Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,475)

Search Parameters:
Keywords = energy reservoir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2475 KiB  
Article
Optimal Scheduling of a Hydropower–Wind–Solar Multi-Objective System Based on an Improved Strength Pareto Algorithm
by Haodong Huang, Qin Shen, Wan Liu, Ying Peng, Shuli Zhu, Rungang Bao and Li Mo
Sustainability 2025, 17(15), 7140; https://doi.org/10.3390/su17157140 - 6 Aug 2025
Abstract
Under the current context of the large-scale integration of wind and solar power, the coupling of hydropower with wind and solar energy brings significant impacts on grid stability. To fully leverage the regulatory capacity of hydropower, this paper develops a multi-objective optimization scheduling [...] Read more.
Under the current context of the large-scale integration of wind and solar power, the coupling of hydropower with wind and solar energy brings significant impacts on grid stability. To fully leverage the regulatory capacity of hydropower, this paper develops a multi-objective optimization scheduling model for hydropower, wind, and solar that balances generation-side power generation benefit and grid-side peak-regulation requirements, with the latter quantified by the mean square error of the residual load. To efficiently solve this model, Latin hypercube initialization, hybrid distance framework, and adaptive mutation mechanism are introduced into the Strength Pareto Evolutionary Algorithm II (SPEAII), yielding an improved algorithm named LHS-Mutate Strength Pareto Evolutionary Algorithm II (LMSPEAII). Its efficiency is validated on benchmark test functions and a reservoir model. Typical extreme scenarios—months with strong wind and solar in the dry season and months with weak wind and solar in the flood season—are selected to derive scheduling strategies and to further verify the effectiveness of the proposed model and algorithm. Finally, K-medoids clustering is applied to the Pareto front solutions; from the perspective of representative solutions, this reveals the evolutionary trends of different objective trade-off schemes and overall distribution characteristics, providing deeper insight into the solution set’s distribution features. Full article
22 pages, 9502 KiB  
Article
Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions
by Guo Tang, Dianbin Guo, Wei Zhong, Li Du, Xiang Mao and Man Li
Appl. Sci. 2025, 15(15), 8693; https://doi.org/10.3390/app15158693 (registering DOI) - 6 Aug 2025
Abstract
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled [...] Read more.
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled thermo-mechanical phase-field model (TM-PFM) was developed in COMSOL 6.2 Multiphysics to probe thermal fracturing mechanisms in reservoir rocks. The TM-PFM was validated against the analytical solutions for the temperature and stress fields under steady-state heat conduction in a thin-walled cylinder, three-point bending tests, and thermal shock tests. Subsequently, two distinct thermal fracturing modes in reservoir rock under high-temperature conditions were investigated: (i) fracture initiation driven by sharp temperature gradients during instantaneous thermal shocks, and (ii) crack propagation resulting from heterogeneous thermal expansion of constituent minerals. The proposed TM-PFM has been validated through systematic comparison between the simulation results and the corresponding experimental data, thereby demonstrating its capability to accurately simulate thermal fracturing. These findings provide mechanistic insights for optimizing geothermal energy extraction in EGS. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

13 pages, 2344 KiB  
Article
Study on the Risk of Reservoir Wellbore Collapse Throughout the Full Life Cycle of the Qianmiqiao Bridge Carbonate Rock Gas Storage Reservoir
by Yan Yu, Fuchun Tian, Feixiang Qin, Biao Zhang, Shuzhao Guo, Qingqin Cai, Zhao Chi and Chengyun Ma
Processes 2025, 13(8), 2480; https://doi.org/10.3390/pr13082480 - 6 Aug 2025
Abstract
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress [...] Read more.
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress in the Bs8 well (Qianmiqiao carbonate UGS) during drilling, acidizing, and injection-production operations, establishing a quantitative risk assessment model based on the Mohr–Coulomb criterion. Results indicate a significantly higher wellbore instability risk during drilling and initial gas injection stages, primarily manifested as shear failure, with greater severity observed in deeper well sections (e.g., 4277 m) due to higher in situ stresses. During acidizing, while the wellbore acid column pressure can reduce principal stress differences, the process also significantly weakens rock strength (e.g., by approximately 30%), inherently increasing the risk of wellbore instability, though the primary collapse mode remains shallow shear breakout. In the injection-production phase, increasing formation pressure is identified as the dominant factor, shifting the collapse mode from initial shallow shear failure to predominant wide shear collapse, notably at 90°/270° from the maximum horizontal stress direction, thereby significantly expanding the unstable zone. This dynamic assessment method provides crucial theoretical support for full life cycle integrity management and optimizing safe operation strategies for carbonate gas storage wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 2029 KiB  
Article
A Deep Reinforcement Learning Framework for Cascade Reservoir Operations Under Runoff Uncertainty
by Jing Xu, Jiabin Qiao, Qianli Sun and Keyan Shen
Water 2025, 17(15), 2324; https://doi.org/10.3390/w17152324 - 5 Aug 2025
Abstract
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address [...] Read more.
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address inflow variability. This study introduces a novel deep reinforcement learning (DRL) framework that tightly couples probabilistic runoff forecasting with adaptive reservoir scheduling. We integrate a Long Short-Term Memory (LSTM) neural network to model runoff uncertainty and generate probabilistic inflow forecasts, which are then embedded into a Proximal Policy Optimization (PPO) algorithm via Monte Carlo sampling. This unified forecast–optimize architecture allows for dynamic policy adjustment in response to stochastic hydrological conditions. A case study on China’s Xiluodu–Xiangjiaba cascade system demonstrates that the proposed LSTM-PPO framework achieves superior performance compared to traditional baselines, notably improving power output, storage utilization, and spillage reduction. The results highlight the method’s robustness and scalability, suggesting strong potential for supporting resilient water–energy nexus management under complex environmental uncertainty. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Enhancing Oil Recovery Through Vibration-Stimulated Waterflooding: Experimental Insights and Mechanisms
by Shixuan Lu, Zhengyuan Zhang, Liming Dai and Na Jia
Fuels 2025, 6(3), 56; https://doi.org/10.3390/fuels6030056 - 29 Jul 2025
Viewed by 214
Abstract
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both [...] Read more.
Vibration-stimulated waterflooding (VS-WF) is a promising enhanced oil recovery (EOR) method, especially for reservoirs with high-viscosity or emulsified oil. This study explores the effect of low-frequency vibration (2 Hz and 5 Hz) on oil mobilization under constant pressure and flow rate, using both crude and emulsified oil samples. Vibration significantly improves recovery by inducing stick-slip flow, lowering the threshold pressure, and enhancing oil phase permeability while suppressing the water phase flow. Crude oil recovery increased by up to 24% under optimal vibration conditions, while emulsified oil showed smaller gains due to higher viscosity. Intermittent vibration achieved similar recovery rates to continuous vibration, but with reduced energy use. Statistical analysis revealed a strong correlation between pressure fluctuations and oil production in vibration-assisted tests, but no such relationship in non-vibration cases. These results provide insight into the mechanisms behind vibration-enhanced recovery, supported by analysis of pressure and flow rate responses during waterflooding. Full article
Show Figures

Figure 1

38 pages, 6652 KiB  
Review
Remote Sensing Perspective on Monitoring and Predicting Underground Energy Sources Storage Environmental Impacts: Literature Review
by Aleksandra Kaczmarek and Jan Blachowski
Remote Sens. 2025, 17(15), 2628; https://doi.org/10.3390/rs17152628 - 29 Jul 2025
Viewed by 319
Abstract
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, [...] Read more.
Geological storage is an integral element of the green energy transition. Geological formations, such as aquifers, depleted reservoirs, and hard rock caverns, are used mainly for the storage of hydrocarbons, carbon dioxide and increasingly hydrogen. However, potential adverse effects such as ground movements, leakage, seismic activity, and environmental pollution are observed. Existing research focuses on monitoring subsurface elements of the storage, while on the surface it is limited to ground movement observations. The review was carried out based on 191 research contributions related to geological storage. It emphasizes the importance of monitoring underground gas storage (UGS) sites and their surroundings to ensure sustainable and safe operation. It details surface monitoring methods, distinguishing geodetic surveys and remote sensing techniques. Remote sensing, including active methods such as InSAR and LiDAR, and passive methods of multispectral and hyperspectral imaging, provide valuable spatiotemporal information on UGS sites on a large scale. The review covers modelling and prediction methods used to analyze the environmental impacts of UGS, with data-driven models employing geostatistical tools and machine learning algorithms. The limited number of contributions treating geological storage sites holistically opens perspectives for the development of complex approaches capable of monitoring and modelling its environmental impacts. Full article
(This article belongs to the Special Issue Advancements in Environmental Remote Sensing and GIS)
Show Figures

Figure 1

25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 331
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

20 pages, 6495 KiB  
Article
Fractal Characterization of Pore Structures in Marine–Continental Transitional Shale Gas Reservoirs: A Case Study of the Shanxi Formation in the Ordos Basin
by Jiao Zhang, Wei Dang, Qin Zhang, Xiaofeng Wang, Guichao Du, Changan Shan, Yunze Lei, Lindong Shangguan, Yankai Xue and Xin Zhang
Energies 2025, 18(15), 4013; https://doi.org/10.3390/en18154013 - 28 Jul 2025
Viewed by 348
Abstract
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, [...] Read more.
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, high-pressure mercury intrusion, N2 adsorption, and CO2 adsorption techniques, combined with fractal geometry modeling, were employed to characterize the pore structure of the Shanxi Formation marine–continental transitional shale. The shale exhibits generally high TOC content and abundant clay minerals, indicating strong hydrocarbon-generation potential. The pore size distribution is multi-modal: micropores and mesopores dominate, contributing the majority of the specific surface area and pore volume, whereas macropores display a single-peak distribution. Fractal analysis reveals that micropores have high fractal dimensions and structural regularity, mesopores exhibit dual-fractal characteristics, and macropores show large variations in fractal dimension. Characteristics of pore structure is primarily controlled by TOC content and mineral composition. These findings provide a quantitative basis for evaluating shale reservoir quality, understanding gas storage mechanisms, and optimizing strategies for sustainable of oil and gas development in marine–continental transitional shales. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

30 pages, 7246 KiB  
Article
Linear Dependence of Sublimation Enthalpy on Young’s Elastic Modulus: Implications for Thermodynamics of Solids
by Anne M. Hofmeister
Materials 2025, 18(15), 3535; https://doi.org/10.3390/ma18153535 - 28 Jul 2025
Viewed by 369
Abstract
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of [...] Read more.
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of classical thermodynamics to various applied sciences. Based on heat performing work, we show here, theoretically, that density times sublimation enthalpy divided by the molar mass (ρΔHsub/M, energy per volume), depends linearly on ϒ (1 GPa = 109 J m−3). Data on diverse metals, non-metallic elements, chalcogenides, simple oxides, alkali halides, and fluorides with cubic structures validate this relationship at ambient conditions. Furthermore, data on hcp metals and molecular solids show that ρΔHsub/M is proportional to ϒ for anisotropic materials. Proportionality constants vary only from 0.1 to 0.7 among these different material types (>100 substances), which shows that the elastic energy reservoir of solids is large. Proportionality constants depend on whether molecules or atoms are sublimated and are somewhat affected by structure. We show that ductility of refractory, high-ϒ metals affect high-temperature determinations of their ΔHsub. Our results provide information on sublimation processes and subsequent gas phase reactions, while showing that elasticity of solids is the key parameter needed to assessing their energetics. Implications are highlighted. Full article
Show Figures

Graphical abstract

20 pages, 5871 KiB  
Article
Carbon Management and Storage for Oltenia: Tackling Romania’s Decarbonization Goals
by Liviu Dumitrache, Silvian Suditu, Gheorghe Branoiu, Daniela Neagu and Marian Dacian Alecu
Sustainability 2025, 17(15), 6793; https://doi.org/10.3390/su17156793 - 25 Jul 2025
Viewed by 422
Abstract
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir [...] Read more.
This paper presents a numerical simulation study evaluating carbon dioxide capture and storage (CCS) feasibility for the Turceni Power Plant in Oltenia, Romania, using the nearby depleted Bibești-Bulbuceni gas reservoir. A comprehensive reservoir model was developed using Petrel software, integrating geological and reservoir engineering data for the formations of the Bibești-Bulbuceni structure, which is part of the western Moesian Platform. The static model incorporated realistic petrophysical inputs for the Meotian reservoirs. Dynamic simulations were performed using Eclipse compositional simulator with Peng–Robinson equation of state for a CH4-CO2 system. The model was initialized with natural gas initially in place at 149 bar reservoir pressure, then produced through depletion to 20.85 bar final pressure, achieving 80% recovery factor. CO2 injection simulations modeled a phased 19-well injection program over 25 years, with individual well constraints of 100 bar bottom-hole pressure and 200,000 Sm3/day injection rates. Results demonstrate successful injection of a 60 Mt CO2, with final reservoir pressure reaching 101 bar. The modeling framework validates the technical feasibility of transforming Turceni’s power generation into a net-zero process through CCS implementation. Key limitations include simplified geochemical interactions and relying on historical data with associated uncertainties. This study provides quantitative evidence for CCS viability in depleted hydrocarbon reservoirs, supporting industrial decarbonization strategies. The strategy not only aligns with the EU’s climate-neutral policy but also enhances local energy security by repurposing existing geological resources. The findings highlight the potential of CCS to bridge the gap between current energy systems and a sustainable, climate-neutral future. Full article
Show Figures

Figure 1

18 pages, 3257 KiB  
Article
Experimental Study on the Effects of Loading Rates on the Fracture Mechanical Characteristics of Coal Influenced by Long-Term Immersion in Mine Water
by Xiaobin Li, Gan Feng, Mingli Xiao, Guifeng Wang, Jing Bi, Chunyu Gao and Huaizhong Liu
Appl. Sci. 2025, 15(15), 8222; https://doi.org/10.3390/app15158222 - 24 Jul 2025
Viewed by 236
Abstract
Underground pumped storage hydropower stations (UPSH) are of great significance for energy structure adjustment, and coal mine underground reservoirs are an integral part of UPSH. This study investigates the fracture mechanics behavior of coal in mine water immersion environments with varying loading rates [...] Read more.
Underground pumped storage hydropower stations (UPSH) are of great significance for energy structure adjustment, and coal mine underground reservoirs are an integral part of UPSH. This study investigates the fracture mechanics behavior of coal in mine water immersion environments with varying loading rates and layer direction. Three types of samples were analyzed: Crack-arrester, Crack-splitter, and Crack-divider types. The immersion duration extended up to 120 days. The results indicate that, after immersion in mine water for 120 days, the fracture toughness (KIC), fracture modulus (ES), and absorbed energy (UT) of coal decreased by 60.87%, 53.38%, and 63.21%, respectively, compared to the unsaturated coal samples. An immersion period of 30 days significantly weakens the mechanical properties of coal fractures. The KIC, ES, and UT of coal demonstrate a positive correlation with loading rate, primarily influenced by the duration of coal damage. At the same loading rate, the order of fracture toughness among the three coal types is as follows: Crack-divider > Crack-arrester > Crack-splitter. This hierarchy is determined by the properties of the coal matrix and bedding planes, as well as the mechanical structures composed of them. This study holds significant implications for the safe construction and operational design of underground water reservoirs in coal mines. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 339
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 328
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

17 pages, 1494 KiB  
Article
All-Optical Encryption and Decryption at 120 Gb/s Using Carrier Reservoir Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometers
by Amer Kotb, Kyriakos E. Zoiros and Wei Chen
Micromachines 2025, 16(7), 834; https://doi.org/10.3390/mi16070834 - 21 Jul 2025
Viewed by 512
Abstract
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor [...] Read more.
Encryption and decryption are essential components in signal processing and optical communication systems, providing data confidentiality, integrity, and secure high-speed transmission. We present a novel design and simulation of an all-optical encryption and decryption system operating at 120 Gb/s using carrier reservoir semiconductor optical amplifiers (CR-SOAs) embedded in Mach–Zehnder interferometers (MZIs). The architecture relies on two consecutive exclusive-OR (XOR) logic gates, implemented through phase-sensitive interference in the CR-SOA-MZI structure. The first XOR gate performs encryption by combining the input data signal with a secure optical key, while the second gate decrypts the encoded signal using the same key. The fast gain recovery and efficient carrier dynamics of CR-SOAs enable a high-speed, low-latency operation suitable for modern photonic networks. The system is modeled and simulated using Mathematica Wolfram, and the output quality factors of the encrypted and decrypted signals are found to be 28.57 and 14.48, respectively, confirming excellent signal integrity and logic performance. The influence of key operating parameters, including the impact of amplified spontaneous emission noise, on system behavior is also examined. This work highlights the potential of CR-SOA-MZI-based designs for scalable, ultrafast, and energy-efficient all-optical security applications. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

13 pages, 2340 KiB  
Article
The Microscopic Mechanism of High Temperature Resistant Core-Shell Nano-Blocking Agent: Molecular Dynamics Simulations
by Zhenghong Du, Jiaqi Xv, Jintang Wang, Juyuan Zhang, Ke Zhao, Qi Wang, Qian Zheng, Jianlong Wang, Jian Li and Bo Liao
Polymers 2025, 17(14), 1969; https://doi.org/10.3390/polym17141969 - 17 Jul 2025
Viewed by 326
Abstract
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and [...] Read more.
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and adapting to extreme wellbore environments. In response to the technical demands of nanoparticle-based plugging in shale reservoirs, this study systematically investigated the microscopic interaction mechanisms of nano-plugging agent shell polymers (Ployk) with various reservoir minerals under different temperature and salinity conditions using molecular simulation methods. Key parameters, including interfacial interaction energy, mean square displacement, and system density distribution, were calculated to thoroughly analyze the effects of temperature and salinity variations on adsorption stability and structural evolution. The results indicate that nano-plugging agent shell polymers exhibit pronounced mineral selectivity in their adsorption behavior, with particularly strong adsorption performance on SiO2 surfaces. Both elevated temperature and increased salinity were found to reduce the interaction strength between the shell polymers and mineral surfaces and significantly alter the spatial distribution and structural ordering of water molecules near the interface. These findings not only elucidate the fundamental interfacial mechanisms of nano-plugging agents in shale reservoirs but also provide theoretical guidance for the precise design of advanced nano-plugging agent materials, laying a scientific foundation for improving the engineering application performance of shale oil and gas wellbore-plugging technologies. Full article
Show Figures

Figure 1

Back to TopTop