Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = engine room simulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 27717 KB  
Article
Acoustic–Electric Conversion Characteristics of a Quadruple Parallel-Cavity Helmholtz Resonator-Based Triboelectric Nanogenerator (4C–HR TENG)
by Xinjun Li, Chaoming Huang and Zhilin Wang
Processes 2026, 14(2), 341; https://doi.org/10.3390/pr14020341 - 18 Jan 2026
Viewed by 230
Abstract
This paper presents the design and fabrication of a triboelectric nanogenerator based on a Quadruple Parallel-cavity Helmholtz Resonator (4C–HR TENG) for the efficient harvesting of noise energy in marine engine room environments. The device utilizes sound waves to drive periodic contact and separation [...] Read more.
This paper presents the design and fabrication of a triboelectric nanogenerator based on a Quadruple Parallel-cavity Helmholtz Resonator (4C–HR TENG) for the efficient harvesting of noise energy in marine engine room environments. The device utilizes sound waves to drive periodic contact and separation between polytetrafluoroethylene (PTFE) particles in the resonant cavity and the vibrating diaphragm as well as the upper electrode plate, thereby converting sound energy into mechanical energy and finally into electrical energy. The device consists of an acoustic waveguide with a length of 350 mm and both width and height of 60 mm, along with a Helmholtz Resonator with a diameter of 60 mm and a height of 40 mm. Experimental results indicate that under resonance conditions with a sound pressure level of 109.8 dB and a frequency of 110 Hz, the device demonstrates excellent output performance, achieving a peak output voltage of 250 V and a current of 4.85 μA. We analyzed and investigated the influence mechanism of key parameters (filling ratio, sound pressure level, the height between the electrode plates, and particle size) on the output performance. Through COMSOL Multiphysics simulation analysis, the sound pressure enhancement effect and the characteristic of concentrated diaphragm center displacement at the first-order resonance frequency were revealed, verifying the advantage of the four-cavity structure in terms of energy distribution uniformity. In practical applications, the minimum responsive sound pressure level corresponding to the operating frequency range of the 4C–HR TENG was determined. The output power reaches a maximum of 0.27 mW at a load resistance of 50 MΩ. At a sound pressure level of 115.1 dB, the device can charge a 1 μF capacitor to 4.73 V in just 32 s and simultaneously illuminate 180 LEDs in real-time, demonstrating its potential for environmental noise energy harvesting and micro-energy supply applications. This study provides new insights and experimental evidence for the efficient recovery of noise energy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

8 pages, 1719 KB  
Article
Temperature-Dependent Degradation in SiC MOS Structures Under Laser-Assisted AC BTI
by Kanghua Yu and Jun Wang
Electronics 2026, 15(2), 337; https://doi.org/10.3390/electronics15020337 - 12 Jan 2026
Viewed by 151
Abstract
Silicon carbide (SiC) MOSFETs, as one of the representative power electronic devices, have faced reliability challenges due to threshold voltage (Vth) instability under dynamic gate stress. To explore the underlying mechanisms, this work investigates 4H-SiC MOS structures (P-MOS and N-MOS) [...] Read more.
Silicon carbide (SiC) MOSFETs, as one of the representative power electronic devices, have faced reliability challenges due to threshold voltage (Vth) instability under dynamic gate stress. To explore the underlying mechanisms, this work investigates 4H-SiC MOS structures (P-MOS and N-MOS) under AC bias temperature instability (AC BTI) stress, utilizing a laser to generate minority carriers and simulate realistic switching conditions. Through combined capacitance–voltage (C-V) and gate current–voltage (Jg-Vg) characterizations on P-MOS and N-MOS devices before and after degradation at different temperatures, we reveal a critical temperature dependence in defect interactions. At room temperature, degradation is dominated by electron trapping in shallow interface states and near-interface traps (NITs). In contrast, high-temperature stress activates charge exchange with deep-level, slow states. Notably, a positive VFB shift is consistently observed in both N-MOS and P-MOS devices under AC stress, confirming that electron trapping is the dominant cause of the commonly observed positive Vth shift in SiC MOSFETs. These findings clarify the distinct defect-mediated mechanisms governing dynamic Vth instability in SiC devices, providing fundamental insights for interface engineering and reliability assessment. Full article
Show Figures

Figure 1

21 pages, 2619 KB  
Article
Energy Consumption Analysis and Energy-Saving Renovation Research on the Building Envelope Structure of Existing Thermal Power Plants in China’s Hot Summer and Cold Winter Regions
by Li Qin, Ji Qi, Yunpeng Qi and Wei Shi
Buildings 2026, 16(1), 169; https://doi.org/10.3390/buildings16010169 - 30 Dec 2025
Viewed by 317
Abstract
This study focuses on the operational energy consumption of existing thermal power plant buildings in China’s hot-summer, cold-winter regions. Unlike conventional civil buildings, thermal power plant structures feature intense internal heat sources, large spatial dimensions, specialized ventilation requirements, and year-round industrial waste heat. [...] Read more.
This study focuses on the operational energy consumption of existing thermal power plant buildings in China’s hot-summer, cold-winter regions. Unlike conventional civil buildings, thermal power plant structures feature intense internal heat sources, large spatial dimensions, specialized ventilation requirements, and year-round industrial waste heat. Consequently, the energy consumption characteristics and energy-saving logic of their building envelopes remain understudied. This paper innovatively employs a combined experimental approach of field monitoring and energy consumption simulation to quantify the actual thermal performance of building envelopes (particularly exterior walls, doors, and windows) under current operating conditions, identifying key components for energy-saving retrofits of the main plant building envelope. Due to the fact that most thermal power plants were designed relatively early, their envelope structures generally have problems such as poor insulation performance and insufficient air tightness, resulting in severe energy loss under extreme weather conditions. An energy consumption simulation model was established using GBSEARE software. By focusing on heat transfer coefficients of exterior walls and windows as key parameters, a design scheme for energy-saving retrofits of building envelopes in thermal power plants located in hot-summer, cold-winter regions was proposed. The results show that there is a temperature gradient along the height direction inside the main plant, and the personnel activity area in the middle activity level of the steam engine room is the most unfavorable area of the thermal environment of the steam engine room. The heat transfer coefficient of the envelope structure does not meet the current code requirements. The over-standard rate of the exterior walls is 414.55%, and that of the exterior windows is 177.06%. An energy-saving renovation plan is proposed by adopting a composite color compression panel for the external wall, selecting 50 mm flame-retardant polystyrene EPS foam board for the heat preservation layer, adopting 6 high-transmittance Low-E + 12 air + 6 plastic double-cavity for the external windows, and adding movable shutter sunshade. The energy-saving rate of the building reached 55.32% after the renovation. This study provides guidance for energy-efficient retrofitting of existing thermal power plants and for establishing energy-efficient design standards and specifications for future new power plant construction. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—3rd Edition)
Show Figures

Figure 1

19 pages, 2828 KB  
Article
Study on the Synergistic Effect of Coal Pillars and Caved Deposits in Chamber-Type Mining of Steeply Inclined Coal Seams
by Zhuo Chen, Shenglin Wu, Jilin Wang, Jibiao Shi, Mingliang Li, Wan Cao and Hao Song
Appl. Sci. 2025, 15(24), 13188; https://doi.org/10.3390/app152413188 - 16 Dec 2025
Viewed by 284
Abstract
To address the synergistic stability evaluation of coal pillars and caving deposits in room-and-pillar mining of nearly vertical coal seams, this study takes the 101 Coal Mine (104th Regiment, Xishan Area, Urumqi, Xinjiang) as the engineering background. It combines physical similarity simulation and [...] Read more.
To address the synergistic stability evaluation of coal pillars and caving deposits in room-and-pillar mining of nearly vertical coal seams, this study takes the 101 Coal Mine (104th Regiment, Xishan Area, Urumqi, Xinjiang) as the engineering background. It combines physical similarity simulation and theoretical analysis to explore the synergistic bearing mechanism of coal pillars and caved deposits. Based on limit equilibrium theory, a combined instability criterion considering roof mudstone’s bending-toppling and shear-sliding is established; the Rankine earth pressure theory is modified, and a stability coefficient Ks (reflecting synergistic bearing effect) is proposed to realize quantitative evaluation of goaf stability. A model experiment simulates the mining of a 73° nearly vertical coal seam. Results show the roof instability mode (under coal pillars and caved deposits) is equivalent to anti-dip slope’s toppling-sliding composite failure. Experimental and theoretical results agree well, verifying the model’s rationality and applicability. This study provides a theoretical basis and analytical method for calculating the synergistic stability of coal pillars and caving deposits in nearly vertical coal seams. Full article
Show Figures

Figure 1

26 pages, 4207 KB  
Article
Heat Transfer Mechanisms in Refrigerated Spaces: A Comparative Study of Experiments, CFD Predictions and Heat Load Software Accuracy
by Miguel Lança, João Garcia and João Gomes
Energies 2025, 18(23), 6280; https://doi.org/10.3390/en18236280 - 29 Nov 2025
Cited by 1 | Viewed by 620
Abstract
A correct cold room heat load calculation ensures that the refrigeration system operates efficiently, reducing operating costs while maintaining a constant temperature to prevent stored goods from spoiling. Refrigeration engineers typically use software to size equipment such as expansion devices and evaporators and [...] Read more.
A correct cold room heat load calculation ensures that the refrigeration system operates efficiently, reducing operating costs while maintaining a constant temperature to prevent stored goods from spoiling. Refrigeration engineers typically use software to size equipment such as expansion devices and evaporators and to estimate heat loads in cold rooms. These tools are available for free from refrigeration manufacturers or can be purchased from software developers. Although practical and easy to use, most of these programs do not follow the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)-recommended approach for estimating heat loads. This article evaluates heat transfer mechanisms, especially natural convection in a refrigerator, through experimental and CFD simulations. Depending on the expression used, the estimated convection heat flux at the evaporator ranged from 5.3 W to 14.2 W in case 0-N, 7.7 W to 25.1 W in case −10-N, and 5.1 W to 22.4 W in case 0-Y. Compared to convective heat transfer, radiation heat flux estimations are often more consistent across different expressions. The results from validated simulations were used to assess the performance of cold room heat load estimation software. Differences of up to 236% in heat load estimates were reported between the results. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

28 pages, 5160 KB  
Article
An Evaluation of a New Building Energy Simulation Tool to Assess the Impact of Water Flow Glazing Facades on Maintaining Comfortable Temperatures and Generating Renewable Energy
by Fernando Del Ama Gonzalo, Belén Moreno Santamaría and Juan Antonio Hernandez Ramos
Sustainability 2025, 17(21), 9669; https://doi.org/10.3390/su17219669 - 30 Oct 2025
Viewed by 585
Abstract
Reducing energy consumption in buildings presents a challenge for the construction and architectural industries. Stakeholders in the building sector require innovative products and systems to reduce energy usage effectively. Building Energy Simulation (BES) tools are essential for understanding energy-related issues during the design [...] Read more.
Reducing energy consumption in buildings presents a challenge for the construction and architectural industries. Stakeholders in the building sector require innovative products and systems to reduce energy usage effectively. Building Energy Simulation (BES) tools are essential for understanding energy-related issues during the design phase. However, the existing BES tools are often complex and costly, making them inaccessible to many architects and engineers who lack the software expertise for integrating new systems into existing Building Energy Simulation frameworks. To address this gap, the authors of this article have developed a new tool that enables early-stage evaluation of building performance. Additionally, the tool includes Water Flow Glazing (WFG) as a construction element that is part of both the facade and the building’s heating and cooling system. The authors validated the methodology by comparing the results from the new tool with those from the commercial BES tool Indoor Climate and Energy IDA-ICE 5.0 in accordance with ASHRAE standards. The same cases were tested by comparing the indoor temperature of a room with the power absorbed by the water, as measured by both tools. A WFG facade can effectively help maintain comfortable room temperatures throughout both winter and summer while producing renewable thermal energy via water heat absorption. The accuracy of this tool was validated using the normalized root mean square error between results from the new tool and those from IDA-ICE 5.0, which remained below the maximum allowable error established by ASHRAE. Validation of the tool using an experimental prototype showed that a coefficient of determination (R2) of 0.91 can be achieved through iterative refinement between the model and measured data. Full article
Show Figures

Figure 1

17 pages, 5030 KB  
Article
Mitigating Airborne Infection Transmission in the Common Area of Inpatient Wards—A Case Study
by Xiangdong Li, Kevin Kevin, Wai Kit Lam, Andrew Ooi, Cameron Zachreson, Nicholas Geard, Loukas Tsigaras, Samantha Bates, Forbes McGain, Lidia Morawska, Marion Kainer and Jason Monty
Fluids 2025, 10(10), 267; https://doi.org/10.3390/fluids10100267 - 14 Oct 2025
Viewed by 1414
Abstract
In a hospital ward, transmission of airborne pathogens can occur in any area where people breathe the same air. These areas include patient rooms and specialised treatment rooms, as well as corridors and common areas. Numerous studies have been conducted to investigate the [...] Read more.
In a hospital ward, transmission of airborne pathogens can occur in any area where people breathe the same air. These areas include patient rooms and specialised treatment rooms, as well as corridors and common areas. Numerous studies have been conducted to investigate the risk of airborne transmission within hospital rooms where patient care activities take place; however, studies assessing the risk of exposure to airborne pathogens in common areas such as nurse stations and corridors, in which healthcare workers spend up to 63% of their time, are very rare. In this study, we addressed this gap by simulating aerosol transport in the common area of a real inpatient ward encompassing different types of patient rooms and equipped with a mixing ventilation system. The risk of airborne transmission of COVID-19 in the ward was evaluated using a spatially resolved risk model, coupled with the clinical and pathological data on SARS-CoV-2 infection. The results showed that the central-return ventilation system causes directional air flows in the corridors, which enhanced long-distance aerosol transport and were conducive to infection transmission between different rooms. An improved ventilation system was proposed that aimed to reduce air mixing and minimise directional air flows. The improvement involved only rearrangement of air supply and exhaust vents, but led to significant reductions in both particle residence time and travelling distance within the ward, contributing to a nearly two-fold increase and 60% decrease in the areas of low-risk and high-risk zones, respectively, resulting in a 34% reduction in the overall infection probability in the studied area. This study demonstrated the potential of preventing hospital-acquired infection (HAI) via engineering controls and provided recommendations for future studies to assess novel ventilation configurations to reduce transmission risk. Full article
(This article belongs to the Special Issue CFD Applications in Environmental Engineering)
Show Figures

Figure 1

13 pages, 1830 KB  
Article
Tunable Strong Plasmon-Exciton Coupling in a Low-Loss Nanocuboid Dimer with Monolayer WS2
by Fan Wu and Zhao Chen
Nanomaterials 2025, 15(19), 1497; https://doi.org/10.3390/nano15191497 - 30 Sep 2025
Viewed by 1033
Abstract
Strong coupling between plasmons and excitons in two-dimensional materials offers a powerful route for manipulating light–matter interactions at the nanoscale, with potential applications in quantum optics, nanophotonics, and polaritonic devices. Here, we design and numerically investigate a low-loss coupling platform composed of a [...] Read more.
Strong coupling between plasmons and excitons in two-dimensional materials offers a powerful route for manipulating light–matter interactions at the nanoscale, with potential applications in quantum optics, nanophotonics, and polaritonic devices. Here, we design and numerically investigate a low-loss coupling platform composed of a silver nanocuboid dimer and monolayer of WS2 using finite-difference time-domain (FDTD) simulations. The dimer supports a subradiant bonding plasmonic mode with a linewidth as narrow as 60 meV. This ultralow-loss feature enables strong coupling with monolayer WS2 at relatively low coupling strengths. FDTD simulations combined with the coupled oscillator model reveal a Rabi splitting of ~60 meV and characteristic anticrossing behavior in the dispersion relations. Importantly, we propose and demonstrate two independent tuning mechanisms—loss engineering through nanocuboid tilt and coupling-strength modulation through the number of WS2 layers—that enable transitions between weak and strong coupling regimes. This work provides a low-loss and tunable plasmonic platform for studying and controlling strong light–matter interactions in plasmon-two-dimensional material systems, with potential for room-temperature quantum and optoelectronic devices. Full article
(This article belongs to the Special Issue Photonics and Plasmonics of Low-Dimensional Materials)
Show Figures

Figure 1

17 pages, 2528 KB  
Article
Thermal Performance Variations of Office Spaces in Educational Buildings Resulting from Façade Orientation: An Egyptian Case Study
by Ahmad I. Elshamy, Rania Rushdy Moussa, Mahmoud Alghrieb, Engy Elshazly, Iman El-Mahallawi and Hesham Safwat
Buildings 2025, 15(19), 3437; https://doi.org/10.3390/buildings15193437 - 23 Sep 2025
Cited by 2 | Viewed by 977
Abstract
This paper investigates the thermal performance of an office floor within the Faculty of Engineering at the British University in Egypt (BUE), located in Cairo, a city characterized by a hot arid climate. The study focuses on understanding the building’s thermal behavior by [...] Read more.
This paper investigates the thermal performance of an office floor within the Faculty of Engineering at the British University in Egypt (BUE), located in Cairo, a city characterized by a hot arid climate. The study focuses on understanding the building’s thermal behavior by comparing two identical office rooms: Room 212 (north-facing) and Room 201 (south-facing). Utilizing dynamic thermal simulations with TRNSYS 18 for a full year, the research specifically analyzes the impact of these opposite orientations on indoor space temperature, total cooling loads, the monthly heat absorbed by various building surfaces, and the heat absorbed per unit area for each surface. The findings reveal significant disparities in thermal performance, particularly in terms of heat gain and cooling demand, directly attributable to orientation. This research highlights the critical role of facade orientation in mitigating radiative heat absorption and reducing energy consumption in educational buildings within hot climates, providing valuable insights for optimizing building design strategies to enhance thermal comfort and energy efficiency. Full article
Show Figures

Figure 1

10 pages, 2383 KB  
Article
Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy
by Xiaoming Liu, Kun Gao, Long Huang, Peng Chen and Jing Yang
Processes 2025, 13(8), 2462; https://doi.org/10.3390/pr13082462 - 4 Aug 2025
Viewed by 888
Abstract
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature [...] Read more.
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature restricts engineering applications. This contradiction is essentially closely related to the deformation mechanism at the nanoscale. Here, we performed molecular dynamics simulations to reveal anomalous grain size effects and deformation mechanisms in nanocrystalline FeAl intermetallic material. Models with grain sizes ranging from 6.2 to 17.4 nm were systematically investigated under uniaxial tensile stress. The study uncovers a distinctive inverse Hall-Petch relationship governing flow stress within the nanoscale regime. This behavior stems from high-density grain boundaries promoting dislocation annihilation over pile-up. Crucially, the material exhibits anomalous ductility at ultra-high strain rates due to stress-induced phase transformation dominating the plastic deformation. The nascent FCC phase accommodates strain through enhanced slip systems and inherent low stacking fault energy with the increasing phase fraction paralleling the stress plateau. Nanoconfinement suppresses the propagation of macroscopic defects while simultaneously suppressing room-temperature brittle fracture and inhibiting the rapid phase transformation pathways at extreme strain rates. These findings provide new theoretical foundations for designing high-strength and high-toughness intermetallic nanocompounds. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

16 pages, 8859 KB  
Article
Effect of Systematic Errors on Building Component Sound Insulation Measurements Using Near-Field Acoustic Holography
by Wei Xiong, Wuying Chen, Zhixin Li, Heyu Zhu and Xueqiang Wang
Buildings 2025, 15(15), 2619; https://doi.org/10.3390/buildings15152619 - 24 Jul 2025
Viewed by 723
Abstract
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion [...] Read more.
Near-field acoustic holography (NAH) provides an effective way to achieve wide-band, high-resolution visualization measurement of the sound insulation performance of building components. However, based on Green’s function, the microphone array’s inherent amplitude and phase mismatch errors will exponentially amplify the sound field inversion process, significantly reducing the measurement accuracy. To systematically evaluate this problem, this study combines numerical simulation with actual measurements in a soundproof room that complies with the ISO 10140 standard, quantitatively analyzes the influence of array system errors on NAH reconstructed sound insulation and acoustic images, and proposes an error correction strategy based on channel transfer function normalization. The research results show that when the array amplitude and phase mismatch mean values are controlled within 5% and 5°, respectively, the deviation of the weighted sound insulation measured by NAH can be controlled within 1 dB, and the error in the key frequency band of building sound insulation (200–1.6k Hz) does not exceed 1.5 dB; when the mismatch mean value increases to 10% and 10°, the deviation of the weighted sound insulation can reach 2 dB, and the error in the high-frequency band (≥1.6k Hz) significantly increases to more than 2.0 dB. The sound image shows noticeable spatial distortion in the frequency band above 250 Hz. After applying the proposed correction method, the NAH measurement results of the domestic microphone array are highly consistent with the weighted sound insulation measured by the standard method, and the measurement difference in the key frequency band is less than 1.0 dB, which significantly improves the reliability and applicability of low-cost equipment in engineering applications. In addition, the study reveals the inherent mechanism of differential amplification of system errors in the propagating wave and evanescent wave channels. It provides quantitative thresholds and operational guidance for instrument selection, array calibration, and error compensation of NAH technology in building sound insulation detection. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 6649 KB  
Article
Optimizing Kang-to-Room Area Ratios for Thermal Comfort in Traditional Chinese Architecture: An Empirical and Simulation-Based Approach
by Ning Li, Zhihua Zhao, Dongxu Wang, Qian Zhang and Lin Li
Buildings 2025, 15(15), 2593; https://doi.org/10.3390/buildings15152593 - 22 Jul 2025
Viewed by 946
Abstract
Traditional Chinese Kang heating systems have been used for over two millennia in northern China, yet their thermal efficiency and optimal design parameters lack scientific validation. This study aims to establish evidence-based guidelines for Kang-to-room area ratios to enhance thermal comfort and energy [...] Read more.
Traditional Chinese Kang heating systems have been used for over two millennia in northern China, yet their thermal efficiency and optimal design parameters lack scientific validation. This study aims to establish evidence-based guidelines for Kang-to-room area ratios to enhance thermal comfort and energy efficiency in rural architecture. We conducted direct measurements in a controlled experimental house (24 m2) in Huludao City, collecting temperature and humidity data from Kang surfaces and interior spaces over five-day periods. A benchmark curve for heat flux density was developed based on specific fuelwood consumption rates (1 kg/m2). TRNSYS simulations were employed to validate experimental data and analyze thermal performance in the historical Qingning Palace (352 m2) at Shenyang Imperial Palace. The benchmark curve demonstrated high accuracy with a Mean Absolute Error of 0.46 °C and Root Mean Square Error of 0.53 °C when compared to measured temperatures over the 48 h validation period; these values are well within acceptable ranges for calibrated thermal models. Simulations revealed optimal thermal comfort conditions when heat dissipation parameters were scaled appropriately for building size. The optimal Kang-to-room area ratio ranges from 0.28 to 0.69, with the existing Qingning Palace ratio (0.34) falling within this range, validating traditional design wisdom. This research provides a scientific foundation for sustainable architectural practices, bridging traditional knowledge with contemporary thermal engineering principles for both heritage preservation and modern rural construction applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 3727 KB  
Article
Johnson–Cook Constitutive Model Parameters Estimation of 22MnB5 Hot Stamping Steel for Automotive Application Produced via the TSCR Process
by Yuxin Song, Yaowen Xu and Gengwei Yang
Metals 2025, 15(7), 811; https://doi.org/10.3390/met15070811 - 20 Jul 2025
Viewed by 4847
Abstract
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The [...] Read more.
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The purpose of this work was to establish an appropriate constitutive model to characterize the rheological behavior of a hot-formed steel plate (22MnB5 steel) produced through the TSCR (Thin Slab Casting and Rolling) process under practical deformation temperatures (150–250 °C) and strain rates (0.001–3000 s−1). Subsequently, the material flow behavior was modeled and predicted using the Johnson–Cook flow stress constitutive model. In this study, uniaxial tensile tests were conducted on 22MnB5 steel at room temperature under varying strain rates, along with elevated-temperature tensile tests at different strain rates, to obtain the engineering stress–strain curves and analyze the mechanical properties under various conditions. The results show that during room-temperature tensile testing within the strain rate range of 10−3 to 300 s−1, the 22MnB5 steel exhibited overall yield strength and tensile strength of approximately 1500 MPa, and uniform elongation and fracture elongation of about 7% and 12%, respectively. When the strain rate reached 1000–3000 s−1, the yield strength and tensile strength were approximately 2000 MPa, while the uniform elongation and fracture elongation were about 6% and 10%, respectively. Based on the experimental results, a modified Johnson–Cook constitutive model was developed and calibrated. Compared with the original model, the modified Johnson–Cook model exhibited a higher coefficient of determination (R2), indicating improved fitting accuracy. In addition, to predict the material’s damage behavior, three distinct specimen geometries were designed for quasi-static strain rate uniaxial tensile testing at ambient temperature. The Johnson–Cook failure criterion was implemented, with its constitutive parameters calibrated through integrated finite element analysis to establish the damage model. The determined damage parameters from this investigation can be effectively implemented in metal forming simulations, providing valuable predictive capabilities regarding workpiece material performance. Full article
Show Figures

Figure 1

48 pages, 25839 KB  
Article
Research on Control of Ammonia Fuel Leakage and Explosion Risks in Ship Engine Rooms
by Zhongcheng Wang, Jie Zhu, Xiaoyu Liu, Jingjun Zhong and Peng Liang
Fire 2025, 8(7), 271; https://doi.org/10.3390/fire8070271 - 9 Jul 2025
Viewed by 1782
Abstract
Due to the unique physicochemical properties of ammonia fuel, any leakages in the engine room will inevitably endanger ship safety. This study focuses on investigating the diffusion behavior of ammonia fuel within the engine room during ship navigation after leakage, aiming to identify [...] Read more.
Due to the unique physicochemical properties of ammonia fuel, any leakages in the engine room will inevitably endanger ship safety. This study focuses on investigating the diffusion behavior of ammonia fuel within the engine room during ship navigation after leakage, aiming to identify hazardous points and implement measures, such as installing air-blowing and extraction devices, to mitigate the risks. To address potential leakage risks in ammonia-fueled ships, a simplified three-dimensional computational model was developed based on ship design drawings and field investigations. ANSYS Fluent software (2024 R2) was employed to simulate ammonia fuel leakage from pipelines and equipment, analyzing the diffusion patterns of leakage at different locations and evaluating the impact of adding air-blowing and extraction devices on leaked fuel in the engine room. The simulation results demonstrate that leakage at point 3 poses the greatest operational hazard, and ammonia fuel leakage during navigation generates combustible gas mixtures within the explosion limit range around the main engine, severely threatening both vessel safety and crew lives. Installing air-blowing and extraction devices in high-risk areas effectively reduces the explosion limit range of ammonia fuel, with air outlet 3 showing optimal mitigation effectiveness against ammonia fuel leakage during ship transportation. Full article
(This article belongs to the Special Issue Clean Combustion and New Energy)
Show Figures

Figure 1

29 pages, 3895 KB  
Article
Numerical Study on Ammonia Dispersion and Explosion Characteristics in Confined Space of Marine Fuel Preparation Room
by Phan Anh Duong, Jin-Woo Bae, Changmin Lee, Dong Hak Yang and Hokeun Kang
J. Mar. Sci. Eng. 2025, 13(7), 1235; https://doi.org/10.3390/jmse13071235 - 26 Jun 2025
Cited by 3 | Viewed by 2164
Abstract
Ammonia is emerging as a promising zero-carbon marine fuel due to its high hydrogen density, low storage pressure, and long-term stability, making it well-suited for supporting sustainable maritime energy systems. However, its adoption introduces serious safety challenges, as its toxic, flammable, and corrosive [...] Read more.
Ammonia is emerging as a promising zero-carbon marine fuel due to its high hydrogen density, low storage pressure, and long-term stability, making it well-suited for supporting sustainable maritime energy systems. However, its adoption introduces serious safety challenges, as its toxic, flammable, and corrosive properties pose greater risks than many other alternative fuels, necessitating rigorous risk assessment and safety management. This study presents a comprehensive investigation of potential ammonia leakage scenarios that may arise during the fuel gas supply process within confined compartments of marine vessels, such as the fuel preparation room and engine room. The simulations were conducted using FLACS-CFD V22.2, a validated computational fluid dynamics tool specialized for flammable gas dispersion and explosion risk analysis in complex geometries. The model enables detailed assessment of gas concentration evolution, toxic exposure zones, and overpressure development under various leakage conditions, providing valuable insights for emergency planning, ventilation design, and structural safety reinforcement in ammonia-fueled ship systems. Prolonged ammonia exposure is driven by three key factors: leakage occurring opposite the main ventilation flow, equipment layout obstructing airflow and causing gas accumulation, and delayed sensor response due to recirculating flow patterns. Simulation results revealed that within 1.675 s of ammonia leakage and ignition, critical impact zones capable of causing fatal injuries or severe structural damage were largely contained within a 10 m radius of the explosion source. However, lower overpressure zones extended much further, with slight damage reaching up to 14.51 m and minor injury risks encompassing the entire fuel preparation room, highlighting a wider threat to crew safety beyond the immediate blast zone. Overall, the study highlights the importance of targeted emergency planning and structural reinforcement to mitigate explosion risks in ammonia-fueled environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop