Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = energy ecological footprint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2199 KiB  
Article
Carbon Footprint and Energy Balance Analysis of Rice-Wheat Rotation System in East China
by Dingqian Wu, Yezi Shen, Yuxuan Zhang, Tianci Zhang and Li Zhang
Agronomy 2025, 15(8), 1778; https://doi.org/10.3390/agronomy15081778 - 24 Jul 2025
Viewed by 275
Abstract
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies [...] Read more.
The rice-wheat rotation is the main agricultural cropping system in Jiangsu Province, playing a vital role in ensuring food security and promoting economic development. However, current research on rice-wheat systems mainly focuses on in-situ controlled experiments at the point scale, with limited studies addressing carbon footprint (CF) and energy balance (EB) at the regional scale and long time series. Therefore, we analyzed the evolution patterns of the CF and EB of the rice-wheat system in Jiangsu Province from 1980 to 2022, as well as their influencing factors. The results showed that the sown area and total yield of rice and wheat exhibited an increasing–decreasing–increasing trend during 1980–2022, while the yield per unit area increased continuously. The CF of rice and wheat increased by 4172.27 kg CO2 eq ha−1 and 2729.18 kg CO2 eq ha−1, respectively, with the greenhouse gas emissions intensity (GHGI) showing a fluctuating upward trend. Furthermore, CH4 emission, nitrogen (N) fertilizer, and irrigation were the main factors affecting the CF of rice, with proportions of 36%, 20.26%, and 17.34%, respectively. For wheat, N fertilizer, agricultural diesel, compound fertilizer, and total N2O emission were the primary contributors, accounting for 42.39%, 22.54%, 13.65%, and 13.14%, respectively. Among energy balances, the net energy (NE) of rice exhibited an increasing and then fluctuating trend, while that of wheat remained relatively stable. The energy utilization efficiency (EUE), energy productivity (EPD), and energy profitability (EPF) of rice showed an increasing and then decreasing trend, while wheat decreased by 46.31%, 46.31%, and 60.62% during 43 years, respectively. Additionally, N fertilizer, agricultural diesel, and compound fertilizer accounted for 43.91–45.37%, 21.63–25.81%, and 12.46–20.37% of energy input for rice and wheat, respectively. Moreover, emission factors and energy coefficients may vary over time, which is an important consideration in the analysis of long-term time series. This study analyzes the ecological and environmental effects of the rice-wheat system in Jiangsu Province, which helps to promote the development of agriculture in a green, low-carbon, and high-efficiency direction. It also offers a theoretical basis for constructing a low-carbon sustainable agricultural production system. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

23 pages, 2364 KiB  
Review
A Comprehensive Review of Applications and Environmental Risks of Waste Plastics in Asphalt Pavements
by Ju Pan, Jue Li, Bailin Shan, Yongsheng Yao and Chao Huang
Materials 2025, 18(15), 3441; https://doi.org/10.3390/ma18153441 - 22 Jul 2025
Viewed by 252
Abstract
The global plastic crisis has generated significant interest in repurposing waste plastics as asphalt modifiers, presenting both environmental and engineering advantages. This study offers a comprehensive review of the applications of waste plastics in asphalt, focusing on their types, modification mechanisms, incorporation techniques, [...] Read more.
The global plastic crisis has generated significant interest in repurposing waste plastics as asphalt modifiers, presenting both environmental and engineering advantages. This study offers a comprehensive review of the applications of waste plastics in asphalt, focusing on their types, modification mechanisms, incorporation techniques, and environmental impacts, alongside proposed mitigation strategies. Commonly utilized plastics include polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET), each affecting asphalt performance differently—enhancing high-temperature stability and fatigue resistance while exhibiting varying levels of compatibility and environmental risks. The incorporation techniques, namely wet and dry processes, differ in terms of efficiency, cost, and environmental footprint: the wet process enhances durability but requires more energy, whereas the dry process is more cost-effective but may lead to uneven dispersion. Environmental concerns associated with these practices include toxic emissions (such as polycyclic aromatic hydrocarbons and volatile organic compounds) during production, microplastic generation through abrasion and weathering, and ecological contamination of soil and water. Mitigation strategies encompass optimizing plastic selection, improving pre-treatment and compatibilization methods, controlling high-temperature processing, and monitoring the spread of microplastics. This review highlights the need for balanced adoption of waste plastic-modified asphalt, emphasizing sustainable practices to maximize benefits while minimizing risks. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 993 KiB  
Review
Energy Footprint of Cheese: A Critical Review of the Environmental Impact and Opportunities for Sustainability
by Karina S. Silvério, Daniela Freitas and João M. Dias
Appl. Sci. 2025, 15(14), 8072; https://doi.org/10.3390/app15148072 - 20 Jul 2025
Viewed by 532
Abstract
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the [...] Read more.
Cheese production is an ancient practice that is associated with the food and cultural identity of different peoples. There are over 500 cheese types globally, including 207 with protected denomination of origin (PDO) and 70 with protected geographical indication (PGI) status in the European Union (EU). Each cheese has various biochemical compositions, production methods, and maturation environments. This study has provided a critical review of the environmental impacts of cheese production, focusing on energy consumption, greenhouse gas (GHG) emissions, and the integration of renewable energy sources as sustainable strategies for this sector. Based on case studies and life cycle assessment (LCA) methodologies, the analysis revealed significant variability in energy use (3.0 to 70.2 MJ/kg) and GHG emissions (up to 22.13 kg CO2 eq/kg), influenced by factors such as the cheese type, production complexity, system boundaries, and the technological or geographical context. Particular attention was given to heat treatment, refrigeration, and maturation processes, which contribute substantially to the overall energy footprint. The paper also discusses the methodological challenges in LCA studies, including the role of co-product allocation and database limitations. Finally, strategic renewable energy options, such as biogas recovery and solar thermal integration, are discussed as sustainable alternatives to reduce the environmental footprint of the dairy sector and support its sustainability. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

18 pages, 522 KiB  
Article
Rural Entrepreneurs and Forest Futures: Pathways to Emission Reduction and Sustainable Energy
by Ephraim Daka
Sustainability 2025, 17(14), 6526; https://doi.org/10.3390/su17146526 - 16 Jul 2025
Viewed by 257
Abstract
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use [...] Read more.
Rural areas around the world are increasingly dealing with energy and environmental challenges. These challenges are particularly acute in developing countries, where persistent reliance on traditional energy sources—such as wood fuel—intersects with concerns about forest conservation and energy sustainability. While wood fuel use is often portrayed as unsustainable, it is important to acknowledge that much of it remains ecologically viable and socially embedded. This study explores the role of rural entrepreneurs in shaping low-carbon transitions at the intersection of household energy practices and environmental stewardship. Fieldwork was carried out in four rural Zambian communities in 2016 and complemented by 2024 follow-up reports. It examines the connections between household energy choices, greenhouse gas emissions, and forest resource dynamics. Findings reveal that over 60% of rural households rely on charcoal for cooking, with associated emissions estimated between 80 and 150 kg CO2 per household per month. Although this is significantly lower than the average per capita carbon footprint in industrialized countries, such emissions are primarily biogenic in nature. While rural communities contribute minimally to global climate change, their practices have significant local environmental consequences. This study draws attention to the structural constraints as well as emerging opportunities within Zambia’s rural energy economy. It positions rural entrepreneurs not merely as policy recipients but as active agents of innovation, environmental monitoring, and participatory resource governance. A model is proposed to support sustainable rural energy transitions by aligning forest management with context-sensitive emissions strategies. Full article
Show Figures

Figure 1

18 pages, 14333 KiB  
Article
Unveiling the Intrinsic Linkages Between “Water–Carbon–Ecology” Footprints in the Yangtze River Economic Belt and the Yellow River Basin
by Daiwei Zhang, Ming Jing, Weiwei Chen, Buhui Chang, Ting Li, Shuai Zhang, En Liu, Ziming Li and Chang Liu
Sustainability 2025, 17(14), 6419; https://doi.org/10.3390/su17146419 - 14 Jul 2025
Viewed by 244
Abstract
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically [...] Read more.
Unveiling the relationship between the “Water–Carbon–Ecology” (W-C-E) footprints embodied in regional trade and resource flows is crucial for enhancing the synergistic benefits between economic development and environmental protection. This study constructs an association framework based on the Multi-Regional Input–Output (MRIO) model to systematically evaluate the “W-C-E” footprints and resource flow characteristics of the Yangtze River Economic Belt and the Yellow River Basin. By integrating import and export trade data, this study reveals the patterns of resource flows within and outside these regions. This research delineates the connection patterns between the “W-C-E” footprints and resource flows across three dimensions: spatial, sectoral, and environmental–economic factors. The results indicate that the Yangtze River Economic Belt has gained significant economic benefits from regional trade but also bears substantial environmental costs. Import and export trade further exacerbate the imbalance in regional resource flows, with the Yangtze River Economic Belt exporting many embodied resources through high-energy-consuming products, while the Yellow River Basin increases resource input by importing products such as food and tobacco. Sectoral analysis reveals that agriculture, electricity and water supply, and mining are the sectors with the highest net output of “W-C-E” footprints in both regions, whereas services, food and tobacco, and construction are the sectors with the highest net input. The comprehensive framework of this study can be extended to the analysis of resource–environment–economic systems in other regions, providing methodological support for depicting complex human–land system linkage patterns. Full article
Show Figures

Figure 1

32 pages, 2059 KiB  
Review
A State-of-the-Art Review on the Potential of Waste Cooking Oil as a Sustainable Insulating Liquid for Green Transformers
by Samson Okikiola Oparanti, Esther Ogwa Obebe, Issouf Fofana and Reza Jafari
Appl. Sci. 2025, 15(14), 7631; https://doi.org/10.3390/app15147631 - 8 Jul 2025
Viewed by 496
Abstract
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to [...] Read more.
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to their biodegradability, non-toxicity to aquatic and terrestrial ecosystems, and lower carbon emissions. Adopting vegetable-based insulating liquids also aligns with United Nations Sustainable Development Goals (SDGs) 7 and 13, which focus on cleaner energy sources and reducing carbon emissions. Despite these benefits, most commercially available vegetable-based insulating liquids are derived from edible seed oils, raising concerns about food security and the environmental footprint of large-scale agricultural production, which contributes to greenhouse gas emissions. In recent years, waste cooking oils (WCOs) have emerged as a promising resource for industrial applications through waste-to-value conversion processes. However, their potential as transformer insulating liquids remains largely unexplored due to limited research and available data. This review explores the feasibility of utilizing waste cooking oils as green transformer insulating liquids. It examines the conversion and purification processes required to enhance their suitability for insulation applications, evaluates their dielectric and thermal performance, and assesses their potential implementation in transformers based on existing literature. The objective is to provide a comprehensive assessment of waste cooking oil as an alternative insulating liquid, highlight key challenges associated with its adoption, and outline future research directions to optimize its properties for high-voltage transformer applications. Full article
(This article belongs to the Special Issue Novel Advances in High Voltage Insulation)
Show Figures

Figure 1

32 pages, 8765 KiB  
Article
Hybrid Efficient Fast Charging Strategy for WPT Systems: Memetic-Optimized Control with Pulsed/Multi-Stage Current Modes and Neural Network SOC Estimation
by Marouane El Ancary, Abdellah Lassioui, Hassan El Fadil, Yassine El Asri, Anwar Hasni, Abdelhafid Yahya and Mohammed Chiheb
World Electr. Veh. J. 2025, 16(7), 379; https://doi.org/10.3390/wevj16070379 - 6 Jul 2025
Viewed by 446
Abstract
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a [...] Read more.
This paper presents a hybrid fast charging strategy for static wireless power transfer (WPT) systems that synergistically combines pulsed current and multi-stage current (MCM) modes to enable rapid yet battery-health-conscious electric vehicle (EV) charging, thereby promoting sustainable transportation. The proposed approach employs a memetic algorithm (MA) to dynamically optimize the charging parameters, achieving an optimal balance between speed and battery longevity while maintaining 90.78% system efficiency at the SAE J2954-standard 85 kHz operating frequency. A neural-network-based state of charge (SOC) estimator provides accurate real-time monitoring, complemented by MA-tuned PI control for enhanced resonance stability and adaptive pulsed current–MCM profiles for the optimal energy transfer. Simulations and experimental validation demonstrate faster charging compared to that using the conventional constant current–constant voltage (CC-CV) methods while effectively preserving the battery’s state of health (SOH)—a critical advantage that reduces the environmental impact of frequent battery replacements and minimizes the carbon footprint associated with raw material extraction and battery manufacturing. By addressing both the technical challenges of high-power WPT systems and the ecological imperative of battery preservation, this research bridges the gap between fast charging requirements and sustainable EV adoption, offering a practical solution that aligns with global decarbonization goals through optimized resource utilization and an extended battery service life. Full article
Show Figures

Graphical abstract

17 pages, 2087 KiB  
Article
Intertemporal Allocation of Recycling for Long-Lived Materials from Energy Infrastructure
by Mario Schmidt and Pia Heidak
Energies 2025, 18(13), 3393; https://doi.org/10.3390/en18133393 - 27 Jun 2025
Viewed by 340
Abstract
Energy conversion and infrastructure facilities consist of large amounts of metal and have lifetimes of several decades. When recycling metals, the methods of allocation play a decisive role in evaluating how primary and secondary materials, as well as the products that are produced [...] Read more.
Energy conversion and infrastructure facilities consist of large amounts of metal and have lifetimes of several decades. When recycling metals, the methods of allocation play a decisive role in evaluating how primary and secondary materials, as well as the products that are produced with them, are to be evaluated ecologically. So-called credits for recycling are the subject of a particularly controversial discussion. This article shows that the current practice of giving credits for long-lasting products leads to a significant distortion of the actual emissions. Using the examples of steel, aluminum, and copper, prospective LCA data is used to show how the carbon footprint actually behaves. When credits are applied, the time dependency of emissions must be taken into account; otherwise, burden shifting into the future occurs, which can hardly be considered sustainable. The increase compared to the conventional time-independent practice lies, depending on the metal, at 70 to 300%. It is recommended that the cutoff approach be used conservatively when allocating recycling cascades in order to optimize environmental impact and avoid greenwashing. Full article
Show Figures

Figure 1

35 pages, 1661 KiB  
Article
Renewable Energy and CO2 Emissions: Analysis of the Life Cycle and Impact on the Ecosystem in the Context of Energy Mix Changes
by Sebastian Sobczuk, Agata Jaroń, Mateusz Mazur and Anna Borucka
Energies 2025, 18(13), 3332; https://doi.org/10.3390/en18133332 - 25 Jun 2025
Viewed by 1817
Abstract
This study provides a comprehensive life-cycle assessment (LCA) of renewable energy sources, focusing on the CO2 emissions and ecological impacts associated with photovoltaic (PV) systems and wind energy technologies. The research evaluates emissions from raw material extraction, production, operation, and disposal, as [...] Read more.
This study provides a comprehensive life-cycle assessment (LCA) of renewable energy sources, focusing on the CO2 emissions and ecological impacts associated with photovoltaic (PV) systems and wind energy technologies. The research evaluates emissions from raw material extraction, production, operation, and disposal, as well as the role of energy-storage systems. Photovoltaic systems exhibit life-cycle CO2 emissions ranging between 28–100 [g CO2eq/kWh], influenced by factors like production energy mix and panel efficiency. Wind turbines demonstrate lower emissions, approximately 7–38 [g CO2eq/kWh], with variations based on turbine type and operational conditions. Despite low operational emissions, the full environmental impact of renewables includes biodiversity disruptions, land use changes, and material recycling challenges. The findings highlight that while renewable technologies significantly reduce CO2 emissions compared to fossil fuels, their ecological footprint necessitates integrated sustainability strategies. The analysis supports policymakers and stakeholders in making informed decisions for a balanced energy transition, emphasizing the need for continued innovation in renewable technology life-cycle management. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

26 pages, 583 KiB  
Article
Exploring the Link Between Energy Consumption, Economic Growth, and Ecological Footprint in the Major Importers of Poland Energy: A Panel Data Analysis
by Mohammad Tawfiq Noorzai, Aneta Bełdycka-Bórawska, Aziz Kutlar, Tomasz Rokicki and Piotr Bórawski
Energies 2025, 18(13), 3303; https://doi.org/10.3390/en18133303 - 24 Jun 2025
Viewed by 540
Abstract
This study explores the relationship between renewable and non-renewable energy consumption, economic growth (EG), and ecological footprint (EF) in Poland’s top 18 energy-importing countries from 2000 to 2022. While the energy-growth-environment nexus is well-studied, limited attention has been paid to how a single [...] Read more.
This study explores the relationship between renewable and non-renewable energy consumption, economic growth (EG), and ecological footprint (EF) in Poland’s top 18 energy-importing countries from 2000 to 2022. While the energy-growth-environment nexus is well-studied, limited attention has been paid to how a single major energy-exporting country influences sustainability in its trade partners, a gap this study aims to fill. A panel dataset was constructed using five key variables: real GDP per capita, Poland’s fuel exports, ecological footprint per capita, renewable energy consumption, and primary energy consumption per capita. Methodologically, the study employs panel cointegration techniques, including FMOL and DOLS estimators for long-run analysis, as well as the VECM and Granger causality tests for the short run. The study’s main contribution lies in its novel focus on Poland’s export influence and the application of advanced econometric models to examine long-run and short-run effects. Results indicate a stable long-run cointegration relationship. Specifically, a 1% increase in renewable energy use is associated with a 0.0219% rise in GDP per capita. Additionally, Poland’s fuel exports and ecological footprint positively impact growth, whereas primary energy use is statistically insignificant. These findings offer practical implications for policymakers in Poland and its trading partners aiming to align energy trade with sustainability goals. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 1989 KiB  
Article
Environmental Footprints of Red Wine Production in Piedmont, Italy
by Ilaria Orlandella, Matteo Cicolin, Marta Tuninetti and Silvia Fiore
Sustainability 2025, 17(13), 5760; https://doi.org/10.3390/su17135760 - 23 Jun 2025
Viewed by 427
Abstract
Italy is a global top wine producer, with emphasis on high-quality wines. This study investigates the Carbon Footprint (CF), Water Footprint (WF), and Ecological Footprint (EF) of twelve red wine producers in Piedmont, Northern Italy. The analysis was based on a 0.75 L [...] Read more.
Italy is a global top wine producer, with emphasis on high-quality wines. This study investigates the Carbon Footprint (CF), Water Footprint (WF), and Ecological Footprint (EF) of twelve red wine producers in Piedmont, Northern Italy. The analysis was based on a 0.75 L wine bottle as functional unit (FU). Twelve producers were interviewed and given questionnaires, which made it possible to gather primary data for the environmental evaluation that described vineyard and agricultural operations and wine production. The average CF was 0.88 ± 0.3 kg CO2eq, with 44% of CF associated with the glass bottle, 20% to the diesel fuel fed to the agricultural machines, 32% to electricity consumption, and 4% to other contributions. The average WF was 881 ± 252.4 L, with 98% Green WF due to evapotranspiration, and 2% Blue and Grey WF. The average EF was 81.3 ± 57.2 global ha, 73% ascribed to the vineyard area and 27% to CO2 assimilation. The obtained CF and WF values align with existing literature, while no comparison is possible for the EF data, which are previously unknown. To reduce the environmental impacts of wine production, actions like using recycled glass bottles, electric agricultural machines and renewable energy can help. However, high-quality wine production in Piedmont is deeply rooted in tradition and mostly managed by small producers. Further research should investigate the social acceptance of such actions, and policies supporting economic incentives could be key enablers. Full article
(This article belongs to the Special Issue Climate Change and Sustainable Agricultural System)
Show Figures

Figure 1

6 pages, 175 KiB  
Proceeding Paper
Comparative Analysis of Energy Consumption and Carbon Footprint in Automatic Speech Recognition Systems: A Case Study Comparing Whisper and Google Speech-to-Text
by Jalal El Bahri, Mohamed Kouissi and Mohammed Achkari Begdouri
Comput. Sci. Math. Forum 2025, 10(1), 6; https://doi.org/10.3390/cmsf2025010006 - 16 Jun 2025
Viewed by 246
Abstract
This study investigates the energy consumption and carbon footprint of two prominent automatic speech recognition (ASR) systems: OpenAI’s Whisper and Google’s Speech-to-Text API. We evaluate both local and cloud-based speech recognition approaches using a public Kaggle dataset of 20,000 short audio clips in [...] Read more.
This study investigates the energy consumption and carbon footprint of two prominent automatic speech recognition (ASR) systems: OpenAI’s Whisper and Google’s Speech-to-Text API. We evaluate both local and cloud-based speech recognition approaches using a public Kaggle dataset of 20,000 short audio clips in Urdu, utilizing CodeCarbon, PyJoule, and PowerAPI for comprehensive energy profiling. As a result of our analysis, we expose some substantial differences between the two systems in terms of energy efficiency and carbon emissions, with the cloud-based solution showing substantially lower environmental impact despite comparable accuracy. We discuss the implications of these findings for sustainable AI deployment and minimizing the ecological footprint of speech recognition technologies. Full article
36 pages, 4500 KiB  
Article
Evaluation of Personal Ecological Footprints for Climate Change Mitigation and Adaptation: A Case Study in the UK
by Ahmed Abugabal, Mawada Abdellatif, Ana Armada Bras and Laurence Brady
Sustainability 2025, 17(12), 5415; https://doi.org/10.3390/su17125415 - 12 Jun 2025
Viewed by 692
Abstract
Climate change is one of our most critical challenges, requiring urgent and comprehensive action across all levels of society. Individual actions and their roles in mitigating and adapting to climate change remain underexplored, despite global efforts. Under this context, this study was conducted [...] Read more.
Climate change is one of our most critical challenges, requiring urgent and comprehensive action across all levels of society. Individual actions and their roles in mitigating and adapting to climate change remain underexplored, despite global efforts. Under this context, this study was conducted to evaluate the ecological footprint of individuals for climate change mitigation. A structured online survey was designed and distributed through email lists, social media platforms, and community organisations to over 200 potential participants in the northwest of the UK. Due to the anonymous nature of the survey, only 83 individuals from diverse demographics completed the questionnaire. A carbon footprint calculator using conversion factors has been employed, based on energy consumption, travel, and material goods use. Participants are categorised into four groups based on their annual CO2 emissions, ranging from less than 2 tonnes to over 10 tonnes. Personalised recommendations provided by the calculator focus on practical strategies, including adopting renewable energy, minimising unnecessary consumption, and opting for sustainable transportation. Results showed that only 5.5% of participants who employed advanced technologies and smart home technologies, 1.8% were implementing water-saving practices and 65.4% preferred to use their own car over other modes of transportation. In addition, the study found that 67.3% of participants had no or only a very limited knowledge of renewable energy technologies, indicating a need for education and awareness campaigns. The findings also highlight the importance of addressing demographic differences in ecological footprints, as these variations can provide insights into tailored policy interventions. Overall, despite the study’s limited sample size, this research contributes to the growing body of evidence on the importance of individual action in combating climate change and provides actionable insights for policymakers and educators aiming to foster a more sustainable lifestyle. Future studies with larger samples are recommended to validate and expand upon these findings. Full article
Show Figures

Figure 1

18 pages, 1390 KiB  
Article
Durability and Mechanical Analysis of Basalt Fiber Reinforced Metakaolin–Red Mud-Based Geopolymer Composites
by Ouiame Chakkor
Buildings 2025, 15(12), 2010; https://doi.org/10.3390/buildings15122010 - 11 Jun 2025
Cited by 1 | Viewed by 542
Abstract
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint [...] Read more.
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint and potential to utilize industrial byproducts. Geopolymer mortar, like other cementitious substances, exhibits brittleness and tensile weakness. Basalt fibers serve as fracture-bridging reinforcements, enhancing flexural and tensile strength by redistributing loads and postponing crack growth. Basalt fibers enhance the energy absorption capacity of the mortar, rendering it less susceptible to abrupt collapse. Basalt fibers have thermal stability up to about 800–1000 °C, rendering them appropriate for geopolymer mortars designed for fire-resistant or high-temperature applications. They assist in preserving structural integrity during heat exposure. Fibers mitigate early-age microcracks resulting from shrinkage, drying, or heat gradients. This results in a more compact and resilient microstructure. Using basalt fibers improves surface abrasion and impact resistance, which is advantageous for industrial flooring or infrastructure applications. Basalt fibers originate from natural volcanic rock, are non-toxic, and possess a minimal ecological imprint, consistent with the sustainability objectives of geopolymer applications. This study investigates the mechanical and thermal performance of a geopolymer mortar composed of metakaolin and red mud as binders, with basalt powder and limestone powder replacing traditional sand. The primary objective was to evaluate the effect of basalt fiber incorporation at varying contents (0.4%, 0.8%, and 1.2% by weight) on the durability and strength of the mortar. Eight different mortar mixes were activated using sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions. Mechanical properties, including compressive strength, flexural strength, and ultrasonic pulse velocity (UPV), were tested 7 and 28 days before and after exposure to elevated temperatures (200, 400, 600, and 800 °C). The results indicated that basalt fiber significantly enhanced the performance of the geopolymer mortar, particularly at a content of 1.2%. Specimens with 1.2% fiber showed up to 20% improvement in compressive strength and 40% in flexural strength after thermal exposure, attributed to the fiber’s role in microcrack bridging and structural densification. Subsequent research should concentrate on refining fiber type, dose, and dispersion techniques to improve mechanical performance and durability. Examinations of microstructural behavior, long-term durability under environmental settings, and performance following high-temperature exposure are crucial. Furthermore, investigations into hybrid fiber systems, extensive structural applications, and life-cycle evaluations will inform the practical and sustainable implementation in the buildings. Full article
Show Figures

Figure 1

24 pages, 3266 KiB  
Review
State of the Art Review on Hempcrete as a Sustainable Substitute for Traditional Construction Materials for Home Building
by Wei Tong and Ali M. Memari
Buildings 2025, 15(12), 1988; https://doi.org/10.3390/buildings15121988 - 9 Jun 2025
Viewed by 1587
Abstract
Currently, the construction industry relies mainly on non-environmentally sustainable materials such as fired clay brick, concrete, and steel, which significantly contribute to global carbon dioxide generation, leading to environmental degradation. In response to mounting environmental concerns, there is a growing emphasis on developing [...] Read more.
Currently, the construction industry relies mainly on non-environmentally sustainable materials such as fired clay brick, concrete, and steel, which significantly contribute to global carbon dioxide generation, leading to environmental degradation. In response to mounting environmental concerns, there is a growing emphasis on developing and utilizing low-impact materials that mitigate the ecological footprint of construction activities. This review offers a detailed overview of current formulations and applications of hempcrete and compares the performance of different types of hempcrete as construction materials. Additionally, this paper seeks to evaluate the potential of hempcrete as a sustainable substitute for traditional construction materials with high energy demands and significant CO2 emissions based on life cycle assessment (LCA). Furthermore, this study summarizes current challenges and prospects for composite innovations in hempcrete, emphasizing the need for standardized product control and broader industrial acceptance, thus providing useful insights for practitioners and researchers in the field. Full article
Show Figures

Figure 1

Back to TopTop