Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (907)

Search Parameters:
Keywords = energy-absorbing mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9695 KiB  
Article
Dynamic Response and Stress Evolution of RPC Slabs Protected by a Three-Layered Energy-Dissipating System Based on the SPH-FEM Coupled Method
by Dongmin Deng, Hanqing Zhong, Shuisheng Chen and Zhixiang Yu
Buildings 2025, 15(15), 2769; https://doi.org/10.3390/buildings15152769 - 6 Aug 2025
Abstract
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the [...] Read more.
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the sand cushion to enhance the composite system’s safety. A three-dimensional Smoothed Particle Hydrodynamics–Finite Element Method (SPH-FEM) coupled numerical model is developed in LS-DYNA (Livermore Software Technology Corporation, Livermore, CA, USA, version R13.1.1), with its validity rigorously verified. The dynamic response of rockfall impacts on the shed slab with composite cushions of various thicknesses is analyzed by varying the thickness of sand and EPS materials. To optimize the cushion design, a specific energy dissipation ratio (SEDR), defined as the energy dissipation rate per unit mass (η/M), is introduced as a key performance metric. Furthermore, the complicated interactional mechanism between the rockfall and the optimum-thickness composite system is rationally interpreted, and the energy dissipation mechanism of the composite cushion is revealed. Using logistic regression, the ultimate stress state of the reactive powder concrete (RPC) slab is methodically analyzed, accounting for the speed and mass of the rockfall. The results are indicative of the fact that the composite cushion not only has less dead weight but also exhibits superior impact resistance compared to the 90 cm sand cushions; the impact resistance performance index SEDR of the three-layered absorbing system reaches 2.5, showing a remarkable 55% enhancement compared to the sand cushion (SEDR = 1.61). Additionally, both the sand cushion and the RC protective slab effectively dissipate most of the impact energy, while the EPS material experiences relatively little internal energy build-up in comparison. This feature overcomes the traditional vulnerability of EPS subjected to impact loads. One of the highlights of the present investigation is the development of an identification model specifically designed to accurately assess the stress state of RPC slabs under various rockfall impact conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3220 KiB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 - 5 Aug 2025
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

25 pages, 13557 KiB  
Article
Mechanical Properties and Energy Absorption Characteristics of a Combined Gradient BCC Lattice Structure: A Numerical Study
by Xiangheng Zhao, Xiaoqiang Wang and Yunmiao Shang
Materials 2025, 18(15), 3652; https://doi.org/10.3390/ma18153652 - 4 Aug 2025
Viewed by 133
Abstract
As a new functional graded lattice structure construction strategy, the relative density gradient strategy has a promising future due to its ease of realization in various lattice structures. This paper proposes a BCC lattice structure combining two different lattice single cells. Based on [...] Read more.
As a new functional graded lattice structure construction strategy, the relative density gradient strategy has a promising future due to its ease of realization in various lattice structures. This paper proposes a BCC lattice structure combining two different lattice single cells. Based on this, the single cells of different structures are assigned different relative density gradients, resulting in 18 combined gradient lattice structures. Based on proving the experimental feasibility of numerical simulation, the mechanical properties and energy absorption characteristics of the combined gradient lattice structure are investigated by numerical simulation. When applied to composite lattice structures, the proposed wave-like gradient design significantly improves mechanical properties. Among the various gradient strategies examined, several have achieved mechanical performance close to that of uniform lattice structures. To some extent, this approach mitigates the common drawback of gradient lattice structures—where the relative density of the weakest layer is consistently lower than the interlayer relative density of uniform lattice structures—resulting in varying degrees of mechanical performance degradation compared to their uniform counterparts. The proposed linearly enhanced gradient strategy (Strategy-LE) possesses higher SEA and CLE values when the lattice structure is subjected to compressive loading, with an improvement of 6.36% in SEA and 61.6% in CLE over the uniform structure. Through the relative density gradient design, the adaptability of the BCC lattice structure in actual complex application scenarios is greatly enhanced, and the energy-absorbing properties of the lattice structure are greatly improved. Full article
Show Figures

Graphical abstract

19 pages, 2633 KiB  
Article
Influence of Mullite and Halloysite Reinforcement on the Ablation Properties of an Epoxy Composite
by Robert Szczepaniak, Michał Piątkiewicz, Dominik Gryc, Paweł Przybyłek, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Materials 2025, 18(15), 3530; https://doi.org/10.3390/ma18153530 - 28 Jul 2025
Viewed by 273
Abstract
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder [...] Read more.
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder additive. The composite samples were exposed to a mixture of combustible gases at a temperature of approximately 1000 °C. The primary parameters analyzed during this study were the temperature on the rear surface of the sample and the ablative mass loss of the tested material. The temperature increase on the rear surface of the sample, which was exposed to the hot stream of flammable gases, was measured for 120 s. Another key parameter considered in the data analysis was the ablative mass loss. The charred layer of the sample played a crucial role in this process, as it helped block oxygen diffusion from the boundary layer of the original material. This charred layer absorbed thermal energy until it reached a temperature at which it either oxidized or was mechanically removed due to the erosive effects of the heating factor. The incorporation of mullite reduced the rear surface temperature from 58.9 °C to 49.2 °C, and for halloysite, it was reduced the rear surface temperature to 49.8 °C. The ablative weight loss dropped from 57% to 18.9% for mullite and to 39.9% for halloysite. The speed of mass ablation was reduced from 77.9 mg/s to 25.2 mg/s (mullite) and 52.4 mg/s (halloysite), while the layer thickness loss decreased from 7.4 mm to 2.8 mm (mullite) and 4.4 mm (halloysite). This research is innovative in its use of halloysite and mullite as functional additives to enhance the ablative resistance of polymer composites under extreme thermal conditions. This novel approach not only contributes to a deeper understanding of composite behavior at high temperatures but also opens up new avenues for the development of advanced thermal protection systems. Potential applications of these materials include aerospace structures, fire-resistant components, and protective coatings in environments exposed to intense heat and flame. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

23 pages, 7095 KiB  
Article
Development of a Dual-Input Hybrid Wave–Current Ocean Energy System: Design, Fabrication, and Performance Evaluation
by Farooq Saeed, Tanvir M. Sayeed, Mohammed Abdul Hannan, Abdullah A. Baslamah, Aedh M. Alhassan, Turki K. Alarawi, Osama A. Alsaadi, Muhanad Y. Alharees and Sultan A. Alshehri
J. Mar. Sci. Eng. 2025, 13(8), 1435; https://doi.org/10.3390/jmse13081435 - 27 Jul 2025
Viewed by 429
Abstract
This study presents the design, fabrication, and performance assessment of a novel, small-scale (30–70 W), hybrid ocean energy system that captures energy from wave-induced heave motion using a point-absorber buoy and from ocean currents via a vertical axis water turbine (VAWT). Key innovations [...] Read more.
This study presents the design, fabrication, and performance assessment of a novel, small-scale (30–70 W), hybrid ocean energy system that captures energy from wave-induced heave motion using a point-absorber buoy and from ocean currents via a vertical axis water turbine (VAWT). Key innovations include a custom designed and built dual-rotor generator that accepts independent mechanical input from both subsystems without requiring complex mechanical coupling and a bi-directional mechanical motion rectifier with an overdrive. Numerical simulations using ANSYS AQWA (2024R2) and QBLADE(2.0.4) guided the design optimization of the buoy and turbine, respectively. Wave resource assessment for the Khobar coastline, Saudi Arabia, was conducted using both historical data and field measurements. The prototype was designed and built using readily available 3D-printed components, ensuring cost-effective construction. This mechanically simple system was tested in both laboratory and outdoor conditions. Results showed reliable operation and stable power generation under simultaneous wave and current input. The performance is comparable to that of existing hybrid ocean wave–current energy converters that employ more complex flywheel or dual degree-of-freedom systems. This work provides a validated pathway for low-cost, compact, and modular hybrid ocean energy systems suited for remote coastal applications or distributed marine sensing platforms. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

16 pages, 8118 KiB  
Article
The Influence of Long-Term Service on the Mechanical Properties and Energy Dissipation Capacity of Flexible Anti-Collision Rings
by Junhong Zhou, Jia Lu, Wei Jiang, Ang Li, Hancong Shao, Zixiao Huang, Fei Wang and Qiuwei Yang
Coatings 2025, 15(8), 880; https://doi.org/10.3390/coatings15080880 - 27 Jul 2025
Viewed by 287
Abstract
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image [...] Read more.
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image correlation (DIC) technology. The results show that: The mechanical response of the anti-collision ring shows significant asymmetric tension–compression, with the tensile peak force being 6.8 times that of compression. A modified Johnson–Cook model was developed to accurately characterize the tension–compression force–displacement behavior across varying strain rates (0.001–0.1 s−1). The DIC full-field strain analysis reveals that the clamping fixture significantly influences the tensile deformation mode of the anti-collision ring by constraining its inner wall movement, thereby altering strain distribution patterns. Despite exhibiting a corrosion gradient from severe underwater degradation to minimal surface weathering, all tested rings demonstrated consistent mechanical performance, verifying the robust protective capability of the rubber coating in marine service conditions. Full article
Show Figures

Figure 1

18 pages, 3257 KiB  
Article
Experimental Study on the Effects of Loading Rates on the Fracture Mechanical Characteristics of Coal Influenced by Long-Term Immersion in Mine Water
by Xiaobin Li, Gan Feng, Mingli Xiao, Guifeng Wang, Jing Bi, Chunyu Gao and Huaizhong Liu
Appl. Sci. 2025, 15(15), 8222; https://doi.org/10.3390/app15158222 - 24 Jul 2025
Viewed by 236
Abstract
Underground pumped storage hydropower stations (UPSH) are of great significance for energy structure adjustment, and coal mine underground reservoirs are an integral part of UPSH. This study investigates the fracture mechanics behavior of coal in mine water immersion environments with varying loading rates [...] Read more.
Underground pumped storage hydropower stations (UPSH) are of great significance for energy structure adjustment, and coal mine underground reservoirs are an integral part of UPSH. This study investigates the fracture mechanics behavior of coal in mine water immersion environments with varying loading rates and layer direction. Three types of samples were analyzed: Crack-arrester, Crack-splitter, and Crack-divider types. The immersion duration extended up to 120 days. The results indicate that, after immersion in mine water for 120 days, the fracture toughness (KIC), fracture modulus (ES), and absorbed energy (UT) of coal decreased by 60.87%, 53.38%, and 63.21%, respectively, compared to the unsaturated coal samples. An immersion period of 30 days significantly weakens the mechanical properties of coal fractures. The KIC, ES, and UT of coal demonstrate a positive correlation with loading rate, primarily influenced by the duration of coal damage. At the same loading rate, the order of fracture toughness among the three coal types is as follows: Crack-divider > Crack-arrester > Crack-splitter. This hierarchy is determined by the properties of the coal matrix and bedding planes, as well as the mechanical structures composed of them. This study holds significant implications for the safe construction and operational design of underground water reservoirs in coal mines. Full article
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 202
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 332
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

17 pages, 9414 KiB  
Article
Influence of High-Speed Flow on Aerodynamic Lift of Pantograph at 400 km/h
by Zhao Xu, Hongwei Zhang, Wen Wang and Guobin Lin
Infrastructures 2025, 10(7), 188; https://doi.org/10.3390/infrastructures10070188 - 17 Jul 2025
Viewed by 275
Abstract
This study examines pantograph aerodynamic lift at 400 km/h, and uncovers the dynamic behaviors and mechanisms that influence pantograph–catenary performance. Using computational fluid dynamics (CFD) with a compressible fluid model and an SST k-ω turbulence model, aerodynamic characteristics were analyzed. Simulation data at [...] Read more.
This study examines pantograph aerodynamic lift at 400 km/h, and uncovers the dynamic behaviors and mechanisms that influence pantograph–catenary performance. Using computational fluid dynamics (CFD) with a compressible fluid model and an SST k-ω turbulence model, aerodynamic characteristics were analyzed. Simulation data at 300, 350, and 400 km/h showed lift fluctuation amplitude increases with speed, peaking near 50 N at 400 km/h. Power spectral density (PSD) energy, dominated by low frequencies, peaked around 10 dB/Hz in the low-frequency band, highlighting exacerbated lift instability. Component analysis revealed the smallest lift-to-drag ratio and most significant fluctuations at the head, primarily due to boundary-layer separation and vortex shedding from its non-streamlined design. Turbulence energy analysis identified the head and base as main turbulence sources; however, base vibrations are absorbed by the vehicle body, while the head causes pantograph–catenary vibrations due to direct contact. These findings confirm that aerodynamic instability at the head is the main cause of contact force fluctuations. Optimizing head design is necessary to suppress fluctuations, ensuring safe operation at 400 km/h and above. Results provide a theoretical foundation for aerodynamic optimization and improved dynamic performance of high-speed pantographs. Full article
(This article belongs to the Special Issue The Resilience of Railway Networks: Enhancing Safety and Robustness)
Show Figures

Figure 1

16 pages, 2819 KiB  
Article
High-Strain-Rate Deformation Behavior and Damage Mechanisms of Ti/Al Interpenetrating Phase Composites
by Zhou Li, Zhongli Zhang, Jiahao Tian, Junhao Li, Shiqi Xia, Libo Zhou and Long Yu
Processes 2025, 13(7), 2234; https://doi.org/10.3390/pr13072234 - 12 Jul 2025
Viewed by 391
Abstract
Interpenetrating phase composites (IPCs) have demonstrated tremendous potential across various fields, particularly those based on triply periodic minimal surface (TPMS) structures, whose uniquely interwoven lattice architectures have attracted widespread attention. However, current research on the dynamic mechanical properties of such IPC remains limited, [...] Read more.
Interpenetrating phase composites (IPCs) have demonstrated tremendous potential across various fields, particularly those based on triply periodic minimal surface (TPMS) structures, whose uniquely interwoven lattice architectures have attracted widespread attention. However, current research on the dynamic mechanical properties of such IPC remains limited, and their impact resistance and damage mechanisms are yet to be thoroughly understood. In this study, a novel design of two volume fractions of IPCs based on the TPMS IWP configuration is developed using Python-based parametric modeling, with the Ti6Al4V alloy TPMS scaffolds fabricated via selective laser melting (SLM) and the AlSi12 reinforcing phase through infiltration casting. The influence of Ti alloy volume fraction and strain rate on the dynamic mechanical behavior of the Ti/Al IPC is systematically investigated using a split Hopkinson pressure bar (SHPB) experimental setup. Microscopic characterization validates the effectiveness and reliability of the proposed IPC fabrication method. Results show that the increasing Ti alloy volume fraction significantly affects the dynamic mechanical properties of the IPC, and IPCs with different Ti alloy volume fractions exhibit contrasting mechanical behaviors under increasing strain rates, attributed to the dominance of different constituent phases. This study enhances the understanding of the dynamic behavior of TPMS-based IPCs and offers a promising route for the development of high-performance energy-absorbing materials. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

14 pages, 2812 KiB  
Perspective
The Generation of Wind Velocity via Scale Invariant Gibbs Free Energy: Turbulence Drives the General Circulation
by Adrian F. Tuck
Entropy 2025, 27(7), 740; https://doi.org/10.3390/e27070740 - 10 Jul 2025
Viewed by 288
Abstract
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after [...] Read more.
The mechanism for the upscale deposition of energy into the atmosphere from molecules and photons up to organized wind systems is examined. This analysis rests on the statistical multifractal analysis of airborne observations. The results show that the persistence of molecular velocity after collision in breaking the continuous translational symmetry of an equilibrated gas is causative. The symmetry breaking may be caused by excited photofragments with the associated persistence of molecular velocity after collision, interaction with condensed phase surfaces (solid or liquid), or, in a scaling environment, an adjacent scale having a different velocity and temperature. The relationship of these factors for the solution to the Navier–Stokes equation in an atmospheric context is considered. The scale invariant version of Gibbs free energy, carried by the most energetic molecules, enables the acceleration of organized flow (winds) from the smallest planetary scales by virtue of the nonlinearity of the mechanism, subject to dissipation by the more numerous average molecules maintaining an operational temperature via infrared radiation to the cold sink of space. The fastest moving molecules also affect the transfer of infrared radiation because their higher kinetic energy and the associated more-energetic collisions contribute more to the far wings of the spectral lines, where the collisional displacement from the central energy level gap is greatest and the lines are less self-absorbed. The relationship of events at these scales to macroscopic variables such as the thermal wind equation and its components will be considered in the Discussion section. An attempt is made to synthesize the mechanisms by which winds are generated and sustained, on all scales, by appealing to published works since 2003. This synthesis produces a view of the general circulation that includes thermodynamics and the defining role of turbulence in driving it. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

16 pages, 4848 KiB  
Article
A Novel Hierarchical Multi-Stable Cylindrical Structure with Superior Energy Trapping
by Yu Wang, Maosheng Huang, Qiang Tao, Xiaoyu Chen, Jirong Wang and Qingxiang Ji
Appl. Sci. 2025, 15(14), 7748; https://doi.org/10.3390/app15147748 - 10 Jul 2025
Viewed by 212
Abstract
Multi-stable mechanical metamaterials based on the snap-through behavior of cosine beams have been shown to have significant potential in the field of capacity absorption due to their advantages such as reusability and structural simplicity. However, traditional multi-stable metamaterials have exhibited limitations in both [...] Read more.
Multi-stable mechanical metamaterials based on the snap-through behavior of cosine beams have been shown to have significant potential in the field of capacity absorption due to their advantages such as reusability and structural simplicity. However, traditional multi-stable metamaterials have exhibited limitations in both energy absorption and trapping ability. Inspired by the bionic multilevel structure, a novel hierarchical multi-stable cylindrical structure (HMCS) based on cosine curved beams is proposed. We investigated the snap-through behaviors and energy absorption capacity of the HMCS. Both finite element simulation results and experimental results show that the hierarchical multi-stable structure exhibits excellent specific energy absorption and energy trapping capabilities compared to traditional multi-stable cylindrical structures (TMCSs). Furthermore, by analyzing the effect of height h and thickness t on the snap-through behavior of the structure, the key parameters determining the mono-stable or bi-stable response are identified. In addition, a gradient-based study of the structure reveals the dominant role of stiffness in the snap-through behavior of multilayer structures. This work provides insights into the application of multi-stable cylindrical structures in energy trapping and absorption and offers a new strategy for designing high-efficiency energy-absorbing metamaterials. Full article
Show Figures

Figure 1

28 pages, 7820 KiB  
Review
Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review
by Khishigdorj Davaasambuu, Yu Dong, Alokesh Pramanik and Animesh Kumar Basak
J. Compos. Sci. 2025, 9(7), 359; https://doi.org/10.3390/jcs9070359 - 10 Jul 2025
Viewed by 864
Abstract
Conventional adhesively bonded joints, such as single-lap, curved-lap, wavy-lap, double-lap, stepped-lap, and scarf joints, are widely used for aerospace, automotive, and medical applications. These adhesively bonded joints exhibit different load transfer mechanisms and stress distributions within adhesive layers, which depend primarily on their [...] Read more.
Conventional adhesively bonded joints, such as single-lap, curved-lap, wavy-lap, double-lap, stepped-lap, and scarf joints, are widely used for aerospace, automotive, and medical applications. These adhesively bonded joints exhibit different load transfer mechanisms and stress distributions within adhesive layers, which depend primarily on their geometries and mechanical properties of bonded materials. As such, joint geometry and material properties play a critical role in determining the capability of the joints to withstand high loads, resist fatigue, and absorb energy under impact loading. This paper investigates the effects of geometry and material dissimilarity on the performance of both conventional bonded and interlocking joints under tensile loading based on the information available in the literature. In addition, bonding and load transfer mechanisms were analysed in detail. It was found that stress concentration often occurs at free edges of the adhesive layer due to geometric discontinuities, while most of the load is carried by these regions rather than its centre. Sharp corners further intensify resulting stresses, thereby increasing the risk of joint failure. Adhesives typically resist shear loads better than peel loads, and stiffness mismatches between adherents induce an asymmetric stress distribution. Nonetheless, similar materials promote symmetric load sharing. Among conventional joints, scarf joints provide the most uniform load distribution. In interlocking joints such as dovetail, T-slot, gooseneck, and elliptical types, the outward bending of the female component under tension can lead to mechanical failure. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

19 pages, 3941 KiB  
Article
Efficient Energy Transfer Down-Shifting Material for Dye-Sensitized Solar Cells
by Emeka Harrison Onah, N. L. Lethole and P. Mukumba
Materials 2025, 18(14), 3213; https://doi.org/10.3390/ma18143213 - 8 Jul 2025
Viewed by 278
Abstract
Dye-sensitized solar cells (DSSCs) are promising alternatives for power generation due to their environmental friendliness, cost effectiveness, and strong performance under diffused light. Conversely, their low spectral response in the ultraviolet (UV) region significantly obliterates their overall performance. The so-called luminescent down-shifting (LDS) [...] Read more.
Dye-sensitized solar cells (DSSCs) are promising alternatives for power generation due to their environmental friendliness, cost effectiveness, and strong performance under diffused light. Conversely, their low spectral response in the ultraviolet (UV) region significantly obliterates their overall performance. The so-called luminescent down-shifting (LDS) presents a practical solution by converting high-energy UV photons into visible light that can be efficiently absorbed by sensitizer dyes. Herein, a conventional solid-state technique was applied for the synthesis of an LDS, europium (II)-doped barium orthosilicate (BaSiO3:Eu2+) material. The material exhibited strong UV absorption, with prominent peaks near 400 nm and within the 200–300 nm range, despite a weaker response in the visible region. The estimated optical bandgap was 3.47 eV, making it well-suited for UV absorbers. Analysis of the energy transfer mechanism from the LDS material to the N719 dye sensitizer depicted a strong spectral overlap of 2×1010M1cm1nm4, suggesting efficient energy transfer from the donor to the acceptor. The estimated Förster distance was approximately 6.83 nm, which matches the absorption profile of the dye-sensitizer. Our findings demonstrate the potential of BaSiO3:Eu2+ as an effective LDS material for enhancing UV light absorption and improving DSSC performance through increased spectral utilization and reduced UV-induced degradation. Full article
(This article belongs to the Special Issue Advanced Luminescent Materials and Applications)
Show Figures

Figure 1

Back to TopTop