Renewable Energy and CO2 Emissions: Analysis of the Life Cycle and Impact on the Ecosystem in the Context of Energy Mix Changes
Abstract
1. Introduction
- What are the total life-cycle emissions of photovoltaic and wind energy, taking into account Poland’s specific conditions and the country’s electric energy demand?
- What are the environmental impacts, beyond emissions, resulting from the operation of photovoltaic systems and wind farms?
- Within what timeframe, can Poland achieve the targeted level of installed capacity in renewable energy sources?
2. Theoretical Foundations of Research
2.1. Discussion on the Assumption of Zero-Emission Renewable Energy
2.2. Life-Cycle Analysis of Emissions in Renewable Energy Production
2.2.1. Life-Cycle Emissions of Photovoltaic Systems
2.2.2. Life-Cycle CO2 Emissions of Wind Turbines
2.2.3. Energy-Storage Needs in RES Systems
3. RES—Case Study in Poland
3.1. Current Implementation Status and Challenges in the Field of Renewable Energy Sources
3.2. Challenges in Grid Infrastructure and Integration of Renewable Energy Sources
3.3. Photovoltaics and Its Importance in the Context of RES and LCA
- C—the number of emissions in the life cycle of the panels,
- P—the amount of emissions that were generated in the production of photovoltaic systems,
- M—the amount of emissions that constant in the process of storing energy from photovoltaic systems,
- K—emission during conversion of solar energy to electricity = 0,
- U—the amount of emissions that arise during the disposal of photovoltaic panels—it should be taken into account that part of the resources is disposed of and part of the recycling.
- Eu—emission of disposal,
- Er—emission of recycled material.
3.3.1. Production of Photovoltaic (PV) Panels
- Ei—amount of energy used in the production of 1 [m2] of the panel [kWh/m2],
- Re—emission factor for electricity [kg/kWh],
- S—panel area [m2].
3.3.2. Energy Storage from Photovoltaic (PV) Panels
- Ri—material ratio [t],
- RiR—CO2 emission factor [t CO2/kg].
3.3.3. Decommissioning of Photovoltaic (PV) Panels
- Riu—material to be recycled [t],
- Ris—material to be cleaned [t],
- RiR—CO2 emission factor [t CO2/kg],
- S—area [m2].
3.3.4. LCA Balance per Total Power Obtained from Photovoltaic Panels
3.4. Wind Calculations
- C—the lifetime amount of emissions of one wind turbine [g /kWh],
- P—the amount of emissions that were generated in the production of the wind turbine,
- T—the amount of emissions associated with transporting the turbine from the production site to the place of operation,
- M—the amount of emissions from the energy storage process from the wind turbine,
- U—the amount of emissions that have arisen from the disposal of the wind turbine.
3.4.1. Wind Turbine Production
3.4.2. Wind Turbine Transport
3.4.3. Storing Energy from a Wind Turbine
3.4.4. Wind Turbine Disposal
3.4.5. Total CO2 Emissions from Wind Farms and Energy Storage over the Entire Life Cycle
3.5. Life-Cycle Emissions of Energy-Storage Technology
3.5.1. CO2 Emissions in the Lithium-Ion Battery Manufacturing Process
3.5.2. CO2 Emissions During Battery Operation and Disposal
3.6. Potential Impact of Renewable Energy Production on Ecosystems
3.6.1. Impact of Wind Farms on Ecosystems
3.6.2. Impact of Photovoltaic Farms on Ecosystems
4. Comparison of CO2 Emissions over the Life Cycle of Different Energy Sources
5. Discussion of Results
6. Conclusions
6.1. General Summary
6.2. Theoretical and Practical Contributions
6.3. Limitations and Directions for Further Research
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Nugent, D.; Sovacool, B.K. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. Energy Policy 2014, 65, 229–244. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- IRENA. Global Energy Transformation: A Roadmap to 2050, 2019 ed.; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Ali, M.; Seraj, M. Nexus between energy consumption and carbon dioxide emission: Evidence from 10 highest fossil fuel and 10 highest renewable energy-using economies. Environ. Sci. Pollut. Res. 2022, 29, 87901–87922. [Google Scholar] [CrossRef]
- Fischer, C.; Torvanger, A.; Shrivastava, M.K.; Sterner, T.; Stigson, P. How Should Support for Climate-Friendly Technologies Be Designed? Ambio 2012, 41, 33–45. [Google Scholar] [CrossRef]
- Lund, H.; Mathiesen, B.V.; Connolly, D.; Ostergaard, P.A. Renewable energy systems—A smart energy systems approach to the choice and modelling of 100% renewable solutions. Chem. Eng. Trans. 2014, 39, 1–6. [Google Scholar] [CrossRef]
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef]
- Ferdous, J.; Bensebaa, F.; Hewage, K.; Bhowmik, P.; Pelletier, N. Use of process simulation to obtain life cycle inventory data for LCA: A systematic review. Clean. Environ. Syst. 2024, 14, 100215. [Google Scholar] [CrossRef]
- Khatri, P.; Bergman, R.; Nepal, P.; Nicholls, D.; Gray, A. Evaluating life cycle greenhouse gas emissions from alternative forest residue utilization: Energy and product pathways. Biomass Bioenergy 2025, 201, 108059. [Google Scholar] [CrossRef]
- Xu, X.; Chen, X.; Wang, H.; Zhao, L.; Wang, Z.; Chen, W.Q. Silicon-related materials demand and embodied greenhouse gas emissions of photovoltaic systems in China’s regions. Resour. Conserv. Recycl. 2025, 215, 108076. [Google Scholar] [CrossRef]
- Affandi, N.A.A.; Ludin, N.A.; Welch, S.; Junedi, M.M.; Purvis-Robert, K.L. Green hydrogen-solar photovoltaic system hybrid: Life cycle assessment and potential application in Malaysia and Thailand. Int. J. Hydrogen Energy 2024, 110, 32–43. [Google Scholar] [CrossRef]
- Daniela-Abigail, H.L.; Vega-De-Lille, M.I.; Sacramento-Rivero, J.C.; Ponce-Caballero, C.; El-Mekaoui, A.; Navarro-Pineda, F. Life cycle assessment of photovoltaic panels including transportation and two end-of-life scenarios: Shaping a sustainable future for renewable energy. Renew. Energy Focus 2024, 51, 100649. [Google Scholar] [CrossRef]
- Dong, L.; Gu, Y.; Cai, K.; He, X.; Song, Q.; Yuan, W.; Duan, H. Unveiling lifecycle carbon emissions and its mitigation potentials of distributed photovoltaic power through two typical case systems. Sol. Energy 2024, 269, 112360. [Google Scholar] [CrossRef]
- Van Boven, F.; Van Vliet, B.; Bush, S.; Stremke, S. Inclusive intent, instrumental outcomes: How developer rationales shape participation in solar energy projects. Energy Res. Soc. Sci. 2025, 125, 104110. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Eweade, B.S.; Özkan, O. Examining the impact of small-scale solar photovoltaic adoption and energy prices on energy-related CO2 emissions in the United States. Renew. Energy 2025, 253, 123638. [Google Scholar] [CrossRef]
- Biliroğlu, C.; Demirel, B.; Kılınç, G.E.; Açar, Y.; Şensoy, F. Environmental reflections of traditional and improved recipes: Assessing greenhouse gas and water footprints. Int. J. Gastron. Food Sci. 2025, 41, 101205. [Google Scholar] [CrossRef]
- Berger, M.; Gerbens-Leenes, W.; Karandish, F.; Aldaya, M.M.; Boulay, A.M.; Hogeboom, R.J.; Link, A.; Manzardo, A.; Mialyk, O.; Motoshita, M.; et al. Complementary strengths of water footprint and life cycle assessments in analyzing global freshwater appropriation and its local impacts—Recommendations from an Interdisciplinary discussion series. Ecol. Indic. 2025, 174, 113458. [Google Scholar] [CrossRef]
- Osmani, F.; Salari, T.E. Asymmetric effects of financial and technological development on green energies: Evidence from solar, wind and renewable electricity with an emphasis on crisis conditions. Results Eng. 2025, 26, 105123. [Google Scholar] [CrossRef]
- Karban, C.C.; Lovich, J.E.; Grodsky, S.M.; Munson, S.M. Predicting the effects of solar energy development on plants and wildlife in the Desert Southwest, United States. Renew. Sustain. Energy Rev. 2024, 205, 114823. [Google Scholar] [CrossRef]
- Dong, C.; Zhong, Q. Evaluating solar photovoltaic potential of buildings based on the installation parameters of photovoltaic modules. Sol. Energy 2025, 288, 113304. [Google Scholar] [CrossRef]
- Fan, C.; Huang, X. Monte-Carlo-based simulations of radiative transfer in photovoltaic solar farms: Towards fast and accurate parameterizations in weather and climate models. J. Quant. Spectrosc. Radiat. Transf. 2025, 338, 109417. [Google Scholar] [CrossRef]
- Hao, W.; Wang, X.; Liu, W.; Ma, J.; Liu, C.; Wang, L. Research on the performance and life cycle assessment of photovoltaic/thermal hybrid solar dryer: Comparative analysis with direct and mixed-mode. Appl. Therm. Eng. 2025, 272, 126425. [Google Scholar] [CrossRef]
- Ullah, F.; Hasrat, K.; Iqbal, S.; Kumar, S.; Wang, S.; Mu, M.; Lu, W. Evaluating the global warming potential of a 4.6 kWp solar PV system in Karak-KPK: A life cycle assessment. Appl. Therm. Eng. 2025, 266, 125790. [Google Scholar] [CrossRef]
- Cormos, C.C. Solar-based calcium looping power plant with thermo-chemical energy storage capability: A techno-economic and environmental (LCA) analysis. Renew. Energy 2025, 251, 123431. [Google Scholar] [CrossRef]
- Ibrahim, T.; Durillon, B.; Faraj, J.; Ali, S.; Saudemont, C.; Harion, J.L.; Khaled, M. A comprehensive review of solar energy systems: Technical, economic, and environmental perspectives for sustainable development. Int. Commun. Heat Mass Transf. 2025, 165, 109095. [Google Scholar] [CrossRef]
- Dunlap, A.A.; Sovacool, B.K.; Novakovic, B. “Our town is dying”: Exploring utility-scale and rooftop solar energy injustices in Southeastern California. Geoforum 2024, 156, 104120. [Google Scholar] [CrossRef]
- Cellura, M.; Luu, L.Q.; Guarino, F.; Longo, S. A review on life cycle assessment of concentrating solar energy technologies. Renew. Energy 2025, 249, 123203. [Google Scholar] [CrossRef]
- InfoLink Consulting. Understanding the Carbon Footprint of Solar Panel Manufacturing: A Sustainable Perspective. Available online: https://www.infolink-group.com/energy-article/Carbon-Footprint-of-Solar-Panel-Manufacturing (accessed on 13 April 2025).
- Davidsson, S.; Höök, M. Material requirements and availability for multi-terawatt deployment of photovoltaics. Energy Policy 2017, 108, 574–582. [Google Scholar] [CrossRef]
- Jusnes, K.F. Phase Transformations and Thermal Degradation in Industrial Quartz. Ph.D. Thesis, NTNU, Trondheim, Norway, 2020. [Google Scholar]
- Solaris Renewables. What Is the Carbon Footprint of Solar Panel Manufacturing? Available online: https://solarisrenewables.com/blog/what-is-the-carbon-footprint-of-solar-panel-manufacturing/ (accessed on 13 April 2025).
- Solarbe Global. Understanding the Carbon Footprint of Solar Panel Manufacturing. Available online: https://www.solarbeglobal.com/understanding-the-carbon-footprint-of-solar-panel-manufacturing/ (accessed on 13 April 2025).
- National Renewable Energy Laboratory (NREL). Energy and Carbon Payback Times for Modern U.S. Utility Photovoltaic Systems; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar]
- Nain, P.; Yuan, L.; Anctil, A. Carbon Payback Time (CPBT) and Energy Payback Time (EPBT) of Residential Solar Photovoltaic Repowering. In Proceedings of the 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), Seattle, WA, USA, 9–14 June 2024; pp. 1221–1224. [Google Scholar] [CrossRef]
- Huang, D.; Yu, T. Study on Energy Payback Time of Building Integrated Photovoltaic System. Procedia Eng. 2017, 205, 1087–1092. [Google Scholar] [CrossRef]
- Silveira Camargo, P.S.; Petroli, P.A.; Andrade De Souza, R.; Kerpen, F.S.; Veit, H.M. CdTe photovoltaic technology: An overview of waste generation, recycling, and raw material demand. Curr. Opin. Green Sustain. Chem. 2024, 47, 100904. [Google Scholar] [CrossRef]
- Tan, V.; Dias, P.R.; Chang, N.; Deng, R. Estimating the Lifetime of Solar Photovoltaic Modules in Australia. Sustainability 2022, 14, 5336. [Google Scholar] [CrossRef]
- Preet, S.; Smith, S.T. A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook. J. Clean. Prod. 2024, 448, 141661. [Google Scholar] [CrossRef]
- 8MSolar. Solar Panels and Wildlife—Lessening Environmental Impacts. Available online: https://8msolar.com/solar-panels-and-wildlife-lessening-environmental-impacts/ (accessed on 13 April 2025).
- Guezuraga, B.; Zauner, R.; Pölz, W. Life cycle assessment of two different 2 MW class wind turbines. Renew. Energy 2012, 37, 37–44. [Google Scholar] [CrossRef]
- Farina, A.; Anctil, A. Material consumption and environmental impact of wind turbines in the USA and globally. Resour. Conserv. Recycl. 2022, 176, 105938. [Google Scholar] [CrossRef]
- Smoucha, E.A.; Fitzpatrick, K. Life Cycle Analysis of the Embodied Carbon Emissions from 14 Wind Turbines with Rated Powers between 50 KW and 3.4 MW. J. Fundam. Renew. Energy Appl. 2016, 6, 1000211. [Google Scholar] [CrossRef]
- North Coast Offshore Wind. Turbine Lifecycle Emissions|North Coast Offshore Wind FAQs. Available online: https://www.northcoastoffshorewind.org/faq-turbine-carbon-lifecycle (accessed on 13 April 2025).
- Feng, J.; Feng, L.; Wang, J.; King, C.W. Evaluation of the onshore wind energy potential in mainland China—Based on GIS modeling and EROI analysis. Resour. Conserv. Recycl. 2020, 152, 104484. [Google Scholar] [CrossRef]
- Toja-Silva, F.; Colmenar-Santos, A.; Castro-Gil, M. Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges. Renew. Sustain. Energy Rev. 2013, 24, 364–378. [Google Scholar] [CrossRef]
- Liu, P.; Barlow, C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. J. Reinf. Plast. Compos. 2019, 38, 567–577. [Google Scholar] [CrossRef]
- BloombergNEF. Wind Turbine Blade Recycling: The Next Challenge for the Wind Industry; BloombergNEF: New York, NY, USA, 2021. [Google Scholar]
- Cousins, D.S.; Suzuki, Y.; Murray, R.E.; Samaniuk, J.R.; Stebner, A.P. Recycling glass fiber thermoplastic composites from wind turbine blades. J. Clean. Prod. 2019, 209, 1252–1263. [Google Scholar] [CrossRef]
- Adhikari, R.; Wood, D.; Sudak, L. Low-cost bamboo lattice towers for small wind turbines. Energy Sustain. Dev. 2015, 28, 21–28. [Google Scholar] [CrossRef]
- Joint Research Centre-European Commission. Substitution of Critical Raw Materials in Low-Carbon Technologies: Lighting, Wind Turbines and Electric Vehicles; Joint Research Centre-European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Graabak, I.; Korpås, M. Variability Characteristics of European Wind and Solar Power Resources—A Review. Energies 2016, 9, 449. [Google Scholar] [CrossRef]
- Frank, C.; Fiedler, S.; Crewell, S. Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries. Renew. Energy 2021, 163, 674–684. [Google Scholar] [CrossRef]
- Li, B.; Basu, S.; Watson, S.J.; Russchenberg, H.W.J. A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas. Energies 2021, 14, 6508. [Google Scholar] [CrossRef]
- WindEurope Business Intelligence. Wind Energy in Europe in 2019—Trends and Statistics; Technical Report; WindEurope: Brussels, Belgium, 2020. [Google Scholar]
- Ren, G.; Liu, J.; Wan, J.; Guo, Y.; Yu, D. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. Appl. Energy 2017, 204, 47–65. [Google Scholar] [CrossRef]
- Enerad. 100% Energii z Odnawialnych w Dzień Roboczy w Hiszpanii. Available online: https://enerad.pl/100-energii-z-odnawialnych-w-dzien-roboczy-w-hiszpanii/ (accessed on 13 April 2025).
- Farmer.pl. Wiemy, co Spowodowało Blackout w Hiszpanii i Portugalii. To Sygnał Ostrzegawczy Dla Całej Europy. Available online: https://www.farmer.pl/energia/oze/wiemy-co-spowodowalo-blackout-w-hiszpanii-i-portugalii-to-sygnal-ostrzegawczy-dla-calej-europy,160673.html (accessed on 13 April 2025).
- MDPI. Development of Renewable Energy Sources in Poland and Stability of Power Grids—Challenges, Technologies, and Adaptation Strategies. Available online: https://www.mdpi.com/1996-1073/18/8/2036 (accessed on 5 May 2025).
- European Climate Initiative (EUKI). Mapping Renewable Energy Sources Potential, Challenges, and Opportunities in Poland. Available online: https://www.euki.de/wp-content/uploads/2024/10/Mapping-Renewable-Energy-Sources-potential-challenges-and-opportunities-in-Poland.pdf (accessed on 5 May 2025).
- Instytut Energetyki Odnawialnej. RYNEK FOTOWOLTAIKI W POLSCE 2024 Raport Instytutu Energetyki Odnawialnej. Available online: https://cdn.bsbox.pl/files/hestia_elearning/NGE7MDA_/documents/raport_rynek_fotowoltaiki_2024.pdf (accessed on 5 May 2025).
- pv-magazine.com. Polish Grid Operator Switches off Gigawatts of PV. Available online: https://www.pv-magazine.com/2024/03/27/polish-grid-operator-switches-off-gigawatts-of-pv/ (accessed on 5 May 2025).
- Mordor Intelligence. Poland Renewable Energy Market Growth|Industry Analysis, Size. Available online: https://www.mordorintelligence.com/industry-reports/poland-renewable-energy-market (accessed on 5 May 2025).
- Forum Energii. Polish Grids 2040—Ready for 90 GW of Renewables. Available online: https://www.forum-energii.eu/en/polish-grids-2040 (accessed on 5 May 2025).
- Clean Air Task Force. What the Public Consultation Reveals About Poland’s Updated National Energy and Climate Plan. Available online: https://www.catf.us/resource/what-public-consultation-reveals-about-polands-updated-national-energy-climate-plan/ (accessed on 5 May 2025).
- Ember. PEP2040: Progress or Disappointment? Available online: https://ember-energy.org/latest-insights/pep2040-progress-or-disappointment/ (accessed on 5 May 2025).
- Strategic Energy. 120 GW Deficit: Poland’s Capacity Market and the Urgent Need to Balance Renewables with Flexible Generation. Available online: https://strategicenergy.eu/120-gw-deficit-polands-capacity-market-and-the-urgent-need-to-balance-renewables-with-flexible-generation/ (accessed on 5 May 2025).
- DiVA Portal. Potential and Challenges of Battery Energy Storage (BESS): The Case of Poland. Available online: https://www.diva-portal.org/smash/get/diva2:1824442/FULLTEXT01.pdf (accessed on 5 May 2025).
- Strategic Energy. The 400 kV Project to Integrate Renewable Energy into the Polish Grid. Available online: https://strategicenergy.eu/400-kv-project-renewable-energy-polish-grid/ (accessed on 5 May 2025).
- Urząd Regulacji Energetyczności. Electrical Energy Storage—First Report Issued by the President of URE. Available online: https://www.ure.gov.pl/en/communication/news/389,Electrical-energy-storage-first-report-issued-by-the-President-of-URE.html (accessed on 5 May 2025).
- ResearchGate. Energy Storage Management Using Artificial Intelligence to Maximize Polish Energy Market Profits. Available online: https://www.researchgate.net/publication/384424558_Energy_Storage_Management_Using_Artificial_Intelligence_to_Maximize_Polish_Energy_Market_Profits (accessed on 5 May 2025).
- WysokieNapiecie.pl. Magazyny Energii Kontra Gaz. Kto Wygra Rynek Mocy w 2024 Roku? Available online: https://wysokienapiecie.pl/106302-magazyny-energii-kontra-gaz-kto-wygra-rynek-mocy-w-2024-roku/ (accessed on 5 May 2025).
- Ministerstwo Klimatu i Środowiska. Polityka Energetyczna Polski 2040 (PEP2040); Ministerstwo Klimatu i Środowiska: Warsaw, Poland, 2021. [Google Scholar]
- Elektro.info. Wpływ Rozbudowy Infrastruktury Magazynów Energii na Rozwój Gospodarczy—Prognoza do 2040 r. Available online: https://www.elektro.info.pl/artykul/rynek-energii/208332,wplyw-rozbudowy-infrastruktury-magazynow-energii-na-rozwoj-gospodarczy-prognoza-do-2040-r (accessed on 5 May 2025).
- Guo, X.; Dong, Y.; Ren, D. CO2 emission reduction effect of photovoltaic industry through 2060 in China. Energy 2023, 269, 126692. [Google Scholar] [CrossRef]
- Soler, D.; Rigamonti, L.; Gazbour, N.; Fuentealba, E. Environmental performance of a 1 MW photovoltaic plant in the Atacama Desert: A life cycle assessment study. Sol. Energy 2025, 292, 113454. [Google Scholar] [CrossRef]
- Electrum. Energy That Blows: The Potential of Wind Farms in Poland. Available online: https://electrum.pl/en/energy-that-blows-the-potential-of-wind-farms-in-poland/ (accessed on 23 May 2025).
- WindIndustry.pl. Rozwój Przemysłu Onshore i Offshore Wind w Polsce. Available online: https://www.windindustry.pl/wp-content/uploads/2024/01/WIH_raport_PL.pdf (accessed on 23 May 2025).
- PSEW. Energetyka Wiatrowa na Nowo: Niezbędne Zmiany Legislacyjne i Analiza Potencjału Onshore. Available online: https://www.psew.pl/wp-content/uploads/2024/09/Psew_2024_Energia_na_nowo_poprawione.pdf (accessed on 23 May 2025).
- Poland, T. Onshore Wind Energy in Poland, Report 2021. Available online: https://www.energy-tomorrow.eu/wp-content/uploads/sites/15/2021/09/TPA-Poland-Ladowa-energetyka-wiatrowa-w-Polsce-2021.pdf (accessed on 23 May 2025).
- BalticWind. 41.4 GW from Onshore Wind Power by 2040 is Possible—as PWEA Estimated. Available online: https://balticwind.eu/41-4-gw-from-onshore-wind-power-by-2040-is-possible-as-pwea-estimated/ (accessed on 23 May 2025).
- PSEW. Offshore Wind Energy—An Opportunity for the Polish Shipbuilding Industry. Available online: https://www.psew.pl/en/offshore-wind-energy-an-opportunity-for-the-polish-shipbuilding-industry/ (accessed on 23 May 2025).
- PSEW. Nowy Potencjał Bałtyku: 33 GW Mocy i 20 Nowych Obszarów Pod MFW (RAPORT). Available online: https://www.psew.pl/nowy-potencjal-baltyku-33-gw-mocy-i-20-nowych-obszarow-pod-mfw-raport/ (accessed on 23 May 2025).
- Wind Europe. Wind Energy in Europe: 2024 Statistics and the Outlook for 2025–2030. Available online: https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2024-statistics-and-the-outlook-for-2025-2030/ (accessed on 23 May 2025).
- Tauron. Farmy Wiatrowe—Najtańsze Źródło Energii Odnawialnej. Available online: https://lepiej.tauron.pl/zielona-energia/farmy-wiatrowe-najtansze-zrodlo-energii-odnawialnej/#:~:text=Turbiny%20offshore%20Wiatraki%20offshore%20produkuj%C4%85%20wi%C4%99cej%20pr%C4%85du%2C,i%20z%20wi%C4%99ksz%C4%85%20si%C5%82%C4%85%20ni%C5%BC%20na%20l%C4%85dzie (accessed on 23 May 2025).
- Sun Valley. Turbina Wiatrowa—Budowa i Ich Ekologiczny Wpływ Na Środowisko. Available online: https://www.sunvalley.pl/pl/post/turbiny-wiatrowe-budowa-i-ich-ekologiczny-wp%C5%82yw-na%C5%82%C4%99dzie#:~:text=Odnawialne%20%C5%BAr%C3%B3d%C5%82a%20energii%2C%20takie%20jak%20turbiny%20wiatrowe,podczas%20eksploatacji%2C%20co%20czyni%20je%20bardziej%20ekolog (accessed on 23 May 2025).
- USGS. What Materials Are Used to Make Wind turbines? Available online: https://www.usgs.gov/faqs/what-materials-are-used-make-wind-turbines (accessed on 23 May 2025).
- Tota-Maharaj, K.; McMahon, A. Resource and waste quantification scenarios for wind turbine decommissioning in the United Kingdom. Waste Dispos. Sustain. Energy 2021, 3, 117–144. [Google Scholar] [CrossRef]
- Li, Y.F.; Yu, C.C.; Chen, S.Y.; Sainey, B. The Carbon Footprint Calculation of the GFRP Pedestrian Bridge at Tai-Jiang National Park. Int. Rev. Spat. Plan. Sustain. Dev. 2013, 1, 13–28. [Google Scholar] [CrossRef]
- Union of Concerned Scientists. How Are Wind Turbines Made? Available online: https://blog.ucs.org/charlie-hoffs/how-are-wind-turbines-made/#:~:text=The%20foundation:%20Once%20developers%20select,and%20165%20tons%20of%20steel (accessed on 23 May 2025).
- Power, B. Pierwsze Fundamenty na Morskiej Farmie Baltic Power Zainstalowane. Available online: https://balticpower.pl/aktualnosci/pierwsze-fundamenty-na-morskiej-farmie-baltic-power-zainstalowane/ (accessed on 23 May 2025).
- Mikinia, K.; Więcławski, P. Projektowanie Posadowienia Morskich Elektrowni Wiatrowych Na Morzu Bałtyckim Według Przepisów I Zaleceń Europejskich. Zagadnienia Aktual. Poruszane Przez Młodych Nauk. 2018, 12, 131–136. [Google Scholar]
- Department of Public Service, NY. Wind Turbine Component Delivery Vehicles. Available online: https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7BB4CCEEB4-3F84-4722-8655-C1DB61173CD9%7D#:~:text=The%20following%20component%20deliveries%20are%20required%20for,the%20hub%20height%20and%20the%20turbine%20design (accessed on 23 May 2025).
- Naiborhu, M.A.; Purwanti, D.R.; Kumalasari, S.D.; Idris, M.K.; Dwisa, C.B.P.; Elkhomei, A.S.; Purnawanti, Y.N. Transportation challenges for onshore wind turbine power plant development in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2025, 1464, 012002. [Google Scholar] [CrossRef]
- ICCT. CO2 Emissions from Trucks in the EU: An Analysis of the Heavy-Duty CO2 Standards Baseline Data. Available online: https://theicct.org/publication/co2-emissions-from-trucks-in-the-eu-an-analysis-of-the-heavy-duty-co2-standards-baseline-data/#:~:text=Urban%20delivery%20trucks%20with%20a,gCO_2/t%2Dkm (accessed on 23 May 2025).
- Energetyka24. Vestas Otworzy w Szczecinie nie Jedną, a Dwie Fabryki. Miasto Stanie się „Offshore’ową Stolicą Polski”. Available online: https://energetyka24.com/oze/wiadomosci/vestas-otworzy-w-szczecinie-nie-jedna-a-dwie-fabryki-miasto-stanie-sie-offshoreowa-stolica-polski#google_vignette (accessed on 23 May 2025).
- Vestas. Nowa Fabryka Gondoli dla Morskich Turbin Wiatrowych w Szczecinie. Available online: https://www.vestas.com/en/pages/szczecin-visit-polish (accessed on 23 May 2025).
- Power, B. Baltic Power—O Projekcie. Available online: https://balticpower.pl/o-projekcie/ (accessed on 23 May 2025).
- Energy, B. Baltica Two and Three. Available online: https://baltica.energy/en/baltica-two-and-three (accessed on 23 May 2025).
- Climate Action Accelerator. Shift from Air to Sea freight. Available online: https://climateactionaccelerator.org/solutions/sea_freight/ (accessed on 23 May 2025).
- EPRI. Overview of Emissions Impacts from Grid-Connected Battery Energy Storage. Available online: https://restservice.epri.com/publicdownload/000000003002020074/0/Product (accessed on 5 May 2025).
- DiVA Portal. Lifecycle Assessment of a Lithium-Ion Battery Storage System for Frequency Regulation in a Real-World Application. Available online: https://uu.diva-portal.org/smash/get/diva2:1740324/FULLTEXT01.pdf (accessed on 5 May 2025).
- Gaines, L. The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustain. Mater. Technol. 2014, 1–2, 2–7. [Google Scholar] [CrossRef]
- Forum Energii. Energy Transformation in Poland. Edition 2024—Report. Available online: https://www.forum-energii.eu/en/yearbook-energy-data-1 (accessed on 23 May 2025).
- Hall, R.; João, E.; Knapp, C.W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess. Rev. 2020, 83, 106404. [Google Scholar] [CrossRef]
- Topham, E.; McMillan, D.; Bradley, S.; Hart, E. Recycling offshore wind farms at decommissioning stage. Energy Policy 2019, 129, 698–709. [Google Scholar] [CrossRef]
- Jensen, J.P. Evaluating the environmental impacts of recycling wind turbines. Wind Energy 2019, 22, 316–326. [Google Scholar] [CrossRef]
- Clean Grid Alliance. Wind Turbine Recycling and Disposal. Available online: https://cleangridalliance.org/blog/137/wind-turbine-recycling-and-disposal (accessed on 23 May 2025).
- Vougioukas, E.; Stamos, A.; Pappa, C.; Lagaros, N.D. Enhancing Onshore Wind Tower Foundations: A Comprehensive Automated Design Approach. CivilEng 2024, 5, 736–759. [Google Scholar] [CrossRef]
- Spini, F.; Bettini, P. End-of-Life wind turbine blades: Review on recycling strategies. Compos. Part B Eng. 2024, 275, 111290. [Google Scholar] [CrossRef]
- Group, W.B.W. Decommissioned Wind Turbine Blade Management Strategies. Available online: https://cleanpower.org/wp-content/uploads/gateway/gateway/2023/01/ACP_BladeRecycling_WhitePaper_240905.pdf (accessed on 23 May 2025).
- Jensen, J.; Skelton, K. Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renew. Sustain. Energy Rev. 2018, 97, 165–176. [Google Scholar] [CrossRef]
- DNV. Grid Congestion in the Polish Power Grid. Available online: https://www.dnv.com/article/grid-congestion-in-the-polish-power-grid/ (accessed on 5 May 2025).
- Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 2011, 15, 3261–3270. [Google Scholar] [CrossRef]
- MIT Climate Portal. How Much CO2 Is Emitted by Manufacturing Batteries? Available online: https://climate.mit.edu/ask-mit/how-much-co2-emitted-manufacturing-batteries (accessed on 5 May 2025).
- Energimyndigheten. The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries. Available online: https://www.energimyndigheten.se/globalassets/forskning–innovation/transporter/c243-the-life-cycle-energy-consumption-and-co2-emissions-from-lithium-ion-batteries-.pdf (accessed on 5 May 2025).
- Institute for Energy Research (IER). Environmental Impacts of Lithium-Ion Batteries. Available online: https://www.instituteforenergyresearch.org/renewable/environmental-impacts-of-lithium-ion-batteries/ (accessed on 5 May 2025).
- Liang, Y.; Su, J.; Xi, B.; Yu, Y.; Ji, D.; Sun, Y.; Cui, C.; Zhu, J. Life Cycle Assessment of Lithium-Ion Batteries for Greenhouse Gas Emissions. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0921344916302324 (accessed on 18 June 2025). [CrossRef]
- Zhang, K.; Mo, J.; Liu, Z.; Yin, W.; Wu, F.; You, J. Life cycle environmental and economic impacts of various energy storage systems: Eco-efficiency analysis and potential for sustainable deployments. Integr. Environ. Assess. Manag. 2025, vjaf035. [Google Scholar] [CrossRef] [PubMed]
- California Energy Commission (CEC). Life Cycle Assessment of Environmental and Human Health Impacts of Flow Battery Energy Storage Production and Use. Available online: https://www.energy.ca.gov/sites/default/files/2021-12/CEC-500-2021-051.pdf (accessed on 5 May 2025).
- ADECE ESG. Environmental Impacts of Renewable Energy Sources. Available online: https://www.adecesg.com/resources/blog/environmental-impacts-of-renewable-energy-sources/#:~:text=Long%2Dterm%20environmental%20impacts%20vary,routes%20and%20impact%20habitat%20quality (accessed on 13 April 2025).
- U.S. Geological Survey. Can Wind Turbines Harm Wildlife? Available online: https://www.usgs.gov/faqs/can-wind-turbines-harm-wildlife (accessed on 13 April 2025).
- BlueWatt. Czy Turbiny Wiatrowe Mają Wpływ na Środowisko Naturalne? Available online: https://bluewatt.pl/turbiny-wiatrowe-wplyw-na-srodowisko/ (accessed on 13 April 2025).
- Discover Wildlife. Blown Away: Almost 70% of Animals Displaced from Homes by Wind-Power Developments. Available online: https://www.discoverwildlife.com/news/wildlife-avoids-wind-power-developments (accessed on 13 April 2025).
- Stopwiatrakom.eu. Farmy Wiatrowe Niszczą Naturalne Ekosystemy. Available online: https://stopwiatrakom.eu/blog-barbary-lebiedowskiej/2218-farmy-wiatrowe-niszcz%C4%85-naturalne-ekosystemy.html (accessed on 13 April 2025).
- Polskie Stowarzyszenie Energetyki Wiatrowej. Morskie Elektrownie Wiatrowe—Jak Wpływają na Środowisko? Available online: https://www.psew.pl/morskie-elektrownie-wiatrowe-jak-wplywaja-na-srodowisko/ (accessed on 13 April 2025).
- Wilhelmsson, D.; Malm, T. Fouling assemblages on offshore wind power plants and adjacent substrata. Estuar. Coast. Shelf Sci. 2008, 79, 459–466. [Google Scholar] [CrossRef]
- Inger, R.; Attrill, M.J.; Bearhop, S.; Broderick, A.C.; James Grecian, W.; Hodgson, D.J.; Mills, C.; Sheehan, E.; Votier, S.C.; Witt, M.J.; et al. Marine renewable energy: Potential benefits to biodiversity? An urgent call for research. J. Appl. Ecol. 2009, 46, 1145–1153. [Google Scholar] [CrossRef]
- Thomsen, F.; Lüdemann, K.; Kafemann, R.; Piper, W. Effects of Offshore Wind Farmnoise on Marine Mammals and Fish; Biola: Hamburg, Germany; COWRIE Ltd.: Middlesex, UK, 2006. [Google Scholar]
- Rezaei, F.; Contestabile, P.; Vicinanza, D.; Azzellino, A. Towards understanding environmental and cumulative impacts of floating wind farms: Lessons learned from the fixed-bottom offshore wind farms. Ocean Coast. Manag. 2023, 243, 106772. [Google Scholar] [CrossRef]
- Endangered Species Coalition. How Renewable Energy Impacts Biodiversity. Available online: https://www.endangered.org/how-renewable-energy-impacts-biodiversity/ (accessed on 13 April 2025).
- Kinute. Does Solar Have a Dark Side? Solar Impacts on Rural landscapes and the Family Farm. Available online: https://kinute.com/stories/653951956-does-solar-have-a-dark-side-solar-impacts-on-rural-landscapes-and-the-family-farm (accessed on 13 April 2025).
- Środowisko.pl. Jak Farmy Fotowoltaiczne Wpływają na Środowisko? Available online: https://www.srodowisko.pl/wiadomosci-i-komunikaty/jak-farmy-fotowoltaiczne-wplywaja-na-srodowisko–222954-10 (accessed on 13 April 2025).
- RatedPower. Examining the Ecological Trends in UK Solar Farms. Available online: https://ratedpower.com/blog/economical-trends-uk-solar-farms/ (accessed on 13 April 2025).
- Aspiration. The Environmental Impact of Solar Energy: Is It Truly Worth It? Available online: https://www.aspiration.com/resources/the-environmental-impact-of-solar-energy (accessed on 13 April 2025).
- Polskie Sieci Elektroenergetyczne. Raport 2024 KSE. Available online: https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-roczne-z-funkcjonowania-kse-za-rok/raporty-za-rok-2024#t1_1 (accessed on 27 May 2025).
- Centrum Analiz Klimatyczno-Energetycznych. Polska Net-Zero 2050 Transformacja Sektora Energetycznego Polski i UE do 2050 Roku. Available online: https://climatecake.ios.edu.pl/wp-content/uploads/2022/06/CAKE_Transformacja-sektora-energetycznego_27.06.2022_final.pdf (accessed on 27 May 2025).
- Wysokie Napięcie. Padł Rekord Zapotrzebowania na Moc—Blisko 29 GW. Available online: https://wysokienapiecie.pl/96259-padl-rekord-zapotrzebowania-na-moc-blisko-29-gw/ (accessed on 27 May 2025).
- The Guardian. What Caused the Blackout in Spain and Portugal and Did Renewable Energy Play a Part? Available online: https://www.theguardian.com/environment/2025/apr/29/what-caused-the-blackout-in-spain-and-portugal-and-did-renewable-energy-play-a-part (accessed on 27 May 2025).
- Gagnon, L.; Belanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- World Nuclear Association. Carbon Dioxide Emissions from Electricity. Available online: https://world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity (accessed on 27 May 2025).
- Planete Energies. Electricity Generation and CO2 Emissions. Available online: https://www.planete-energies.com/en/media/article/electricity-generation-and-related-co2-emissions (accessed on 27 May 2025).
- UNECE. Life Cycle Assessment of Electricity Generation Options. Available online: https://unece.org/sites/default/files/2021-09/202109_UNECE_LCA_1.2_clean.pdf (accessed on 27 May 2025).
- Redondo de la Mata, A. Life-Cycle and Sustainable Assessment of Integrated Photovoltaic Roof Systems: Potential for Regenerative Carbon Footprint Roofs in the Current Situation of Denmark. Master’s Thesis, Universidad de Cantabria, Cantabria, Spain, 2014. [Google Scholar]
- Arvesen, A.; Hertwich, E.G. Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs. Renew. Sustain. Energy Rev. 2012, 16, 5994–6006. [Google Scholar] [CrossRef]
- PCI Energy Solutions. Understanding the Differences Between Non-Dispatchable and Dispatchable Generation. Available online: https://www.pcienergysolutions.com/2024/05/01/understanding-the-differences-between-non-dispatchable-and-dispatchable-generation/ (accessed on 27 May 2025).
- Rynek Elektryczny. Produkcja Energii Elektrycznej. Raport Roczny 2024. Available online: https://www.rynekelektryczny.pl/produkcja-energii-elektrycznej-raport-roczny/ (accessed on 27 May 2025).
- Forum Energii. 2024_Wrapped od Forum Energii, Czyli Błyskawiczny Przegląd Najciekawszych Danych z Elektroenergetyki. Available online: https://www.forum-energii.eu/2024_wrapped#:~:text=Wsp%C3%B3%C5%82czynnik%20wykorzystania%20mocy%20dla%20w%C4%99gla%20kamiennego%20systematycznie,wi%C4%99cej%20tyle%20samo%20czasu%2C%20ile%20%C5%BAr%C3%B3d%C5%82a%20wiatrowe (accessed on 27 May 2025).
- POLON. Bezprecedensowy Marsz Fotowoltaiki w Polsce. To nie Tylko Zalety ale też Wady. Available online: https://www.polon.pl/energia-i-klimat/bezprecedensowy-marsz-fotowoltaiki-w-polsce-to-nie-tylko-zalety-ale-tez-wady/ (accessed on 27 May 2025).
- Portal Interoperacyjności i Architektury. Polityka Energetyczna Polski do 2040 r. (PEP2040). Available online: https://www.gov.pl/web/ia/polityka-energetyczna-polski-do-2040-r-pep2040 (accessed on 27 May 2025).
- EUR-Lex. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32018L2001 (accessed on 27 May 2025).
For 17.03 [GW] | For 60 [GW] | ||
---|---|---|---|
emissions from production [t] | 3436.005 | emissions from production [t] | 12,105.712 |
emissions from storage [t] | 5117.295 | emissions from storage [t] | 180,096.165 |
emissions from decommissioning and utilization [t] | 13,895.880 | emissions from decommissioning and utilization [t] | 48,957.886 |
Material | Onshore Turbine (4.6 [MW]) [t ] | Offshore Turbine (10.1 [MW]) [t ] |
---|---|---|
Steel | 616 | 1848 |
Iron | 132 | 396 |
Composite (e.g., GFRP [91]) | 126 | 379 |
Copper | 22 | 66 |
Aluminum | 60 | 180 |
Total | 956 | 2869 |
Stage | Emissions [kg /kWh] | Comments |
---|---|---|
Production | 175 | Depending on the size of the warehouse and its purpose |
Operation | 0 | Energy comes exclusively from wind |
System losses | 0.04 | It increases the demand for energy from the grid by about 5–15%. An increase in demand of 10% was assumed, and the level of emissions from energy production was assumed to be 400 [g /kWh] [106] |
Disposal and recycling | 15 | It allows you to recover raw materials and reduce the footprint in subsequent warehouses produced by up to 30–40% |
Element | Material | Estimated Mass [t] | Disposal Method | Emissions |
---|---|---|---|---|
Foundation | Concrete | 1000 | Crushing | 50 |
Steel | 165 | Recycling | 82.5 | |
Tower | Steel | 180 | Recycling | 90 |
Iron | 30 | 15 | ||
Gondola | Steel | 100 | Recycling | 50 |
Copper | 8 | 3.2 | ||
Aluminium | 4 | 2.4 | ||
Composite/Plastics | 3 | Co-Firing | 2.4 | |
Rotor | Composite (e.g., GFRP) | 45 | Co-Firing | 36 |
Iron | 30 | Recycling | 15 |
Element | Material | Estimated Mass [t] | Disposal Method | Emissions |
---|---|---|---|---|
Foundation | Steel | 1200 | Recycling | 600 |
Tower | Steel | 500 | Recycling | 250 |
Iron | 100 | 50 | ||
Gondola | Steel | 340 | Recycling | 170 |
Copper | 24 | 9.6 | ||
Aluminium | 12 | 7.2 | ||
Composite/Plastics | 24 | Co-Firing | 19.2 | |
Rotor | Composite (e.g., GFRP) | 120 | Co-Firing | 96 |
Iron | 80 | Recycling | 40 |
Specific Emissions [g /kWh] | Life-Cycle Emissions of Wind Farms [t ] | ||
---|---|---|---|
Production (Ponshore) | 5.79 | Production (TPonshore) | 14,465,397.46 |
Transportation (Tonshore) | 1.10 | Transportation (TTonshore) | 2,748,175.68 |
Storage (Monshore) | 9.13 | Storage (TMonshore) | 22,803,612.31 |
Disposal (Uonshore) | 0.90 | Disposal (TUonshore) | 2,248,507.377 |
Total Emission (Conshore) | 16.92 | Total Emission (TConshore) | 42,265,692.83 |
Specific Emissions [g /kWh] | Life-Cycle Emissions of Wind Farms [t ] | ||
---|---|---|---|
Production (Poffshore) | 4.98 | Production (TPoffshore) | 16,368,419.79 |
Transportation (Toffshore) | 1.60 | Transportation (TToffshore) | 5,258,930.05 |
Storage (Moffshore) | 6.94 | Storage (TMoffshore) | 22,803,823.88 |
Disposal (Uoffshore) | 1.12 | Disposal (TUoffshore) | 3,681,251.04 |
Total Emission (Coffshore) | 14.64 | Total Emission (TCoffshore) | 48,112,424.76 |
Specific Emissions [g /kWh] | Life-Cycle Emissions of Wind Farms [t ] | ||
---|---|---|---|
Production (P) | 5.33 | Production (TP) | 30,833,817.250 |
Transportation (T) | 1.38 | Transportation (TT) | 8,007,105.730 |
Storage (M) | 3.94 | Storage (TM) | 22,805,151.230 |
Disposal (U) | 1.03 | Disposal (TU) | 5,929,758.417 |
Total Emission (C) | 11.68 | Total Emission (TC) | 67,575,832.630 |
System Scale | Mid-Range Capacity | Use | Capacity for Calculations | Emissions (150 [kg/kWh]) |
---|---|---|---|---|
Home | 5–15 [kWh] | Home warehouses (e.g., Tesla Powerwall) | 10 [kWh] | 1.5 [t eq] |
Commercial/ Small RES | 100–500 [kWh] | Small PV farms, multi-family buildings | 250 [kWh] | 37.5 [t eq] |
Industrial | 1–10 [MWh] | Medium-sized PV/Wind farms | 2 [MWh] | 300 [t eq] |
Large-scale | 50–1000+ [MWh] | Grid storage, power plants | 100 [MWh] | 15,000 [t eq] |
Stage | Emissions | Comments |
---|---|---|
Production | 150–200 [kg/kWh] | The largest share |
Operation | Source dependent | Zero if it uses RES |
System losses | 5–15% energy | They increase the demand for energy from the grid |
Disposal and recycling | 15 [kg/kWh] | It enables the recovery of raw materials and contributes to the reduction of emissions in the future. |
Energy Source | Production [kt ] | Transport [kt ] | Exploitation [kt ] | Storage [kt ] | Disposal [kt ] | Total Energy Source Life-Cycle Emissions [kt ] |
---|---|---|---|---|---|---|
Coal | 585,771.91 | 115,708.03 | 5,107,063.26 | 0 | 121,493.43 | 5,930,036.63 |
Natural gas | 309,256.01 | 216,479.21 | 2,467,736.76 | 0 | 99,088.15 | 3,092,560.13 |
Photovoltaics | 12.11 | - | 0 | 180.10 | 48.96 | 241.16 |
Wind | 30,833.82 | 8007.11 | 0 | 22,805.15 | 5929.76 | 67,575.83 |
Energy Source | Capacity Factor [%] | Average Actual Power [GW] | Required Number of Days of Operation of the Energy Source | Unit Emissions [g /kWh] | Emissions from the Production of 170 TWh of Energy [kt ] |
---|---|---|---|---|---|
Coal | 55 | 33 | 215 | 820 | 139,400 |
Natural gas | 48 | 28.8 | 246 | 490 | 83,300 |
Photovoltaics | 15 | 9 | 787 | 54.5 | 9265 |
Wind | 44 | 26.4 | 268 | 11.7 | 1989 |
Estimate | Std. Error | t Value | Pr(>|t|) | |
---|---|---|---|---|
Intercept | −4,668,996.1 | 517,869.8 | −9.016 | 2.06 × 10−6 |
Slope | 2326.7 | 256.8 | 9.062 | 1.96 × 10−6 |
Estimate | Std. Error | t Value | Pr(>|t|) | |
---|---|---|---|---|
Intercept | −1.848 × 102 | 12.84 | −14.39 | 1.77 × 10−8 |
Slope | 9.657 × 10−2 | 6.368 × 10−3 | 15.16 | 1.02 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobczuk, S.; Jaroń, A.; Mazur, M.; Borucka, A. Renewable Energy and CO2 Emissions: Analysis of the Life Cycle and Impact on the Ecosystem in the Context of Energy Mix Changes. Energies 2025, 18, 3332. https://doi.org/10.3390/en18133332
Sobczuk S, Jaroń A, Mazur M, Borucka A. Renewable Energy and CO2 Emissions: Analysis of the Life Cycle and Impact on the Ecosystem in the Context of Energy Mix Changes. Energies. 2025; 18(13):3332. https://doi.org/10.3390/en18133332
Chicago/Turabian StyleSobczuk, Sebastian, Agata Jaroń, Mateusz Mazur, and Anna Borucka. 2025. "Renewable Energy and CO2 Emissions: Analysis of the Life Cycle and Impact on the Ecosystem in the Context of Energy Mix Changes" Energies 18, no. 13: 3332. https://doi.org/10.3390/en18133332
APA StyleSobczuk, S., Jaroń, A., Mazur, M., & Borucka, A. (2025). Renewable Energy and CO2 Emissions: Analysis of the Life Cycle and Impact on the Ecosystem in the Context of Energy Mix Changes. Energies, 18(13), 3332. https://doi.org/10.3390/en18133332