Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (133)

Search Parameters:
Keywords = energy unbalance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20707 KiB  
Article
Research on Energy Storage-Based DSTATCOM for Integrated Power Quality Enhancement and Active Voltage Support
by Peng Wang, Jianxin Bi, Fuchun Li, Chunfeng Liu, Yuanhui Sun, Wenhuan Cheng, Yilong Wang and Wei Kang
Electronics 2025, 14(14), 2840; https://doi.org/10.3390/electronics14142840 - 15 Jul 2025
Viewed by 265
Abstract
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed [...] Read more.
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed in a Distribution Static Synchronous Compensator (DSTATCOM) to manage power quality and actively support voltage and inertia in the network. This paper first addresses the limitations of traditional dq0 compensation algorithms in effectively filtering out negative-sequence twice-frequency components. An improved dq0 compensation algorithm is proposed to reduce errors in detecting positive-sequence fundamental current under unbalanced three-phase conditions. Second, considering the impedance ratio characteristics of the distribution network, while reactive power voltage regulation is common, active power regulation is more effective in high-resistance distribution networks. A grid-forming model-based active and reactive power coordinated voltage regulation method is proposed. This method uses synchronous control to establish a virtual three-phase voltage internal electromotive force, forming a comprehensive compensation strategy that combines power quality improvement and active voltage support, exploring the potential of energy storage DSTATCOM applications in distribution networks. Finally, simulation and experimental results demonstrate the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

29 pages, 6029 KiB  
Article
Multi-Mode Operation and Coordination Control Strategy Based on Energy Storage and Flexible Multi-State Switch for the New Distribution Network During Grid-Connected Operation
by Yuechao Ma, Jun Tao, Yu Xu, Hongbin Hu, Guangchen Liu, Tao Qin, Xuchen Fu and Ruiming Liu
Energies 2025, 18(13), 3389; https://doi.org/10.3390/en18133389 - 27 Jun 2025
Viewed by 284
Abstract
For a new distribution network with energy storage and a flexible multi-state switch (FMSS), several problems of multi-mode operation and switching, such as the unbalance of feeder loads and feeder faults, among others, should be considered. This paper forwards a coordination control strategy [...] Read more.
For a new distribution network with energy storage and a flexible multi-state switch (FMSS), several problems of multi-mode operation and switching, such as the unbalance of feeder loads and feeder faults, among others, should be considered. This paper forwards a coordination control strategy to address the above challenges faced by the FMSS under grid-connected operations. To tackle the multi-mode operation problem, the system’s operational state is divided into multiple working modes according to the operation states of the system, the positions and number of fault feeders, the working states of the transformers, and the battery’s state of charge. To boost the system’s operational reliability and load balance and extend the power supply time for the fault load, the appropriate control objectives in the coordination control layer and control strategies in the equipment layer for different working modes are established for realizing the above multi-directional control objectives. To resolve the phase asynchrony issue among the fault load and other normal working loads caused by the feeder fault, the off-grid phase-locked control based on the V/f control strategy is applied. To mitigate the bus voltage fluctuation caused by the feeder fault switching, the switching control sequence for the planned off-grid is designed, and the power feed-forward control strategy of the battery is proposed for the unplanned off-grid. The simulation results show that the proposed control strategy can ensure the system’s power balance and yield a high-quality flexible power supply during the grid-connected operational state. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

21 pages, 3324 KiB  
Article
The Influence of Axial-Bearing Position of Active Magnetic Suspension Flywheel Energy Storage System on Vibration Characteristics of Flywheel Rotor
by Lei Wang, Tielei Li and Zhengyi Ren
Actuators 2025, 14(6), 290; https://doi.org/10.3390/act14060290 - 13 Jun 2025
Viewed by 400
Abstract
This study introduces a flywheel rotor support structure for an active magnetic suspension flywheel energy storage system. In this structure, there is an axial offset between the axial-bearing position and the mass-center of the flywheel rotor, which affects the tilting rotation of the [...] Read more.
This study introduces a flywheel rotor support structure for an active magnetic suspension flywheel energy storage system. In this structure, there is an axial offset between the axial-bearing position and the mass-center of the flywheel rotor, which affects the tilting rotation of the flywheel rotor and which causes the coupling between its tilting rotation and radial motion. Therefore, the influence of the bearing position on the vibration characteristics of the flywheel rotor is explored in this paper. The tilting rotation constraint of the flywheel rotor by axial active magnetic bearing (AAMB) is analyzed, and the radial active magnetic bearing (RAMB) is equivalently treated with dynamic stiffness and dynamic damping. Based on this, a dynamic model of the active magnetic suspension rigid flywheel rotor, considering the position parameter of the axial bearing, is established. To quantify the axial offset between the position of the AAMB and the mass-center of the flywheel rotor, the axial-bearing position offset ratio γ is defined. The variation trend of the vibration characteristics of flywheel rotor with γ is discussed, and its correctness is validated through experiments. It is indicated that, with the increase of γ, the second-order positive precession frequency of the flywheel rotor decreases obviously, and the influence of the gyroscope torque gradually weakens. Meanwhile, its second-order critical speed ω2c decreases significantly (when γ is 0.5, ω2c decreases by about 62%); ω2c corresponds to the inclined mode, revealing that the offset ratio γ has a prominent influence on the critical speed under this mode. In addition, as γ increases, the mass unbalance response amplitude of the flywheel rotor under the speed of ω2c decreases significantly. The reasonable design of the axial-bearing position parameter can effectively improve the operational stability of the active magnetic suspension flywheel energy storage system. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

17 pages, 3568 KiB  
Article
Multi-Objective Optimal Control of Variable Speed Alternating Current-Excited Pumped Storage Units Considering Electromechanical Coupling Under Grid Voltage Fault
by Tao Liu, Yu Lu, Xiaolong Yang, Ziqiang Man, Wei Yan, Teng Liu, Changjiang Zhan, Xingwei Zhou and Tianyu Fang
Energies 2025, 18(11), 2750; https://doi.org/10.3390/en18112750 - 26 May 2025
Viewed by 322
Abstract
Variable Speed AC-excited Pumped Storage Units (VSACPSUs) demonstrate advantages in flexibility, high efficiency, and fast response, and they play a crucial regulatory role in power systems with increasing renewable energy penetration. Typically connected to weak grids, conventional low-voltage ride-through (LVRT) control methods for [...] Read more.
Variable Speed AC-excited Pumped Storage Units (VSACPSUs) demonstrate advantages in flexibility, high efficiency, and fast response, and they play a crucial regulatory role in power systems with increasing renewable energy penetration. Typically connected to weak grids, conventional low-voltage ride-through (LVRT) control methods for these units suffer from single control objectives, poor adaptability, and neglect of electromechanical coupling characteristics. To address these limitations, this paper proposes a multi-objective optimization strategy considering electromechanical coupling under a grid voltage fault. Firstly, a positive/negative-sequence mathematical model of doubly-fed machines is established. Based on stator winding power expressions, the operational characteristics under a grid fault are analyzed, including stator current imbalance as well as oscillation mechanisms of active power, reactive power, and electromagnetic torque. Considering the differences in rotor current references under different control objectives, a unified rotor current reference expression is constructed by introducing a time-varying weighting factor according to expression characteristics and electromechanical coupling properties. The weighting factor can be dynamically adjusted based on operating conditions and grid requirements using turbine input power, grid current unbalance, and voltage dip depth as key indicators to achieve adaptive control optimization. Finally, a multi-objective optimization model incorporating coupling characteristics and operational requirements is developed. Compared with conventional methods, the proposed strategy demonstrates enhanced adaptability and significantly improved low-voltage ride-through performance. Simulation results verify its effectiveness. Full article
Show Figures

Figure 1

21 pages, 2159 KiB  
Article
Induction Motor Dynamics Regimes: A Comprehensive Study of Mathematical Models and Validation
by Marina Konuhova
Appl. Sci. 2025, 15(3), 1527; https://doi.org/10.3390/app15031527 - 2 Feb 2025
Cited by 1 | Viewed by 1672
Abstract
This study investigates the dynamic behavior of induction motors (IMs) by developing and validating four distinct mathematical models designed for transient and starting regimes. These models, expressed in α,β and d,q coordinate systems, analyze rotational frequency, electromagnetic torque, and [...] Read more.
This study investigates the dynamic behavior of induction motors (IMs) by developing and validating four distinct mathematical models designed for transient and starting regimes. These models, expressed in α,β and d,q coordinate systems, analyze rotational frequency, electromagnetic torque, and current profiles with varying levels of complexity, including current-based, flux linkage-based, and rotor winding electromagnetic time constant approaches. Implemented in Fortran, the models address the limitations of predefined tools like MATLAB/Simulink, offering enhanced precision, flexibility, and suitability for non-standard scenarios. Validation against experimental data from a 3 kW induction motor confirms the models’ accuracy, with consistent results across approaches. Notably, the flux linkage models excel in capturing intricate transient phenomena, while current-based models simplify integration with power system studies. These findings provide a robust framework for analyzing IM performance under diverse conditions such as voltage unbalance and rundown scenarios, enabling the optimization of motor operations in energy-intensive industries. Full article
Show Figures

Figure 1

25 pages, 1607 KiB  
Review
Optimizing Power Flow and Stability in Hybrid AC/DC Microgrids: AC, DC, and Combined Analysis
by Ghanshyam Meena, Veerpratap Meena, Akhilesh Mathur, Vinay Pratap Singh, Ahmad Taher Azar and Ibrahim A. Hameed
Math. Comput. Appl. 2024, 29(6), 108; https://doi.org/10.3390/mca29060108 - 24 Nov 2024
Cited by 5 | Viewed by 1737
Abstract
A microgrid (MG) is a unique area of a power distribution network that combines distributed generators (conventional as well as renewable power sources) and energy storage systems. Due to the integration of renewable generation sources, microgrids have become more unpredictable. MGs can operate [...] Read more.
A microgrid (MG) is a unique area of a power distribution network that combines distributed generators (conventional as well as renewable power sources) and energy storage systems. Due to the integration of renewable generation sources, microgrids have become more unpredictable. MGs can operate in two different modes, namely, grid-connected and islanded modes. MGs face various challenges of voltage variations, frequency deviations, harmonics, unbalances, etc., due to the uncertain behavior of renewable sources. To study the impact of these issues, it is necessary to analyze the behavior of the MG system under normal and abnormal operating conditions. Two different tools are used for the analysis of microgrids under normal and abnormal conditions, namely, power flow and short-circuit analysis, respectively. Power flow analysis is used to determine the voltages, currents, and real and reactive power flow in the MG system under normal operating conditions. Short-circuit analysis is carried out to analyze the behavior of MGs under faulty conditions. In this paper, a review of power flow and short-circuit analysis algorithms for MG systems under two different modes of operation, grid-connected and islanded, is presented. This paper also presents a comparison of various power flow as well as short-circuit analysis techniques for MGs in tabular form. The modeling of different components of MGs is also discussed in this paper. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

16 pages, 4967 KiB  
Article
Thermo-Mechanical Coupling Load Transfer Method of Energy Pile Based on Hyperbolic Tangent Model
by Ming Sun, Siyang Wu, Tong Wang, Yunze Xie, Meijuan Xu, Yan Dong, Dongxiao Zhao and Wenbing Wu
Buildings 2024, 14(10), 3190; https://doi.org/10.3390/buildings14103190 - 7 Oct 2024
Cited by 3 | Viewed by 918
Abstract
By employing the hyperbolic tangent model of load transfer (LT), this paper establishes the thermo-mechanical (TM) coupling load transfer analysis approach for an energy pile (EP). By incorporating the control condition of the unbalance force at the null point, the method for determining [...] Read more.
By employing the hyperbolic tangent model of load transfer (LT), this paper establishes the thermo-mechanical (TM) coupling load transfer analysis approach for an energy pile (EP). By incorporating the control condition of the unbalance force at the null point, the method for determining the null point considering the temperature effect is enhanced. The viability of the presented method is validated through the measured outcomes from model experiments of energy piles. A parametric investigation is conducted to explore the impact of the soil shear strength parameters, upper load, temperature variation, head stiffness, and radial expansion on the axial force, strain, and displacement of the energy pile under thermo-mechanical coupling. The results suggest that the locations of the null point and the maximum axial force are dependent on the constraint boundary conditions of the pile side and the two ends. When the stiffness of the pile top increases, axial stress and displacement increase, while strain decreases. An increase in the drained friction angle leads to an increase in axial stress under thermal-load coupling, but strain and displacement decline. The radial expansion has a negligible influence on the thermo-mechanical interaction between the pile and the soil. Full article
Show Figures

Figure 1

20 pages, 30530 KiB  
Article
Effect of Powder Reuse on Powder Characteristics and Properties of DED Laser Beam Metal Additive Manufacturing Process with Stellite® 21 and UNS S32750
by Juan Carlos Pereira, Uxue Irastorza, Ane Solana, Carlos Soriano, David García, José Exequiel Ruiz and Aitzol Lamikiz
Metals 2024, 14(9), 1031; https://doi.org/10.3390/met14091031 - 10 Sep 2024
Cited by 2 | Viewed by 2051
Abstract
In this work, the influence of powder reuse up to three times on directed energy deposition (DED) with laser processing has been studied. The work was carried out on two different gas atomized powders: a cobalt-based alloy type Stellite® 21, and a [...] Read more.
In this work, the influence of powder reuse up to three times on directed energy deposition (DED) with laser processing has been studied. The work was carried out on two different gas atomized powders: a cobalt-based alloy type Stellite® 21, and a super duplex stainless steel type UNS S32750. One of the main findings is the influence of oxygen content of the reused powder particles on the final quality and densification of the deposited material and the powder catch efficiency of the laser deposition process. There is a direct relationship between a higher surface oxidation of the particles and the presence of oxygen content in the particles and in the as-built materials, as well as oxides, balance of phases (in the case of the super duplex alloy), pores and defects at the micro level in the laser-deposited material, as well as a decrease in the amount of material that actually melts, reducing powder catch efficiency (more than 12% in the worst case scenario) and the initial bead geometry (height and width) that was obtained for the same process parameters when the virgin powder was used (without oxidation and with original morphology of the powder particles). This causes some melting faults, oxides and formation of undesired oxide compounds in the microstructure, and un-balance of phases particularly in the super duplex stainless steel material, reducing the amount of ferrite from 50.1% to 37.4%, affecting in turn material soundness and its mechanical properties, particularly the hardness. However, the Stellite® 21 alloy type can be reused up to three times, while the super duplex can be reused only once without any major influence of the particles’ surface oxidation on the deposited material quality and hardness. Full article
Show Figures

Graphical abstract

36 pages, 15797 KiB  
Article
Multi-Timescale Voltage Regulation for Distribution Network with High Photovoltaic Penetration via Coordinated Control of Multiple Devices
by Qingyuan Yan, Xunxun Chen, Ling Xing, Xinyu Guo and Chenchen Zhu
Energies 2024, 17(15), 3830; https://doi.org/10.3390/en17153830 - 2 Aug 2024
Cited by 4 | Viewed by 1189
Abstract
The high penetration of distributed photovoltaics (PV) in distribution networks (DNs) results in voltage violations, imbalances, and flickers, leading to significant disruptions in DN stability. To address this issue, this paper proposes a multi-timescale voltage regulation approach that involves the coordinated control of [...] Read more.
The high penetration of distributed photovoltaics (PV) in distribution networks (DNs) results in voltage violations, imbalances, and flickers, leading to significant disruptions in DN stability. To address this issue, this paper proposes a multi-timescale voltage regulation approach that involves the coordinated control of a step voltage regulator (SVR), switched capacitor (SC), battery energy storage system (BESS), and electric vehicle (EV) across different timescales. During the day-ahead stage, the proposed method utilizes artificial hummingbird algorithm optimization-based least squares support vector machine (AHA-LSSVM) forecasting to predict the PV output, enabling the formulation of a day-ahead schedule for SVR and SC adjustments to maintain the voltage and voltage unbalance factor (VUF) within the limits. In the intra-day stage, a novel floating voltage threshold band (FVTB) control strategy is introduced to refine the day-ahead schedule, enhancing the voltage quality while reducing the erratic operation of SVR and SC under dead band control. For real-time operation, the African vulture optimization algorithm (AVOA) is employed to optimize the BESS output for precise voltage regulation. Additionally, a novel smoothing fluctuation threshold band (SFTB) control strategy and an initiate charging and discharging strategy (ICD) for the BESS are proposed to effectively smooth voltage fluctuations and expand the BESS capacity. To enhance user-side participation and optimize the BESS capacity curtailment, some BESSs are replaced by EVs for voltage regulation. Finally, a simulation conducted on a modified IEEE 33 system validates the efficacy of the proposed voltage regulation strategy. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

36 pages, 28072 KiB  
Article
Four-Wire Three-Level NPC Shunt Active Power Filter Using Model Predictive Control Based on the Grid-Tied PV System for Power Quality Enhancement
by Zoubida Amrani, Abdelkader Beladel, Abdellah Kouzou, Jose Rodriguez and Mohamed Abdelrahem
Energies 2024, 17(15), 3822; https://doi.org/10.3390/en17153822 - 2 Aug 2024
Cited by 1 | Viewed by 1758
Abstract
The primary objective of this paper focuses on developing a control approach to improve the operational performance of a three-level neutral point clamped (3LNPC) shunt active power filter (SAPF) within a grid-tied PV system configuration. Indeed, this developed control approach, based on the [...] Read more.
The primary objective of this paper focuses on developing a control approach to improve the operational performance of a three-level neutral point clamped (3LNPC) shunt active power filter (SAPF) within a grid-tied PV system configuration. Indeed, this developed control approach, based on the used 3LNPC-SAPF topology, aims to ensure the seamless integration of a photovoltaic system into the three-phase four-wire grid while effectively mitigating grid harmonics, grid current unbalance, ensuring grid unit power factor by compensating the load reactive power, and allowing power sharing with the grid in case of an excess of generated power from the PV system, leading to overall high power quality at the grid side. This developed approach is based initially on the application of the four-wire instantaneous p-q theory for the identification of the reference currents that have to be injected by the 3LNPC-SAPF in the grid point of common coupling (PCC). Whereas, the 3LNPC is controlled based on using the finite control set model predictive control (FCS-MPC), which can be accomplished by determining the convenient set of switch states leading to the voltage vector, which is the most suitable to ensure the minimization of the selected cost function. Furthermore, the used topology requires a constant DC-link voltage and balanced split-capacitor voltages at the input side of the 3LNPN. Hence, the cost function is adjusted by the addition of another term with a selected weighting factor related to these voltages to ensure their precise control following the required reference values. However, due to the random changes in solar irradiance and, furthermore, to ensure efficient operation of the proposed topology, the PV system is connected to the 3LNPN-SAPF via a DC/DC boost converter to ensure the stability of the 3LNPN input voltage within the reference value, which is achieved in this paper based on the use of the maximum power point tracking (MPPT) technique. For the validation of the proposed control technique and the functionality of the used topology, a set of simulations has been presented and investigated in this paper following different irradiance profile scenarios such as a constant irradiance profile and a variables irradiance profile where the main aim is to prove the effectiveness and flexibility of the proposed approach under variable irradiance conditions. The obtained results based on the simulations carried out in this study demonstrate that the proposed control approach with the used topology under different loads such as linear, non-linear, and unbalanced can effectively reduce the harmonics, eliminating the unbalance in the currents and compensating for the reactive component contained in the grid side. The obtained results prove also that the proposed control ensures a consistent flow of power based on the sharing principle between the grid and the PV system as well as enabling the efficient satisfaction of the load demand. It can be said that the proposal presented in this paper has been proven to have many dominant features such as the ability to accurately estimate the power sharing between the grid and the PV system for ensuring the harmonics elimination, the reactive power compensation, and the elimination of the neutral current based on the zero-sequence component compensation, even under variable irradiance conditions. This feature makes the used topology and the developed control a valuable tool for power quality improvement and grid stability enhancement with low cost and under clean energy. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

17 pages, 3082 KiB  
Article
Study of an Electric Vehicle Charging Strategy Considering Split-Phase Voltage Quality
by Fulu Yan, Mian Hua, Feng Zhao and Xuan Liang
World Electr. Veh. J. 2024, 15(7), 315; https://doi.org/10.3390/wevj15070315 - 18 Jul 2024
Viewed by 1174
Abstract
Slow-charging electric vehicle (EV) loads are single-phase loads in the power distribution network (PDN). The random access of these EVs to the network brings to the forefront the split-phase voltage quality issues. Therefore, a two-layer EV charging strategy considering split-phase voltage quality is [...] Read more.
Slow-charging electric vehicle (EV) loads are single-phase loads in the power distribution network (PDN). The random access of these EVs to the network brings to the forefront the split-phase voltage quality issues. Therefore, a two-layer EV charging strategy considering split-phase voltage quality is proposed in this paper. Issues with voltage unbalance (VU), split-phase voltage deviation (VD), and split-phase voltage harmonics (VHs) are included in the optimization objective model. An upgraded version of the multi-objective non-dominated sorting genetic algorithm (NSGA-II) is used in the inner layer of the model and to pass the generated EV phase selection scheme to the outer layer. The outer layer consists of a split-phase harmonic current algorithm based on the forward–backward generation method, and feeds the voltage quality calculation results to the inner layer. After several iterations, the optimal EV phase selection scheme can be obtained when the inner layer algorithm satisfies the convergence condition. The results gained for the example indicate that the suggested EV charging approach can effectively handle the PDN’s split-phase voltage quality. Furthermore, it enhances the energy efficiency of PDN operations and promotes further energy consumption. Full article
(This article belongs to the Special Issue Data Exchange between Vehicle and Power System for Optimal Charging)
Show Figures

Figure 1

42 pages, 6360 KiB  
Review
Shunt Active Power Filters in Three-Phase, Three-Wire Systems: A Topical Review
by Mihaela Popescu, Alexandru Bitoleanu, Constantin Vlad Suru, Mihaita Linca and Laurentiu Alboteanu
Energies 2024, 17(12), 2867; https://doi.org/10.3390/en17122867 - 11 Jun 2024
Cited by 15 | Viewed by 3189
Abstract
The increasingly extensive use of non-linear loads, mostly including static power converters, in large industry, commercial, and domestic applications, as well as the spread of renewable energy sources in distribution-generated units, make the use of the most efficient power quality improvement systems a [...] Read more.
The increasingly extensive use of non-linear loads, mostly including static power converters, in large industry, commercial, and domestic applications, as well as the spread of renewable energy sources in distribution-generated units, make the use of the most efficient power quality improvement systems a current concern. The use of active power filters proved to be the most advanced solution with the best compensation performance for harmonics, reactive power, and load unbalance. Thus, issues related to improving the power quality through active power filters are very topical and addressed by many researchers. This paper presents a topical review on the shunt active power filters in three-phase, three-wire systems. The power circuit and configurations of shunt active filtering systems are considered, including the multilevel topologies and use of advanced power semiconductor devices with lower switching losses and higher switching frequencies. Several compensation strategies, reference current generation methods, current control techniques, and DC-voltage control are pointed out and discussed. The direct power control method is also discussed. New advanced control methods that have better performance than conventional ones and gained attention in the recent literature are highlighted. The current state of renewable energy sources integration with shunt active power filters is analyzed. Concerns regarding the optimum placement and sizing of the active power filters in a given power network to reduce the investment costs are also presented. Trends and future developments are discussed at the end of this paper. For a rigorous substantiation, more than 250 publications on this topic, most of them very recent, constitute the basis of bibliographic references and can assist readers who are interested to explore the subject in greater detail. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

28 pages, 13716 KiB  
Article
Stability Assessment of the High-Speed Flywheel with AMBs on a Rotating Platform
by Yulan Zhao, Pingfan Liu, Qichao Lv, Kai Zhang and Lei Zhao
Energies 2024, 17(11), 2746; https://doi.org/10.3390/en17112746 - 4 Jun 2024
Cited by 2 | Viewed by 1660
Abstract
With the continuous improvement of the performance and capabilities of spacecrafts, the application of active magnetic bearings (AMBs) has become a major focus in current research. The AMBs-flywheel system is not only responsible for attitude control but also provides the required energy during [...] Read more.
With the continuous improvement of the performance and capabilities of spacecrafts, the application of active magnetic bearings (AMBs) has become a major focus in current research. The AMBs-flywheel system is not only responsible for attitude control but also provides the required energy during shadow periods. In magnetically suspended single gimbal control moment gyroscope (SGCMG), self-excited vibration caused by high-speed rotor rotation significantly affects the stability of the AMB system. The research focus lies in magnetically supporting the flywheel at high speeds with low power consumption to explore gyroscopic mechanics at ultra-high speeds and assess the corresponding stability. This study presents an assessment of the stability performance of a high-speed flywheel equipped on a single gimbal with an angular momentum of 75 Nm. To achieve ultra-high-speed operation under low driving power, a high-precise dynamic balance was performed followed by a novel unbalance control strategy of a radial and axial automatic balancing algorithm to suppress effectively synchronous vibrations due to nutation and precession. Corresponding experiments including static stable suspension experiments as well as low-speed, high-speed, and series-based stability assessments were conducted. Stable suspension at any speed ranging from 0 to 30,000 r/min was successfully implemented. The stability performance of the high-speed flywheel on a rotating platform at different gimbal speeds was verified, with a maximum speed reaching 31,200 r/min. The entire output torque process within the range of 30,000 r/min was revealed. Full article
(This article belongs to the Special Issue The Past, Present, and Future of Flywheel Energy Storage)
Show Figures

Figure 1

17 pages, 1651 KiB  
Article
Pulsed Propulsion of Unmanned Aerial Vehicles by Centrifugal Force Modulation—First-Order Theory and Practicability
by Wolfgang Holzapfel
Appl. Sci. 2024, 14(10), 4229; https://doi.org/10.3390/app14104229 - 16 May 2024
Cited by 1 | Viewed by 1663
Abstract
A novel technique suitable for the propulsion of small unmanned aerial vehicles (UAV) is discussed in this paper. This approach utilizes the rotational energy of airborne gyro rotors and converts it into translational propulsion for the vehicle. The energy conversion is achieved by [...] Read more.
A novel technique suitable for the propulsion of small unmanned aerial vehicles (UAV) is discussed in this paper. This approach utilizes the rotational energy of airborne gyro rotors and converts it into translational propulsion for the vehicle. The energy conversion is achieved by generating precisely directed centrifugal force pulses through short-duration rotor unbalances. The accurate control of the timing and magnitude of these unbalances is crucial for successful propulsion generation. Our first-order theory of controlled unbalance propulsion (CUP) predicts the potential for achieving high translational accelerations and vehicle velocities up to orbital levels. Power-saving levitation of UAVs can be attained. In this paper, we provide traceable evidence that pulsed centrifugal propulsion is based on well-established laws of physics and can be realized using state-of-the-art technologies. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

18 pages, 9295 KiB  
Article
Performance Evaluation of the B4 Topology for Implementing Grid-Connected Inverters in Microgrids
by Enric Torán, Marian Liberos, Iván Patrao, Raúl González-Medina, Gabriel Garcerá and Emilio Figueres
Electronics 2024, 13(9), 1755; https://doi.org/10.3390/electronics13091755 - 2 May 2024
Viewed by 1307
Abstract
The B4 topology is an interesting alternative to the conventional B6 inverter due to its reduced number of parts and lower cost. Although it has been widely used in the past, especially in low-power motor drive applications, its application as a grid-connected inverter [...] Read more.
The B4 topology is an interesting alternative to the conventional B6 inverter due to its reduced number of parts and lower cost. Although it has been widely used in the past, especially in low-power motor drive applications, its application as a grid-connected inverter is an open area of research. In this regard, this paper analyses the feasibility of the B4 inverter topology for grid-connected applications. A versatile 7 kW inverter prototype, which may be configured as B4 and B6, was built, allowing for a comprehensive evaluation of the performance of both topologies. Through an analytical study and experimental tests, the performance of the B4 and B6 topologies was comparatively evaluated in terms of efficiency, total harmonic distortion of line currents, current unbalance, cost, and mean time between failures. The study was carried out in the context of microgrid systems, highlighting their role in the integration of renewable energy and distributed generation. Full article
(This article belongs to the Special Issue Advancements in Power Electronics Conversion Technologies)
Show Figures

Figure 1

Back to TopTop