Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review
Abstract
1. Introduction
2. Adhesive Bonding
3. Geometry and Material Dissimilarity Effects on Adhesive Bonded Joints
3.1. Single-Lap Joint (SLJ)
3.2. Curved Single-Lap Joint
3.3. Wavy-Lap Joint
3.4. Stepped-Lap Joint
3.5. Double-Lap Joint (DLJ)
3.6. Scarf Joint
4. Geometrical Effects on Interlocking Joints
4.1. T-Slot Joint
4.2. Dovetail Joint
4.3. Dovetail-Adapted Joint
4.4. Ellipse Joint
5. Discussion
5.1. Stress Distribution and Failure Mechanisms in Bonded Joints
5.2. Interlocking Joints: Strengths and Limitations
6. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pramanik, A.; Basak, A.K.; Dong, Y.; Sarker, P.K.; Uddin, M.S.; Littlefair, G.; Dixit, A.R.; Chattopadhyaya, S. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys—A review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 1–29. [Google Scholar] [CrossRef]
- Pramanik, A.; Garg, D.; Basak, A.K.; Prakash, C.; Shankar, S.; Chattopadhyaya, S. Tensile Behaviour of Steel Joints Implemented by Bolts and Adhesive. Arch. Adv. Eng. Sci. 2025, 1–8. [Google Scholar] [CrossRef]
- Kanani, A.Y.; Hou, X.; Laidlaw, R.; Ye, J. The effect of joint configuration on the strength and stress distributions of dissimilar adhesively bonded joints. Eng. Struct. 2021, 226, 111322. [Google Scholar] [CrossRef]
- Szallies, K.; Bielenin, M.; Schricker, K.; Bergmann, J.P.; Neudel, C. Single-side resistance spot joining of polymer-metal hybrid structures. Weld. World 2019, 63, 1145–1152. [Google Scholar] [CrossRef]
- Nagatsuka, K.; Xiao, B.; Wu, L.; Natata, K.; Saeki, S.; Kitamoto, Y.; Iwamoto, Y. Dissimilar materials joining of metal/carbon fibre reinforced plastic by resistance spot welding. Weld. Int. 2018, 32, 505–512. [Google Scholar] [CrossRef]
- Schricker, K.; Bergmann, J.P.; Hopfeld, M.; Spieß, L. Effect of thermoplastic morphology on mechanical properties in laser-assisted joining of polyamide 6 with aluminum. Weld. World 2021, 65, 699–711. [Google Scholar] [CrossRef]
- Jiao, J.; Xu, J.; Jing, C.; Sheng, L.; Ru, H.; Xia, H. Laser welding process and strength enhancement of carbon fiber reinforced thermoplastic composites and metals dissimilar joint: A review. Chin. J. Aeronaut. 2023, 36, 13–31. [Google Scholar] [CrossRef]
- Li, T.; Bi, X.; Li, R. A strategy for bonding immiscible Mg/steel by laser-TIG butt fusion welding and lattice distortion on the Fe/Mg interface matching. Mater. Des. 2022, 219, 110763. [Google Scholar] [CrossRef]
- Yang, J.; Oliveira, J.; Li, Y.; Tan, C.; Gao, C.; Zhao, Y.; Yu, Z. Laser techniques for dissimilar joining of aluminum alloys to steels: A critical review. J. Mater. Process. Technol. 2022, 301, 117443. [Google Scholar] [CrossRef]
- Bose, S.; Chelladurai, H.; Ponappa, K. A review on recent developments in ultrasonic welding of polymers and polymeric composites. Weld. World 2024, 68, 1881–1903. [Google Scholar] [CrossRef]
- Fan, Z.; Bai, K.; Chen, C. The application of ultrasound in Joining: Principles, processes and properties. J. Manuf. Process. 2023, 101, 269–299. [Google Scholar] [CrossRef]
- Liu, J.; Wu, B.; Wang, Z.; Li, C.; Chen, G.; Miao, Y. Microstructure and mechanical properties of aluminum-steel dissimilar metal welded using arc and friction stir hybrid welding. Mater. Des. 2023, 225, 111520. [Google Scholar] [CrossRef]
- Cooke, K.O.; Atieh, A.M. Current trends in dissimilar diffusion bonding of titanium alloys to stainless steels, aluminium and magnesium. J. Manuf. Mater. Process. 2020, 4, 39. [Google Scholar] [CrossRef]
- Basak, A.K.; Pramanik, A.; Shankar, S.; Mohanraj, T.; Prakash, C. Effect of support and adhesive tape to reduce delamination of carbon fiber reinforced polymer during drilling. Prog. Compos. Mater. 2025, 1, 5. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Lou, M.; Zhao, H.; Li, Y. Flow drill screw (FDS) technique: A state-of-the-art review. J. Manuf. Process. 2023, 103, 23–52. [Google Scholar] [CrossRef]
- Yousefi Kanani, A.; Green, S.; Hou, X.; Ye, J. Hybrid and adhesively bonded joints with dissimilar adherends: A critical review. J. Adhes. Sci. Technol. 2021, 35, 1821–1859. [Google Scholar] [CrossRef]
- Machado, J.; Nunes, P.; Marques, E.; da Silva, L.F. Numerical study of similar and dissimilar single lap joints under quasi-static and impact conditions. Int. J. Adhes. Adhes. 2020, 96, 102501. [Google Scholar] [CrossRef]
- Burhan, M.; Ullah, Z.; Kazancı, Z.; Catalanotti, G. A critical review on free edge delamination fracture criteria. Mech. Adv. Mater. Struct. 2024, 31, 13542–13555. [Google Scholar] [CrossRef]
- Basak, A.K.; Bajwa, D.S.; Pramanik, A. Fatigue Behaviour of Mechanical Joints: A Review. Metals 2024, 15, 25. [Google Scholar] [CrossRef]
- Machado, J.; Marques, E.; da Silva, L.F. Adhesives and adhesive joints under impact loadings: An overview. J. Adhes. 2018, 94, 421–452. [Google Scholar] [CrossRef]
- Maggiore, S.; Banea, M.D.; Stagnaro, P.; Luciano, G. A review of structural adhesive joints in hybrid joining processes. Polymers 2021, 13, 3961. [Google Scholar] [CrossRef] [PubMed]
- Bego, M.; Lobaš Kukavičić, I.; Martinović, S.; Puljas, V. Historical Application of Dovetail Corner Joints with Practical Example. Drv. Ind. 2025, 76, 99–111. [Google Scholar] [CrossRef]
- Ding, Y.; Abdullah, A.M.; Dunn, M.; Yu, K. Design of interfaces to promote the bonding strength between dissimilar materials. J. Manuf. Process. 2022, 76, 786–795. [Google Scholar] [CrossRef]
- Lin, E.; Li, Y.; Ortiz, C.; Boyce, M.C. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior. J. Mech. Phys. Solids 2014, 73, 166–182. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, C.; Sun, S.-Y.; Zhao, Z.-L.; Feng, X.-Q.; Yang, J.; Gao, H. Mechanics of elliptical interlocking sutures in biological interfaces. Acta Biomater. 2025, 192, 90–100. [Google Scholar] [CrossRef]
- Mirkhalaf, M.; Dastjerdi, A.K.; Barthelat, F. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat. Commun. 2014, 5, 3166. [Google Scholar] [CrossRef]
- Cordisco, F.A.; Zavattieri, P.D.; Hector, L.G., Jr.; Carlson, B.E. Mode I fracture along adhesively bonded sinusoidal interfaces. Int. J. Solids Struct. 2016, 83, 45–64. [Google Scholar] [CrossRef]
- Marchione, F. Structural Adhesive Joints: State of the Art, Challenges, and Future Perspectives. Int. J. Eng. Trans. C Asp. 2025, 38, 2018–2025. [Google Scholar] [CrossRef]
- Ishida, H. A review of recent progress in the studies of molecular and microstructure of coupling agents and their functions in composites, coatings and adhesive joints. Polym. Compos. 1984, 5, 101–123. [Google Scholar] [CrossRef]
- Kupski, J.; De Freitas, S.T. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures. Compos. Struct. 2021, 268, 113923. [Google Scholar] [CrossRef]
- Naat, N.; Boutar, Y.; Naïmi, S.; Mezlini, S.; Da Silva, L.F.M. Effect of surface texture on the mechanical performance of bonded joints: A review. J. Adhes. 2023, 99, 166–258. [Google Scholar] [CrossRef]
- Demir, K.; Bayramoglu, S.; Akpinar, S. The fracture load analysis of different support patches in adhesively bonded single-lap joints. Theor. Appl. Fract. Mech. 2020, 108, 102653. [Google Scholar] [CrossRef]
- Marchione, F. Stress distribution in double-lap adhesive joints: Effect of adherend reinforcement layer. Int. J. Adhes. Adhes. 2021, 105, 102780. [Google Scholar] [CrossRef]
- Alves, D.; Campilho, R.; Moreira, R.; Silva, F.; Da Silva, L. Experimental and numerical analysis of hybrid adhesively-bonded scarf joints. Int. J. Adhes. Adhes. 2018, 83, 87–95. [Google Scholar] [CrossRef]
- Nosouhi, F.; Farahani, M.; Ansari, M. Experimental and numerical study on the composite adhesive joint reinforcement using wavy edge. J. Adhes. Sci. Technol. 2018, 32, 1007–1017. [Google Scholar] [CrossRef]
- Brito, R.F.N.; Campilho, R.D.S.G.; Moreira, R.D.F.; Sánchez-Arce, I.J.; Silva, F.J.G. Composite stepped-lap adhesive joint analysis by cohesive zone modelling. Procedia Struct. Integr. 2021, 33, 665–672. [Google Scholar] [CrossRef]
- Han, S.; Guang, X.; Li, Z.; Li, Y. Joining processes of CFRP-Al sheets in automobile lightweighting technologies: A review. Polym. Compos. 2022, 43, 8622–8633. [Google Scholar] [CrossRef]
- Ravichandran, B.; Balasubramanian, M. Joining methods for Fiber Reinforced Polymer (FRP) composites—A critical review. Compos. Part A Appl. Sci. Manuf. 2024, 186, 108394. [Google Scholar] [CrossRef]
- Singh, Y.; Kumar, J.; Singh, I.; Rakesh, P.K. Joining behavior of natural fiber reinforced polymer composites. In Joining Processes for Dissimilar and Advanced Materials; Rakesh, P., Paulo Davim, J., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 33–63. [Google Scholar]
- Lee, L.-H. Adhesive Bonding; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Horiuchi, S.; Terasaki, N.; Miyamae, T. Interfacial Phenomena in Adhesion and Adhesive Bonding; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Ebnesajjad, S.; Landrock, A.H. Adhesive applications and bonding processes. In Adhesives Technology Handbook; William Andrew Publishing: Boston, MA, USA, 2015; pp. 206–234. [Google Scholar] [CrossRef]
- Ebnesajjad, S.; Landrock, A.H. (Eds.) Introduction and Adhesion Theories. In Adhesives Technology Handbook, 3rd ed.; William Andrew Publishing: Boston, MA, USA, 2015; pp. 1–18. [Google Scholar] [CrossRef]
- Falsafi, A. The science and mechanics of adhesion: An industrial view. Dent. Mater. 2023, 39, 682–685. [Google Scholar] [CrossRef]
- Adams, R.D. Adhesive Bonding: Science, Technology and Applications; Woodhead Publishing: Sawston, UK, 2021. [Google Scholar]
- Omar, H.A.; Yusoff, N.I.M.; Mubaraki, M.; Ceylan, H. Effects of moisture damage on asphalt mixtures. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 600–628. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, W.; Li, B.; Zhu, J.; Wang, C.; Song, G.; Wu, G.; Yang, X.; Huang, Y.; Ma, L. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos. Part B Eng. 2022, 233, 109639. [Google Scholar] [CrossRef]
- Park, S.-J.; Seo, M.-K. Solid-solid interfaces. Interface Sci. Technol. 2011, 18, 253–331. [Google Scholar]
- Nugroho, W.T.; Dong, Y.; Pramanik, A. Mechanical and Shape Memory Properties of Additively Manufactured Polyurethane (PU)/Halloysite Nanotube (HNT) Nanocomposites. Nanomaterials 2024, 14, 1373. [Google Scholar] [CrossRef]
- Aziz, T.; Ullah, A.; Fan, H.; Jamil, M.I.; Khan, F.U.; Ullah, R.; Iqbal, M.; Ali, A.; Ullah, B. Recent progress in silane coupling agent with its emerging applications. J. Polym. Environ. 2021, 29, 3427–3443. [Google Scholar] [CrossRef]
- Sundriyal, P.; Pandey, M.; Bhattacharya, S. Plasma-assisted surface alteration of industrial polymers for improved adhesive bonding. Int. J. Adhes. Adhes. 2020, 101, 102626. [Google Scholar] [CrossRef]
- Petrie, E.M. Adhesive bonding of textiles: Principles, types of adhesive and methods of use. In Joining Textiles; Jones, I., Stylios, G.K., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 225–274. [Google Scholar] [CrossRef]
- Young, T. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Xie, M.; Zhan, L.; Ma, B.; Hui, S. Classification of fiber metal laminates (FMLs), adhesion theories and methods for improving interfacial adhesion: A review. Thin-Walled Struct. 2024, 198, 111744. [Google Scholar] [CrossRef]
- Fourche, G. An overview of the basic aspects of polymer adhesion. Part I: Fundamentals. Polym. Eng. Sci. 1995, 35, 957–967. [Google Scholar] [CrossRef]
- Liu, Y. Fatigue Debonding Behaviour in Composite Joints: Experimental and Numerical Investigations. Ph.D. Thesis, Coventry University, Coventry, UK, 2019. Available online: https://pureportal.coventry.ac.uk/en/studentTheses/fatigue-debonding-behaviour-in-composite-joints-experimental-and- (accessed on 9 July 2025).
- Cognard, J.Y. Numerical analysis of edge effects in adhesively-bonded assemblies application to the determination of the adhesive behaviour. Comput. Struct. 2008, 86, 1704–1717. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, J.; Bai, Y.; Cheng, Z.; Wang, Y.; Zhao, Q.; Liang, D. Effect of adhesive layer properties on the shear strength of single-lap structures of dissimilar materials based on the cohesive zone model. J. Mech. Sci. Technol. 2021, 35, 133–143. [Google Scholar] [CrossRef]
- Akhavan-Safar, A.; Ramezani, F.; Delzendehrooy, F.; Ayatollahi, M.; Da Silva, L. A review on bi-adhesive joints: Benefits and challenges. Int. J. Adhes. Adhes. 2022, 114, 103098. [Google Scholar] [CrossRef]
- de Queiroz, H.F.; Banea, M.D. Methods to increase the mechanical performance of composite adhesive joints: An overview with focus on joints with natural fibre composite adherends. J. Compos. Mater. 2022, 56, 3993–4010. [Google Scholar] [CrossRef]
- Kanani, A.Y.; Liu, Y.; Hughes, D.J.; Ye, J.; Hou, X. Fracture mechanisms of hybrid adhesive bonded joints: Effects of the stiffness of constituents. Int. J. Adhes. Adhes. 2020, 102, 102649. [Google Scholar] [CrossRef]
- Ribeiro, T.; Campilho, R.; da Silva, L.F.; Goglio, L. Damage analysis of composite–aluminium adhesively-bonded single-lap joints. Compos. Struct. 2016, 136, 25–33. [Google Scholar] [CrossRef]
- Jiang, W.; Qiao, P. An improved four-parameter model with consideration of Poisson’s effect on stress analysis of adhesive joints. Eng. Struct. 2015, 88, 203–215. [Google Scholar] [CrossRef]
- Zou, T.; Fu, J.; Qin, J.; Li, L.; Liu, Z. Failure analysis of composite-to-titanium single lap adhesive joints subjected to tensile loading. Eng. Fail. Anal. 2021, 129, 105734. [Google Scholar] [CrossRef]
- Peres, L.M.C.; Arnaud, M.F.T.D.; Silva, A.F.M.V.; Campilho, R.D.S.G.; Machado, J.J.M.; Marques, E.A.S.; dos Reis, M.Q.; Da Silva, L.F.M. Geometry and adhesive optimization of single-lap adhesive joints under impact. J. Adhes. 2022, 98, 677–703. [Google Scholar] [CrossRef]
- Akpinar, S.; Hacısalihoglu, İ.; Çalık, A. The effect of geometry on joint strength in adhesively bonded joints with the same adhesive area. Mech. Adv. Mater. Struct. 2024, 31, 2635–2647. [Google Scholar] [CrossRef]
- Stuparu, F.A.; Apostol, D.A.; Constantinescu, D.M.; Picu, C.R.; Sandu, M.; Sorohan, S. Local evaluation of adhesive failure in similar and dissimilar single-lap joints. Eng. Fract. Mech. 2017, 183, 39–52. [Google Scholar] [CrossRef]
- Ghanem, A.; Lang, Y. Introduction to Polymer Adhesion. 2017. Available online: https://www.researchgate.net/publication/387340948_Participation_of_Polymer_Materials_in_the_Structure_of_Piezoelectric_Composites (accessed on 9 July 2025).
- Rhee, K.; Lee, S.; Choi, N.; Park, S. Treatment of CFRP by IAR method and its effect on the fracture behavior of adhesive bonded CFRP/aluminum composites. Mater. Sci. Eng. A 2003, 357, 270–276. [Google Scholar] [CrossRef]
- Parida, S.K.; Murmu, A.M.; Hari, V.; Ayar, V.S.; Das, R. 3D FE adhesion failure analyses of adhesive bonded single lap joint made with functionally modulus graded curved adherends. Int. J. Interact. Des. Manuf. 2024, 19, 4103–4112. [Google Scholar] [CrossRef]
- Temiz, S.; Akpinar, S.; Aydin, M.D.; Sancaktar, E. Increasing single-lap joint strength by adherend curvature-induced residual stresses. J. Adhes. Sci. Technol. 2013, 27, 244–251. [Google Scholar] [CrossRef]
- Pires, V.D.C.; Ribeiro, F.C.C.; Carbas, R.J.C.; Marques, E.A.S.; da Silva, L.F.M. The reduction of stress concentrations in adhesive joints with the use of curved aluminum adherends. Mech. Adv. Mater. Struct. 2024, 31, 10962–10973. [Google Scholar] [CrossRef]
- Liu, Y.; Lemanski, S.; Zhang, X. Parametric study of size, curvature and free edge effects on the predicted strength of bonded composite joints. Compos. Struct. 2018, 202, 364–373. [Google Scholar] [CrossRef]
- Correia, J.; Campilho, R.; Rocha, R.; Liu, Y.; Ramalho, L. Parametric study of composite curved adhesive joints. Int. J. Adv. Manuf. Technol. 2020, 111, 2957–2970. [Google Scholar] [CrossRef]
- Fessel, G.; Broughton, J.; Fellows, N.; Durodola, J.; Hutchinson, A. A numerical and experimental study on reverse-bent joints for composite substrates. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007; p. 2192. [Google Scholar]
- Campilho, R.; Pinto, A.; Banea, M.D.; Silva, R.; da Silva, L.F. Strength improvement of adhesively-bonded joints using a reverse-bent geometry. J. Adhes. Sci. Technol. 2011, 25, 2351–2368. [Google Scholar] [CrossRef]
- Zeng, Q.; Sun, C. Fatigue performance of a bonded wavy composite lap joint. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 413–422. [Google Scholar] [CrossRef]
- Avila, A.F.; Bueno, P.d.O. Stress analysis on a wavy-lap bonded joint for composites. Int. J. Adhes. Adhes. 2004, 24, 407–414. [Google Scholar] [CrossRef]
- Ayatollahi, M.; Samari, M.; Razavi, N.; Da Silva, L. Fatigue performance of adhesively bonded single lap joints with non-flat sinusoid interfaces. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1355–1363. [Google Scholar] [CrossRef]
- Demiral, M.; Kadioglu, F. Damage Characteristics of a Step Lap Joint Exposed to Flexural Loading for Its Different Configurations. Polymers 2023, 15, 2458. [Google Scholar] [CrossRef]
- Demiral, M.; Mamedov, A. Fatigue Performance of a Step-Lap Joint under Tensile Load: A Numerical Study. Polymers 2023, 15, 1949. [Google Scholar] [CrossRef] [PubMed]
- Gavgali, E.; Sahin, R.; Akpinar, S. An investigation of the fatigue performance of adhesively bonded step-lap joints: An experimental and numerical analysis. Int. J. Adhes. Adhes. 2021, 104, 102736. [Google Scholar] [CrossRef]
- Ekladious, A.; Wang, J.; Chowdhury, N.; Chiu, W.K. Mechanical performance of hybrid double- and step-lap joints in primary metallic aircraft structures: An experimental and numerical approach. Compos. Part C Open Access 2025, 16, 100554. [Google Scholar] [CrossRef]
- Bayramoglu, S.; Akpinar, S.; Çalik, A. Numerical analysis of elasto-plastic adhesively single step lap joints with cohesive zone models and its experimental verification. J. Mech. Sci. Technol. 2021, 35, 641–649. [Google Scholar] [CrossRef]
- Sonwani, H.; Ramji, M.; Sidhardh, S. An energy-based analytical model for adhesively bonded stepped and simple-lap joined CFRP laminates. Int. J. Fract. 2024, 247, 225–252. [Google Scholar] [CrossRef]
- Sawa, T.; Ichikawa, K.; Shin, Y.; Kobayashi, T. A three-dimensional finite element stress analysis and strength prediction of stepped-lap adhesive joints of dissimilar adherends subjected to bending moments. Int. J. Adhes. Adhes. 2010, 30, 298–305. [Google Scholar] [CrossRef]
- Biscaia, H.C.; Micaelo, R.; Cornetti, P.; Almeida, R. Numerical bond assessment of carbon-epoxy stepped-lap joints. Eng. Fract. Mech. 2023, 289, 109413. [Google Scholar] [CrossRef]
- Carvalho, D.F.T.; Campilho, R.; Vargas, A.S.; Moreira, R.D.F.; Madani, K. Parametric cohesive zone analysis of bi-adhesive single-step joints. SN Appl. Sci. 2023, 5, 377. [Google Scholar] [CrossRef]
- Akpinar, S. The strength of the adhesively bonded step-lap joints for different step numbers. Compos. Part B Eng. 2014, 67, 170–178. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Soltani, P.; Reinicke, T. Effects of steps on the load bearing capacity of 3D-printed single lap joints. J. Mater. Res. Technol. 2023, 23, 1834–1847. [Google Scholar] [CrossRef]
- Shin, K.C.; Lee, J.J. Bond parameters to improve tensile load bearing capacities of co-cured single and double lap joints with steel and carbon fiber-epoxy composite adherends. J. Compos. Mater. 2003, 37, 401–420. [Google Scholar] [CrossRef]
- Kinloch, A.J. Adhesion and Adhesives: Science and Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Tsai, M.; Oplinger, D.; Morton, J. Improved theoretical solutions for adhesive lap joints. Int. J. Solids Struct. 1998, 35, 1163–1185. [Google Scholar] [CrossRef]
- Volkersen, O. Die Nietkraftverteilung in zugbeanspruchten Nietverbindungen mit konstanten Laschenquerschnitten. Luftfahrtfor Schung 1938, 15, 41–47. [Google Scholar]
- Santos, T.F.; Campilho, R.D.S.G. Numerical modelling of adhesively-bonded double-lap joints by the eXtended Finite Element Method. Finite Elem. Anal. Des. 2017, 133, 1–9. [Google Scholar] [CrossRef]
- Gonçalves, D.C.; Sánchez-Arce, I.J.; Ramalho, L.D.; Campilho, R.D.; Belinha, J. Introductory application of a natural neighbour meshless elastic formulation to double-lap adhesive joints. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 55. [Google Scholar] [CrossRef]
- Amidi, S.; Wang, J. An analytical model for interfacial stresses in double-lap bonded joints. J. Adhes. 2019, 95, 1031–1055. [Google Scholar] [CrossRef]
- Kurennov, S.; Barakhov, K.; Poliakov, O. An improved analytical model for interfacial stresses in double-lap bonded joints. AIP Conf. Proc. 2023, 2840, 030004. [Google Scholar]
- Liu, P.F.; Liu, J.W. Finite element analysis of competitive damage mechanisms of composite scarf adhesive joints by considering thickness effect. Theor. Appl. Fract. Mech. 2022, 119, 103347. [Google Scholar] [CrossRef]
- Oshima, S.; Kobayashi, S. Experimental and numerical investigation of mesoscopic damage accumulation in adhesively bonded composite scarf joints. Compos. Part A Appl. Sci. Manuf. 2024, 179, 108036. [Google Scholar] [CrossRef]
- Kim, G.; Kulkarni, S.; Lee, H.; Denos, B. Step and scarf joint elastic and failure behavior comparison under tensile and flexural loading. J. Reinf. Plast. Compos. 2023, 44, 36–44. [Google Scholar] [CrossRef]
- Ghazali, E.; Dano, M.-L.; Gakwaya, A.; Amyot, C.-O. Experimental and numerical studies of stepped-scarf circular repairs in composite sandwich panels. Int. J. Adhes. Adhes. 2018, 82, 41–49. [Google Scholar] [CrossRef]
- Pipes, R.; Adkins, D. Strength and Mechanics of Bonded Scarf Joints for Repair of Composite Materials; Contract Report; 1982. Available online: https://ntrs.nasa.gov/citations/19830007088 (accessed on 9 July 2025).
- Marques, T.P.Z.; Mayer, S.; Cândido, G.M.; Rezende, M.C. Fractographic analysis of scarf repaired carbon/epoxy laminates submitted to tensile strength. Eng. Fail. Anal. 2021, 124, 105374. [Google Scholar] [CrossRef]
- Rasane, A.; Kumar, P.; Khond, M. Optimizing the size of a CFRP patch to repair a crack in a thin sheet. J. Adhes. 2017, 93, 1064–1080. [Google Scholar] [CrossRef]
- Pitanga, M.Y.; Cioffi, M.O.H.; Voorwald, H.J.C.; Wang, C.H. Reducing repair dimension with variable scarf angles. Int. J. Adhes. Adhes. 2021, 104, 102752. [Google Scholar] [CrossRef]
- Wu, C.; Chen, C.; He, L.; Yan, W. Comparison on damage tolerance of scarf and stepped-lap bonded composite joints under quasi-static loading. Compos. Part B Eng. 2018, 155, 19–30. [Google Scholar] [CrossRef]
- Damghani, M.; Bolanos, S.; Chahar, A.; Matthews, J.; Atkinson, G.A.; Murphy, A.; Edwards, T. Design, novel quality check and experimental test of an original variable length stepped scarf repair scheme. Compos. Part B Eng. 2022, 230, 109542. [Google Scholar] [CrossRef]
- Pierce, R.S.; Falzon, B.G. Modelling the size and strength benefits of optimised step/scarf joints and repairs in composite structures. Compos. Part B Eng. 2019, 173, 107020. [Google Scholar] [CrossRef]
- Psarras, S.; Giannoutsou, M.-P.; Kostopoulos, V. A Design Optimization Study of Step/Scarf Composite Panel Repairs, Targeting the Maximum Strength and the Minimization of Material Removal. J. Compos. Sci. 2024, 8, 248. [Google Scholar] [CrossRef]
- Ren, H.; Wang, D.; Liu, G.; Rosen, D.W.; Xiong, Y. Concurrent optimization of structural topology and toolpath for additive manufacturing of continuous fiber-reinforced polymer composites. Comput. Methods Appl. Mech. Eng. 2024, 430, 117227. [Google Scholar] [CrossRef]
- Shen, Z.; Huang, Z.; Wang, J.; Zheng, L.; Qian, H.; Zhu, Q. Investigation of fretting fatigue performance for IN718 dovetail joint in very high cycle regime. Int. J. Fatigue 2025, 195, 108874. [Google Scholar] [CrossRef]
- Guo, K.; Yuan, H. Nonlocal fretting fatigue assessment for dovetail joints. Int. J. Fatigue 2024, 185, 108337. [Google Scholar] [CrossRef]
- Qin, Y.; Xiong, C.; Zhu, X.; Yin, J.; Zhang, Y.; Fan, Z.; Liu, Z.; Zhang, W. Strength analysis of carbon-fiber dovetail tenon connections under quasi-static tension. Structures 2024, 67, 106925. [Google Scholar] [CrossRef]
- Kusumah, A.M.; Bintara, R.D.; Suprayitno. The Strength Analysis of Dovetail Joint on 3D Printed Part Polylactic Acid Using Computer Simulation. In Recent Advances in Mechanical Engineering: Select Proceedings of ICOME 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 179–185. [Google Scholar]
- De Pasquale, G.; Altunok, F.E. Multiphase modeling of matrix/fiber-related damaging mechanism in multimaterial additively manufactured joints with 3D interlocking. Eng. Fail. Anal. 2025, 170, 109272. [Google Scholar] [CrossRef]
- Bolmin, O.; Young, B.; Leathe, N.; Noell, P.J.; Boyce, B.L. Interlocking metasurfaces. J. Mater. Sci. 2023, 58, 411–419. [Google Scholar] [CrossRef]
- Brown, N.K.; Young, B.; Clark, B.; Bolmin, O.; Boyce, B.L.; Noell, P.J. Optimized design of interlocking metasurfaces. Mater. Des. 2023, 233, 112272. [Google Scholar] [CrossRef]
- Elsayed, A.; Guleria, T.; Atli, K.C.; Bolmin, O.; Young, B.; Noell, P.J.; Boyce, B.L.; Elwany, A.; Arroyave, R.; Karaman, I. Active interlocking metasurfaces enabled by shape memory alloys. Mater. Des. 2024, 244, 113137. [Google Scholar] [CrossRef]
- Young, B.; Bolmin, O.; Boyce, B.; Noell, P. Synergistic strengthening in interlocking metasurfaces. Mater. Des. 2023, 227, 111798. [Google Scholar] [CrossRef]
- Jin, Q.-Y.; Nam, H.; Jo, H.; Park, J.; Kang, H.J.; Kim, D.J.; Lee, W. Design of dissimilar material joint for defect-free multi-material additive manufacturing via laser-directed energy deposition. Heliyon 2024, 10, e29666. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.; Derikvand, M.; Dalvand, M.; Ebrahimi, G. Load-carrying capacity of mitered furniture corner joints with dovetail keys under diagonal tension load. Turk. J. Agric. For. 2012, 36, 636–643. [Google Scholar] [CrossRef]
- Harding, A.; Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S. Application of additive manufacturing in the biomedical field- A review. Ann. 3D Print. Med. 2023, 10, 100110. [Google Scholar] [CrossRef]
- Fadzil, A.F.b.A.; Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S. Role of surface quality on biocompatibility of implants—A review. Ann. 3D Print. Med. 2022, 8, 100082. [Google Scholar] [CrossRef]
- Shuang, X.; Qingtian, D.; Xinbo, L.; Jiabao, Z.; Jinpeng, W.; Zhirong, Y. Energy absorption and deformation of cellular structures with dovetail joints. Mech. Res. Commun. 2025, 143, 104353. [Google Scholar] [CrossRef]
- Karolak, A.; Jasieńko, J. Experimental research on tensile dovetail joint between rafter and collar beam. Eng. Struct. 2024, 307, 117854. [Google Scholar] [CrossRef]
- Hu, W.; Luo, M.; Liu, Y.; Xu, W.; Caglar Konukcu, A. Experimental and numerical studies on the mechanical properties and behaviors of a novel wood dowel reinforced dovetail joint. Eng. Fail. Anal. 2023, 152, 107440. [Google Scholar] [CrossRef]
- Bai, F.; Fan, Z.; Xue, J.; Wu, C.; Hu, C.; Li, J. Experimental study on seismic performance and deformation damage of loose dovetail-tenon joints in ancient timber structures. Structures 2023, 54, 541–555. [Google Scholar] [CrossRef]
- Mashrah, W.; Chen, Z.; Boufendassa, R.; Liu, H. Numerical Parametric Study on Hysteresis Performance of the Novel Dovetail Joint for Single-layer Grid Shells Subjected to Out-of-Plane Bending Moment. KSCE J. Civ. Eng. 2023, 27, 3952–3970. [Google Scholar] [CrossRef]
- Du, L.; Qi, J.; Cheng, Z.; Wang, J. Finite element modeling of UHPC slabs with dovetail joints and steel wire mesh using an innovative interfacial treating method. Structures 2022, 37, 745–755. [Google Scholar] [CrossRef]
- Kamboj, G.; Gaff, M.; Smardzewski, J.; Haviarová, E.; Borůvka, V.; Sethy, A.K. Numerical and experimental investigation on the elastic stiffness of glued dovetail joints. Constr. Build. Mater. 2020, 263, 120613. [Google Scholar] [CrossRef]
- Ermolai, V.; Sover, A.; Andrei Boca, M.; Mihalache, A.; Ionuț Irimia, A.; Hrițuc, A.; Slătineanu, L.; Nagîț, G.; Cosmin Stavarache, R. Mechanical behavior of macroscopic interfaces for 3D printed multi-material samples made of dissimilar materials. Mech. Ind. 2024, 25, 24. [Google Scholar] [CrossRef]
- Atar, M.; Keskin, H.; Peker, H.; Ustündağ, A.; Togay, A.; Candan, Z. Impacts of different joint angles and adhesives on diagonal tension performances of box-type furniture. BioResources 2010, 5, 343–355. [Google Scholar] [CrossRef]
- Jeong, G.; Park, M.; Park, J.; Hwang, K. Predicting load-carrying capacity of dovetail connections using the stochastic finite element method. Wood Fiber Sci. 2012, 44, 430–439. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davaasambuu, K.; Dong, Y.; Pramanik, A.; Basak, A.K. Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review. J. Compos. Sci. 2025, 9, 359. https://doi.org/10.3390/jcs9070359
Davaasambuu K, Dong Y, Pramanik A, Basak AK. Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review. Journal of Composites Science. 2025; 9(7):359. https://doi.org/10.3390/jcs9070359
Chicago/Turabian StyleDavaasambuu, Khishigdorj, Yu Dong, Alokesh Pramanik, and Animesh Kumar Basak. 2025. "Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review" Journal of Composites Science 9, no. 7: 359. https://doi.org/10.3390/jcs9070359
APA StyleDavaasambuu, K., Dong, Y., Pramanik, A., & Basak, A. K. (2025). Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review. Journal of Composites Science, 9(7), 359. https://doi.org/10.3390/jcs9070359