
Cited by 9 | Viewed by 2563
Abstract
Significant volumes of plantation hardwood are available in Australia to produce value-added engineered wood products such as cross-laminated timber (CLT). To validate the possibility of utilising this available resource, the bending structural properties of plantation Eucalyptus nitens solid board and finger-jointed feedstock were [...] Read more.
Significant volumes of plantation hardwood are available in Australia to produce value-added engineered wood products such as cross-laminated timber (CLT). To validate the possibility of utilising this available resource, the bending structural properties of plantation Eucalyptus nitens solid board and finger-jointed feedstock were measured. The studied CLT panels produced from finger-jointed lamellas were subjected to bending strength, bending stiffness, rolling shear strength in bending, and pure rolling shear tests to obtain characteristic design values. Solid and finger-jointed timber test results suggested that boards used in longitudinal lamellas have a bending strength of 36.0 MPa and a modulus of elasticity (MOE) of 13,000 MPa. Finger-jointed timber in crossed lamellas presented a declared bending strength of 25.0 MPa. CLT panels showed a bending strength of 24.0 MPa and a rolling shear strength of 2.0 MPa. The experimental results for the CLT panels evidenced that the CLT bending stiffness matches up very well with the modelled results when an MOE of 13,000 MPa is used to describe the stiffness of longitudinal boards. The results presented in this study establish a basis for the commercial use of Australian plantation hardwood CLT in structural applications such as floors and roofs in commercial and residential buildings. Full article
(This article belongs to the Special Issue Adoption of Engineered Wood Products in Building Applications)
Show Figures

Figure 1

16 pages, 7978 KB  
Article
Experimental Study and Numerical Simulation Analysis on Vertical Vibration Performances of 12 m Span Wood Truss Joist Floors
by Zhanyi Zhang, Shuangyong Wang, Hao Deng and Haibin Zhou
Buildings 2022, 12(9), 1455; https://doi.org/10.3390/buildings12091455 - 15 Sep 2022
Cited by 1 | Viewed by 2069
Abstract
Walking-induced vibration control in wood floors is a critical issue attracting the attention of many researchers and engineers. This paper presents an experimental study applying static deflection tests, modal tests, and pedestrian load tests to a series of full-scale 12 m span tooth [...] Read more.
Walking-induced vibration control in wood floors is a critical issue attracting the attention of many researchers and engineers. This paper presents an experimental study applying static deflection tests, modal tests, and pedestrian load tests to a series of full-scale 12 m span tooth plates connected to wood truss joist floors with strongbacks and partition walls. A comparison of the calculation error of vibration parameters between the theoretical formula and a numerical model was also conducted. The results show that strongbacks and partition walls effectively reduce both the vertical displacement and the root means acceleration at the center of the floor under pedestrian load but increases the natural frequency. The partition wall can achieve a better vibration-reduction effect than strongbacks. The error of the finite element model is higher than that of the theoretical formula. Using the theoretical formula in engineering wood floor design is recommended. Full article
(This article belongs to the Special Issue Structural Vibration Serviceability and Human Comfort)
Show Figures

Figure 1

25 pages, 1888 KB  
Article
Optimal Design and Competitive Spans of Timber Floor Joists Based on Multi-Parametric MINLP Optimization
by Primož Jelušič and Stojan Kravanja
Materials 2022, 15(9), 3217; https://doi.org/10.3390/ma15093217 - 29 Apr 2022
Cited by 7 | Viewed by 7097
Abstract
This study investigates the optimization of the design of timber floor joists, taking into account the self-manufacturing costs and the discrete sizes of the structure. This non-linear and discrete class of optimization problem was solved with the multi-parametric mixed-integer non-linear programming (MINLP). An [...] Read more.
This study investigates the optimization of the design of timber floor joists, taking into account the self-manufacturing costs and the discrete sizes of the structure. This non-linear and discrete class of optimization problem was solved with the multi-parametric mixed-integer non-linear programming (MINLP). An MINLP optimization model was developed. In the model, an accurate objective function of the material and labor costs of the structure was subjected to design, strength, vibration and deflection (in)equality constraints, defined according to Eurocode regulations. The optimal design of timber floor joists was investigated for different floor systems, different materials (sawn wood and glulam), different load sharing systems, different vertical imposed loads, different spans, and different alternatives of discrete cross-sections. For the above parameters, 380 individual MINLP optimizations were performed. Based on the results obtained, a recommended optimal design for timber floor joists was developed. Engineers can select from the recommendations the optimal design system for a given imposed load and span of the structure. Economically suitable spans for timber floor joists structures were found. The current knowledge of competitive spans for timber floor joists is extended based on cost optimization and Eurocode standards. Full article
(This article belongs to the Special Issue Analysis and Design of Structures and Materials)
Show Figures

Figure 1

33 pages, 32868 KB  
Article
Life Cycle Regional Economic Impacts of Bridge Repair Using Cross-Laminated Timber Floor Slabs: A Case Study in Akita Prefecture, Japan
by Tomohumi Huzita, Takanobu Sasaki, Shogo Araki and Chihiro Kayo
Buildings 2022, 12(2), 158; https://doi.org/10.3390/buildings12020158 - 2 Feb 2022
Cited by 5 | Viewed by 2559
Abstract
Recently, cross-laminated timber (CLT) has attracted attention as a civil engineering material in Japan. In particular, the use of CLT floor slabs for bridge repair is expected to have regional economic impacts throughout their life cycle, but their economic impacts have not been [...] Read more.
Recently, cross-laminated timber (CLT) has attracted attention as a civil engineering material in Japan. In particular, the use of CLT floor slabs for bridge repair is expected to have regional economic impacts throughout their life cycle, but their economic impacts have not been evaluated. In this study, the life cycle regional economic impacts of using non-waterproofed CLT, waterproofed CLT, and reinforced concrete (RC) floor slabs for bridge repair in Akita Prefecture, Japan, were compared. Using past-to-present input–output tables, we quantitatively evaluated the economic impacts over the life cycle of floor slabs by estimating the future input–output tables for construction, maintenance, and disposal. The results showed that the construction and maintenance costs (final demand increase) of CLT floor slabs are higher than those of RC slabs, but the regional economic impact is larger. In addition, the non-waterproofed CLT must be renewed every time it is maintained. Therefore, the demand for CLT production in the prefecture will increase, and the economic impact will be larger than that of the other two floor slabs. This demand for CLT production will not only redound to the benefit of the forestry and wood industry but also the revitalization of regional economies. Full article
Show Figures

Figure 1

Back to TopTop