High-Strain-Rate Deformation Behavior and Damage Mechanisms of Ti/Al Interpenetrating Phase Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Design Principle of TPMS-Based Scaffolds
2.2. Fabrication Process of Interpenetrating Phase Composites
2.3. Heat Treatment Process of the Infiltrated Phase
2.4. Microstructural Characterization Methods
2.5. High-Strain-Rate Test Method
2.6. Evaluation Indicators for Dynamic Mechanical Properties
3. Results
3.1. Effect of Ti Alloy Volume Fraction on the Dynamic Mechanical Behavior of Ti/Al IPC
3.2. Effect of Strain Rate on the Dynamic Mechanical Behavior of Ti/Al IPC
3.3. Microscopic Characterization of the Interface Layer
3.4. Damage Mechanism of Ti/Al IPC Under High-Strain-Rate Deformation
4. Discussion
5. Conclusions
- (1)
- At high strain rates, as the Ti alloy volume fraction increases in IPC, comparing IPC30 and IPC60, the equivalent elastic modulus of IPC increases by 65%, yield strength increases by 66%, UTS increases by 151%, and SEA increases by 111%. Due to the thermal softening effect, both IPC with different volume fractions exhibit a sharp decrease in stress after reaching UTS. In contrast, IPC30′s equivalent elastic modulus, UTS, and SEA are lower than those of AlSi12, but its yield strength is higher than that of AlSi12.
- (2)
- As the strain rate increases, IPC30 and IPC60 exhibit opposite dynamic mechanical behaviors. IPC30′s dynamic mechanical performance is dominated by AlSi12, showing a dynamic softening effect, while IPC60 is dominated by Ti6Al4V, displaying a dynamic hardening effect. Both composites’ strain rate sensitivity decreases as plastic strain increases. Under high-strain-rate deformation, the interpenetrating structure characteristics of Ti/Al IPC make the crushing force efficiency unaffected by changes in Ti alloy volume fraction and strain rate.
- (3)
- Microstructural characterization serves to validate the reliability of the fabrication process and enable the analysis of distinct fracture morphologies in the two phases of IPC60 under high-strain-rate deformation conditions. Specifically, the Ti alloy phase exhibits ductile fracture, whereas the Al alloy phase exhibits brittle fracture behavior.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IPC | Interpenetrating phase composites |
TPMS | Triply periodic minimal surface |
IWP | I-wrapped package |
SHPB | Split Hopkinson pressure bar |
SLM | Selective laser melting |
SEA | Specific energy absorption |
UTS | Ultimate tensile strength |
SRS | Strain rate sensitivity |
CFE | Crushing force efficiency |
C | Controls the porosity of the structure |
L | Defines the size of the unit cell |
The volume of the solid TPMS structure calculated by the program | |
The incident strain | |
The reflected strain | |
The stress wave propagation velocity in the bar. | |
The elastic modulus of the bar. | |
The ultimate tensile strain at which the material reaches its UTS | |
M | The mass of the material |
The average stress of the material at its UTS | |
The fitted linear strain rate sensitivity exponent | |
The original radius of the specimen | |
The radius of the bar | |
The velocities at the incident bar end of the specimen | |
The velocities at the transmission bar end of the specimen | |
The initial length of the specimen |
References
- Lin, Y.; Wang, D.; Yang, C.; Zhang, W.; Wang, Z. An Al-Al interpenetrating-phase composite by 3D printing and hot extrusion. Int. J. Miner. Metall. Mater. 2023, 30, 678–688. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, F.; Yuan, D.; Wang, G.; Tong, Y.; Wang, J. High damping capacity of AlSi10Mg-NiTi lattice structure interpenetrating phase composites prepared by additive manufacturing and pressureless infiltration. J. Alloys. Compd. 2022, 905, 164075. [Google Scholar] [CrossRef]
- Yao, B.; Zhou, Z.; Duan, L. Anisotropic compressive properties and energy absorption of metal–resin interpenetrating phase composites. J. Mater. Res. 2018, 33, 2477–2485. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, Q.; Wang, H.; Zhang, J.; Wang, F.; Zhang, Y.; Xu, D.; Liu, Z.; Zhang, Z.; Ritchieet, R.O. Phase-transforming Ag-NiTi 3-D interpenetrating-phase composite with high recoverable strain, strength and electrical conductivity. Appl. Mater. Today 2022, 29, 101639. [Google Scholar] [CrossRef]
- Taylor, S.V.; Gonzales, M.; Cordero, Z.C. Shock response of periodic interpenetrating phase composites. APL Mater. 2022, 10, 111119. [Google Scholar] [CrossRef]
- Yang, X.; Huang, W.; Zhan, D.; Ren, D.; Ji, H.; Liu, Z.; Wang, Q.; Zhang, N.; Zhang, Z. Biodegradability and Cytocompatibility of 3D-Printed Mg-Ti Interpenetrating Phase Composites. Front. Bioeng. Biotechnol. 2022, 10, 891632. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, Y.; Zhang, Q.; Meng, Q.; Zhang, L.; Kobayashi, E.; Wu, G. Near-zero thermal expansion of ZrW2O8/Al–Si composites with three dimensional interpenetrating network structure. Compos. Part B Eng. 2021, 211, 108678. [Google Scholar] [CrossRef]
- Okulov, I.V.; Geslin, P.-A.; Soldatov, I.V.; Ovri, H.; Joo, S.-H.; Kato, H. Anomalously low modulus of the interpenetrating-phase composite of Fe and Mg obtained by liquid metal dealloying. Scr. Mater. 2019, 163, 133–136. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, B.; Liu, Y.; Suo, T.; Xu, P.; Zhang, J. Interpenetrating phase composite foam based on porous aluminum skeleton for high energy absorption. Polym. Test. 2021, 93, 106917. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, Y.; Feng, Y.; Teng, X.; Yan, S.; Li, R.; Yu, W.; Huang, Z.; Li, S.; Li, Z. Synthesis and mechanical properties of TiC-Fe interpenetrating phase composites fabricated by infiltration process. Ceram. Int. 2018, 44, 21742–21749. [Google Scholar] [CrossRef]
- Singh, A.; Al-Ketan, O.; Karathanasopoulos, N. Mechanical performance of solid and sheet network-based stochastic interpenetrating phase composite materials. Compos. Part B Eng. 2023, 251, 110478. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, N.; Yu, Q.; Liu, Z.; Qu, R.; Zhang, J.; Li, S.; Ren, D.; Berto, F.; Zhang, Z.; et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures. Nat. Commun. 2022, 13, 3247. [Google Scholar] [CrossRef]
- Guo, X.; Ding, J.; Li, X.; Qu, S.; Hsi Fuh, J.Y.; Lu, W.F.; Song, X.; Zhai, W. Interpenetrating phase composites with 3D printed triply periodic minimal surface (TPMS) lattice structures. Compos. Part B Eng. 2023, 248, 110351. [Google Scholar] [CrossRef]
- San Marchi, C.; Kouzeli, M.; Rao, R.; Lewis, J.A.; Dunand, D.C. Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture. Scr. Mater. 2003, 49, 861–866. [Google Scholar] [CrossRef]
- Holovenko, Y.; Kollo, L.; Saarna, M.; Rahmani, R.; Soloviova, T.; Antonov, M.; Prashanth, K.G.; Cygan, S.; Veinthal, R. Effect of lattice surface treatment on performance of hardmetal-titanium interpenetrating phase composites. Int. J. Refract. Met. Hard Mater. 2020, 86, 105087. [Google Scholar] [CrossRef]
- Cheng, J.; Gussev, M.; Allen, J.; Hu, X.; Moustafa, A.R.; Splitter, D.A.; Shyam, A. Deformation and failure of PrintCast A356/316 L composites: Digital image correlation and finite element modeling. Mater. Des. 2020, 195, 109061. [Google Scholar] [CrossRef]
- Feng, X.-Q.; Tian, Z.; Liu, Y.-H.; Yu, S.-W. Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites. Appl. Compos. Mater. 2004, 11, 33–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Hsieh, M.-T.; Valdevit, L. Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Compos. Struct. 2021, 263, 113693. [Google Scholar] [CrossRef]
- Feng, J.; Fu, J.; Yao, X.; He, Y. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. Int. J. Extrem. Manuf. 2022, 4, 022001. [Google Scholar] [CrossRef]
- Biswas, N.; Ding, J.L.; Balla, V.K.; Field, D.P.; Bandyopadhyay, A. Deformation and fracture behavior of laser processed dense and porous Ti6Al4V alloy under static and dynamic loading. Mater. Sci. Eng. A 2012, 549, 213–221. [Google Scholar] [CrossRef]
- Alkhatib, S.E.; Sercombe, T.B. High strain-rate response of additively manufactured light metal alloys. Mater. Des. 2022, 217, 110664. [Google Scholar] [CrossRef]
- Chang, H.; Binner, J.; Higginson, R.; Myers, P.; Webb, P.; King, G. High strain rate characteristics of 3-3 metal–ceramic interpenetrating composites. Mater. Sci. Eng. A 2011, 528, 2239–2245. [Google Scholar] [CrossRef]
- Yoo, D.-J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Precis. Eng. Manuf. 2011, 12, 61–71. [Google Scholar] [CrossRef]
- Shipley, H.; McDonnell, D.; Culleton, M.; Coull, R.; Lupoi, R.; O’Donnell, G.; Trimble, D. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. Int. J. Mach. Tools Manuf. 2018, 128, 1–20. [Google Scholar] [CrossRef]
- Sun, J.; Yang, Y.; Wang, D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater. Des. 2013, 49, 545–552. [Google Scholar] [CrossRef]
- Lipinski, T. Mechanical properties of AlSi12 alloy with aluminium bronze. In Proceedings of the 16th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 24–26 May 2017. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.Y.; Huang, H.F.; Zhang, L.; Zhang, B.; Shi, L. High strength and ductility of Al–Si–Mg alloys fabricated by deformation and heat treatment. Mater. Charact. 2021, 178, 111278. [Google Scholar] [CrossRef]
- Arabpour, M.; Boutorabi, S.M.A.; Saghafian, H. Effect of Ablation Casting Process on the Microstructural Parameters and Tensile Properties of A413 and A356 Alloys. Int. J. Met. 2024, 18, 1619–1632. [Google Scholar] [CrossRef]
- Yin, H.; Liu, Z.; Dai, J.; Wen, G.; Zhang, C. Crushing behavior and optimization of sheet-based 3D periodic cellular structures. Compos. Part B Eng. 2020, 182, 107565. [Google Scholar] [CrossRef]
- Guan, X.R.; Chen, Q.; Qu, S.J.; Cao, G.J.; Wang, H.; Ran, X.D.; Feng, A.; Chen, D. High-strain-rate deformation: Stress-induced phase transformation and nanostructures in a titanium alloy. Int. J. Plast. 2023, 169, 103707. [Google Scholar] [CrossRef]
- Ponnusamy, P.; Masood, S.H.; Ruan, D.; Palanisamy, S.; Rashid, R.A.R.; Mukhlis, R.; Edwards, N.J. Dynamic compressive behaviour of selective laser melted AlSi12 alloy: Effect of elevated temperature and heat treatment. Addit. Manuf. 2020, 36, 101614. [Google Scholar] [CrossRef]
- Waymel, R.F.; Chew, H.B.; Lambros, J. Loading Orientation Effects on the Strength Anisotropy of Additively-Manufactured Ti-6Al-4V Alloys under Dynamic Compression. Exp. Mech. 2019, 59, 829–841. [Google Scholar] [CrossRef]
- Qin, F.; Du, S.; Li, Y.; Zhao, X.; Xu, Y. Effects of strain rate on dynamic deformation behavior and microstructure evolution of Fe-Mn-Cr-N austenitic stainless steel. Mater. Charact. 2024, 212, 113975. [Google Scholar] [CrossRef]
- Hu, H.; Xu, Z.; Dou, W.; Huang, F. Effects of strain rate and stress state on mechanical properties of Ti-6Al-4V alloy. Int. J. Impact Eng. 2020, 145, 103689. [Google Scholar] [CrossRef]
- Mu, Y.; Jin, Y.; Ji, H.; Luo, J.; Li, G.; Xu, M.; Li, H.; Deng, B.; Du, J. Mechanical performance of interpenetrating phase composites with multi-sheet lattice structures. Int. J. Mech. Sci. 2024, 276, 109369. [Google Scholar] [CrossRef]
- Novoselova, T.; Malinov, S.; Sha, W.; Zhecheva, A. High-temperature synchrotron X-ray diffraction study of phases in a gamma TiAl alloy. Mater. Sci. Eng. A 2004, 371, 103–112. [Google Scholar] [CrossRef]
- Kravchenko, Y.; Borysiuk, V.; Pogrebnjak, A.; Kylyshkanov, M.; Iatsunskyi, I.; Smyrnova, K. Characteristics of Arc-PVD TiAlSiY and (TiAlSiY)N coatings. In Proceedings of the 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), Zatoka, Ukraine, 10–15 September 2017; pp. 01FNC02-1–01FNC02-4. [Google Scholar] [CrossRef]
- Chandran, S.; Liu, W.; Lian, J.; Münstermann, S.; Verleysen, P. Strain rate dependent plasticity and fracture of DP1000 steel under proportional and non-proportional loading. Eur. J. Mech.-A/Solids 2022, 92, 104446. [Google Scholar] [CrossRef]
- Ahmad, I.R.; Shu, D.W. Compressive and constitutive analysis of AZ31B magnesium alloy over a wide range of strain rates. Mater. Sci. Eng. A 2014, 592, 40–49. [Google Scholar] [CrossRef]
- Nurel, B.; Nahmany, M.; Frage, N.; Stern, A.; Sadot, O. Split Hopkinson pressure bar tests for investigating dynamic properties of additively manufactured AlSi10Mg alloy by selective laser melting. Addit. Manuf. 2018, 22, 823–833. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, Z.; Li, W.; Chen, H.; Liu, B.; Wang, B. Dynamic mechanical properties of the selective laser melting NiCrFeCoMo0.2 high entropy alloy and the microstructure of molten pool. J. Alloys Compd. 2022, 927, 167011. [Google Scholar] [CrossRef]
- Pawlowski, P.; Stanczak, M.; Broniszewska-Wojdat, P.; Blanc, L.; Fras, T.; Rusinek, A. Energy-absorption capacity of additively manufactured AlSi10Mg cellular structures subjected to a blast-induced dynamic compression–experimental and numerical study. Int. J. Impact Eng. 2025, 198, 105216. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, W.; Wang, C.; Qi, F.; Xue, S. Investigation on shock wave mitigation performance and crashworthiness of density gradient foam structures. Int. J. Impact Eng. 2025, 197, 105187. [Google Scholar] [CrossRef]
Element | Al | V | Fe | C | O | N | Y | Ti |
---|---|---|---|---|---|---|---|---|
Weight | 5.70 | 3.63 | 0.13 | 0.0015 | 0.11 | 0.0036 | 0.0013 | Others |
Element | Si | Mg | Fe | Mn | Zn | Cu | Ti | Pb | Ni | Al |
---|---|---|---|---|---|---|---|---|---|---|
Weight | 11.2 | 0.72 | 0.45 | 0.42 | 0.12 | 0.10 | 0.10 | 0.10 | 0.08 | Others |
Specimens | IPC30 | IPC60 | ||
---|---|---|---|---|
Strain Rate (s−1) | 1860 | 2816 | 1729 | 2743 |
92.8 ± 5.1 | 46.5 ± 2.6 | 102.9 ± 11.6 | 71.4 ± 9.5 | |
219.02 ± 8.72 | 192.24 ± 13.94 | 303.06 ± 20.73 | 359.93 ± 40.32 | |
460.22 ± 26.34 | 320.82 ± 43.02 | 649.20 ± 40.66 | 803.69 ± 21.28 | |
SEA (J/g) | 27.27 ± 3.42 | 27.83 ± 2.87 | 28.38 ± 4.55 | 58.56 ± 8.22 |
CFE (%) | 64.39 ± 5.29 | 62.01 ± 7.01 | 63.52 ± 4.10 | 62.57 ± 8.02 |
SRS | 0.716 ± 0.010 | 0.662 ± 0.012 | 0.766 ± 0.005 | 0.743 ± 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, Z.; Tian, J.; Li, J.; Xia, S.; Zhou, L.; Yu, L. High-Strain-Rate Deformation Behavior and Damage Mechanisms of Ti/Al Interpenetrating Phase Composites. Processes 2025, 13, 2234. https://doi.org/10.3390/pr13072234
Li Z, Zhang Z, Tian J, Li J, Xia S, Zhou L, Yu L. High-Strain-Rate Deformation Behavior and Damage Mechanisms of Ti/Al Interpenetrating Phase Composites. Processes. 2025; 13(7):2234. https://doi.org/10.3390/pr13072234
Chicago/Turabian StyleLi, Zhou, Zhongli Zhang, Jiahao Tian, Junhao Li, Shiqi Xia, Libo Zhou, and Long Yu. 2025. "High-Strain-Rate Deformation Behavior and Damage Mechanisms of Ti/Al Interpenetrating Phase Composites" Processes 13, no. 7: 2234. https://doi.org/10.3390/pr13072234
APA StyleLi, Z., Zhang, Z., Tian, J., Li, J., Xia, S., Zhou, L., & Yu, L. (2025). High-Strain-Rate Deformation Behavior and Damage Mechanisms of Ti/Al Interpenetrating Phase Composites. Processes, 13(7), 2234. https://doi.org/10.3390/pr13072234