Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,146)

Search Parameters:
Keywords = energy domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2222 KiB  
Article
Multi-Sensor Heterogeneous Signal Fusion Transformer for Tool Wear Prediction
by Ju Zhou, Xinyu Liu, Qianghua Liao, Tao Wang, Lin Wang and Pin Yang
Sensors 2025, 25(15), 4847; https://doi.org/10.3390/s25154847 - 6 Aug 2025
Abstract
In tool wear monitoring, the efficient fusion of multi-source sensor signals poses significant challenges due to their inherent heterogeneous characteristics. In this paper, we propose a Multi-Sensor Multi-Domain feature fusion Transformer (MSMDT) model that achieves precise tool wear prediction through innovative feature engineering [...] Read more.
In tool wear monitoring, the efficient fusion of multi-source sensor signals poses significant challenges due to their inherent heterogeneous characteristics. In this paper, we propose a Multi-Sensor Multi-Domain feature fusion Transformer (MSMDT) model that achieves precise tool wear prediction through innovative feature engineering and cross-modal self-attention mechanisms. Specifically, we first develop a physics-aware feature extraction framework, where time-domain statistical features, frequency-domain energy features, and wavelet packet time–frequency features are systematically extracted for each sensor type. This approach constructs a unified feature matrix that effectively integrates the complementary characteristics of heterogeneous signals while preserving discriminative tool wear signatures. Then, a position-embedding-free Transformer architecture is constructed, which enables adaptive cross-domain feature fusion through joint global context modeling and local feature interaction analysis to predict tool wear values. Experimental results on the PHM2010 demonstrate the superior performance of MSMDT, outperforming state-of-the-art methods in prediction accuracy. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

44 pages, 7941 KiB  
Article
A Numerical Investigation of Plastic Energy Dissipation Patterns of Circular and Non-Circular Metal Thin-Walled Rings Under Quasi-Static Lateral Crushing
by Shunsong Guo, Sunting Yan, Ping Tang, Chenfeng Guan and Wei Zhang
Mathematics 2025, 13(15), 2527; https://doi.org/10.3390/math13152527 - 6 Aug 2025
Abstract
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are [...] Read more.
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are solved via numerical shooting methods. The theoretically predicted force-denting displacement relations agree excellently with both FEA and experimental results. The FEA simulation clearly reveals the coexistence of an upper moving plastic region and a fixed bottom plastic region. A robust automatic extraction method of the fully plastic region at the bottom from FEA is proposed. A modified criterion considering the unloading effect based on the resultant moment of cross-section is proposed to allow accurate theoretical estimation of the fully plastic region length. The detailed study implies an abrupt and almost linear drop of the fully plastic region length after the maximum value by the proposed modified criterion, while the conventional fully plastic criterion leads to significant over-estimation of the length. Evolution patterns of the upper and lower plastic regions in FEA are clearly illustrated. Furthermore, the distribution of plastic energy dissipation is compared in the bottom and upper regions through FEA and theoretical results. Purely analytical solutions are formulated for linear hardening material case by elliptical integrals. A simple algebraic function solution is derived without necessity of solving differential equations for general power-law hardening material case by adopting a constant curvature assumption. Parametric analyses indicate the significant effect of ovality and hardening on plastic region evolution and crushing force. This paper should enhance the understanding of the crushing behavior of circular and non-circular rings applicable to the structural engineering and impact of the absorption domain. Full article
(This article belongs to the Special Issue Numerical Modeling and Applications in Mechanical Engineering)
24 pages, 2863 KiB  
Article
An Integrated Bond Graph Methodology for Building Performance Simulation
by Abdelatif Merabtine
Energies 2025, 18(15), 4168; https://doi.org/10.3390/en18154168 - 6 Aug 2025
Abstract
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate [...] Read more.
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate and analyze the thermal behavior of an integrated trigeneration system within an experimental test cell. Unlike conventional simulation approaches, the BG framework enables unified modeling of thermal and hydraulic subsystems, offering a physically consistent and energy-based representation of system dynamics. The study investigates the system’s performance under both dynamic and steady-state conditions across two distinct climatic periods. Validation against experimental data reveals strong agreement between measured and simulated temperatures in heating and cooling scenarios, with minimal deviations. This confirms the method’s reliability and its capacity to capture transient thermal behaviors. The results also demonstrate the BG model’s effectiveness in supporting predictive control strategies, optimizing energy efficiency, and maintaining thermal comfort. By integrating hydraulic circuits and thermal exchange processes within a single modeling framework, this work highlights the potential of bond graphs as a robust and scalable tool for advanced building performance simulation. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

29 pages, 3173 KiB  
Article
Graph Neural Networks for Sustainable Energy: Predicting Adsorption in Aromatic Molecules
by Hasan Imani Parashkooh and Cuiying Jian
ChemEngineering 2025, 9(4), 85; https://doi.org/10.3390/chemengineering9040085 (registering DOI) - 6 Aug 2025
Abstract
The growing need for rapid screening of adsorption energies in organic materials has driven substantial progress in developing various architectures of equivariant graph neural networks (eGNNs). This advancement has largely been enabled by the availability of extensive Density Functional Theory (DFT)-generated datasets, sufficiently [...] Read more.
The growing need for rapid screening of adsorption energies in organic materials has driven substantial progress in developing various architectures of equivariant graph neural networks (eGNNs). This advancement has largely been enabled by the availability of extensive Density Functional Theory (DFT)-generated datasets, sufficiently large to train complex eGNN models effectively. However, certain material groups with significant industrial relevance, such as aromatic compounds, remain underrepresented in these large datasets. In this work, we aim to bridge the gap between limited, domain-specific DFT datasets and large-scale pretrained eGNNs. Our methodology involves creating a specialized dataset by segregating aromatic compounds after a targeted ensemble extraction process, then fine-tuning a pretrained model via approaches that include full retraining and systematically freezing specific network sections. We demonstrate that these approaches can yield accurate energy and force predictions with minimal domain-specific training data and computation. Additionally, we investigate the effects of augmenting training datasets with chemically related but out-of-domain groups. Our findings indicate that incorporating supplementary data that closely resembles the target domain, even if approximate, would enhance model performance on domain-specific tasks. Furthermore, we systematically freeze different sections of the pretrained models to elucidate the role each component plays during adaptation to new domains, revealing that relearning low-level representations is critical for effective domain transfer. Overall, this study contributes valuable insights and practical guidelines for efficiently adapting deep learning models for accurate adsorption energy predictions, significantly reducing reliance on extensive training datasets. Full article
Show Figures

Figure 1

25 pages, 3418 KiB  
Review
Review on the Theoretical and Practical Applications of Symmetry in Thermal Sciences, Fluid Dynamics, and Energy
by Nattan Roberto Caetano
Symmetry 2025, 17(8), 1240; https://doi.org/10.3390/sym17081240 - 5 Aug 2025
Viewed by 77
Abstract
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics [...] Read more.
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics domains. Thermal and fluid processes are applied in several modern energy use technologies, essentially involving the complex, multidimensional interaction of fluid mechanics and thermodynamics, such as renewable energy applications, combustion diagnostics, or Computational Fluid Dynamics (CFD)-based optimization, where symmetry is highly considered to simplify geometric parameters. Indeed, the interconnection between experimental analysis and the numerical simulation of processes is an important field. Symmetry operates as a unifying principle, its presence determining everything from the stability of turbulent flows to the efficiency of nuclear reactors, revealing hidden patterns that transcend scales and disciplines. Rotational invariance in pipelines; rotors of hydraulic, thermal, and wind turbines, and in many other cases, for instance, not only lowers computational cost but also guarantees that solutions validated in the laboratory can be effectively scaled up to industrial applications, demonstrating its crucial role in bridging theoretical concepts and real-world implementation. Thus, a wide range of symmetry solutions is exhibited in this research area, the results of which contribute to the development of science and fast information for decision making in industry. In this review, essential findings from prominent research were synthesized, highlighting how symmetry has been conceptualized and applied in these contexts. Full article
(This article belongs to the Special Issue Symmetry in Thermal Fluid Sciences and Energy Applications)
Show Figures

Figure 1

22 pages, 5322 KiB  
Article
Comparative Modeling of Vanadium Redox Flow Batteries Using Multiple Linear Regression and Random Forest Algorithms
by Ammar Ali, Sohel Anwar and Afshin Izadian
Energy Storage Appl. 2025, 2(3), 11; https://doi.org/10.3390/esa2030011 - 5 Aug 2025
Viewed by 89
Abstract
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model [...] Read more.
This paper presents a comparative study of data-driven modeling approaches for vanadium redox flow batteries (VRFBs), utilizing Multiple Linear Regression (MLR) and Random Forest (RF) algorithms. Experimental voltage–capacity datasets from a 1 kW/1 kWh VRFB system were digitized, processed, and used for model training, validation, and testing. The MLR model, built using eight optimized features, achieved a mean error (ME) of 0.0204 V, a residual sum of squares (RSS) of 8.87, and a root mean squared error (RMSE) of 0.1796 V on the test data, demonstrating high predictive performance in stationary operating regions. However, it exhibited limited accuracy during dynamic transitions. Optimized through out-of-bag (OOB) error minimization, the Random Forest model achieved a training RMSE of 0.093 V and a test RMSE of 0.110 V, significantly outperforming MLR in capturing dynamic behavior while maintaining comparable performance in steady-state regions. The accuracy remained high even at lower current densities. Feature importance analysis and partial dependence plots (PDPs) confirmed the dominance of current-related features and SOC dynamics in influencing VRFB terminal voltage. Overall, the Random Forest model offers superior accuracy and robustness, making it highly suitable for real-time VRFB system monitoring, control, and digital twin integration. This study highlights the potential of combining machine learning algorithms with electrochemical domain knowledge to enhance battery system modeling for future energy storage applications. Full article
Show Figures

Figure 1

25 pages, 5349 KiB  
Review
A Comprehensive Survey of Artificial Intelligence and Robotics for Reducing Carbon Emissions in Supply Chain Management
by Mariem Mrad, Mohamed Amine Frikha and Younes Boujelbene
Logistics 2025, 9(3), 104; https://doi.org/10.3390/logistics9030104 - 4 Aug 2025
Viewed by 223
Abstract
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence [...] Read more.
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence on the applications, benefits, and challenges. Methods: A systematic scoping review was conducted on 23 peer-reviewed studies from the Scopus database, published between 2013 and 2024. Data were systematically extracted and analyzed for publication trends, application domains (e.g., transportation, warehousing), specific AI and robotic technologies, emissions reduction strategies, and implementation challenges. Results: The analysis reveals that AI-driven logistics optimization is the most frequently reported strategy for reducing transportation emissions. At the same time, robotic automation is commonly associated with improved energy efficiency in warehousing. Despite these benefits, the reviewed literature consistently identifies significant barriers, including the high energy demands of AI computation and complexities in data integration. Conclusions: This review confirms the transformative potential of AI and robotics for developing low-carbon supply chains. An evidence-based framework is proposed to guide practical implementation and identify critical gaps, such as the need for standardized validation benchmarks, to direct future research and accelerate the transition to sustainable SCM. Full article
Show Figures

Figure 1

18 pages, 1388 KiB  
Review
Simulation in the Built Environment: A Bibliometric Analysis
by Saman Jamshidi
Metrics 2025, 2(3), 13; https://doi.org/10.3390/metrics2030013 - 4 Aug 2025
Viewed by 103
Abstract
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes [...] Read more.
Simulation has become a pivotal tool in the design, analysis, and optimization of the built environment, and has been widely adopted by professionals in architecture, engineering, and urban planning. These techniques enable stakeholders to test hypotheses, evaluate design alternatives, and predict performance outcomes prior to construction. Applications span energy consumption, airflow, thermal comfort, lighting, structural behavior, and human interactions within buildings and urban contexts. This study maps the scientific landscape of simulation research in the built environment through a bibliometric analysis of 12,220 publications indexed in Scopus. Using VOSviewer 1.6.20, it conducted citation and keyword co-occurrence analyses to identify key research themes, leading countries and journals, and central publications in the field. The analysis revealed seven primary thematic clusters: (1) human-focused simulation, (2) building-scale energy performance simulation, (3) urban-scale energy performance simulation, (4) sustainable design and simulation, (5) indoor environmental quality simulation, (6) building aerodynamics simulation, and (7) computing in building simulation. By synthesizing these trends and domains, this study provides an overview of the field, facilitating greater accessibility to the simulation literature and informing future interdisciplinary research and practice in the built environment. Full article
Show Figures

Figure 1

26 pages, 1085 KiB  
Article
Evaluating Sustainable Battery Recycling Technologies Using a Fuzzy Multi-Criteria Decision-Making Approach
by Chia-Nan Wang, Nhat-Luong Nhieu and Yen-Hui Wang
Batteries 2025, 11(8), 294; https://doi.org/10.3390/batteries11080294 - 4 Aug 2025
Viewed by 191
Abstract
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling [...] Read more.
The exponential growth of lithium-ion battery consumption has amplified the urgency of identifying sustainable and economically viable recycling solutions. This study proposes an integrated decision-making framework based on the T-Spherical Fuzzy Einstein Interaction Aggregator DEMATEL-CoCoSo approach to comprehensively evaluate and rank battery recycling technologies under uncertainty. Ten key evaluation criteria—encompassing environmental, economic, and technological dimensions—were identified through expert consultation and literature synthesis. The T-Spherical Fuzzy DEMATEL method was first applied to analyze the causal interdependencies among criteria and determine their relative weights, revealing that environmental drivers such as energy consumption, greenhouse gas emissions, and waste generation exert the most systemic influence. Subsequently, six recycling alternatives were assessed and ranked using the CoCoSo method enhanced by Einstein-based aggregation, which captured the complex interactions present in the experts’ evaluations and assessments. Results indicate that Direct Recycling is the most favorable option, followed by the Hydrometallurgical and Bioleaching methods, while Pyrometallurgical Recycling ranked lowest due to its high energy demands and environmental burden. The proposed hybrid model effectively handles linguistic uncertainty, expert variability, and interdependent evaluation structures, offering a robust decision-support tool for sustainable technology selection in the circular battery economy. The framework is adaptable to other domains requiring structured expert-based evaluations under fuzzy environments. Full article
Show Figures

Figure 1

23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 - 3 Aug 2025
Viewed by 301
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

21 pages, 2240 KiB  
Review
A Review of Fluorescent pH Probes: Ratiometric Strategies, Extreme pH Sensing, and Multifunctional Utility
by Weiqiao Xu, Zhenting Ma, Qixin Tian, Yuanqing Chen, Qiumei Jiang and Liang Fan
Chemosensors 2025, 13(8), 280; https://doi.org/10.3390/chemosensors13080280 - 2 Aug 2025
Viewed by 233
Abstract
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer [...] Read more.
pH is a critical parameter requiring precise monitoring across scientific, industrial, and biological domains. Fluorescent pH probes offer a powerful alternative to traditional methods (e.g., electrodes, indicators), overcoming limitations in miniaturization, long-term stability, and electromagnetic interference. By utilizing photophysical mechanisms—including intramolecular charge transfer (ICT), photoinduced electron transfer (PET), and fluorescence resonance energy transfer (FRET)—these probes enable high-sensitivity, reusable, and biocompatible sensing. This review systematically details recent advances, categorizing probes by operational pH range: strongly acidic (0–3), weakly acidic (3–7), strongly alkaline (>12), weakly alkaline (7–11), near-neutral (6–8), and wide-dynamic range. Innovations such as ratiometric detection, organelle-specific targeting (lysosomes, mitochondria), smartphone colorimetry, and dual-analyte response (e.g., pH + Al3+/CN) are highlighted. Applications span real-time cellular imaging (HeLa cells, zebrafish, mice), food quality assessment, environmental monitoring, and industrial diagnostics (e.g., concrete pH). Persistent challenges include extreme-pH sensing (notably alkalinity), photobleaching, dye leakage, and environmental resilience. Future research should prioritize broadening functional pH ranges, enhancing probe stability, and developing wide-range sensing strategies to advance deployment in commercial and industrial online monitoring platforms. Full article
Show Figures

Figure 1

23 pages, 20344 KiB  
Article
Transient Stability Analysis for the Wind Power Grid-Connected System: A Manifold Topology Perspective on the Global Stability Domain
by Jinhao Yuan, Meiling Ma and Yanbing Jia
Electricity 2025, 6(3), 44; https://doi.org/10.3390/electricity6030044 - 1 Aug 2025
Viewed by 202
Abstract
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on [...] Read more.
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on BSD theory, using the method of combining the manifold topologies and singularities at infinity. On this basis, the effect of large-scale doubly fed induction generators (DFIGs) replacing synchronous units on the BSD of the system is analyzed. Simulation results based on the IEEE 39-bus system indicate that the negative impedance characteristics and low inertia of DFIGs lead to a contraction of the stability domain. The principle of singularity invariance (PSI) proposed in this paper can effectively expand the BSD by adjusting the inertia and damping, thereby increasing the critical clearing time by about 5.16% and decreasing the dynamic response time by about 6.22% (inertia increases by about 5.56%). PSI is superior and applicable compared to traditional energy functions, and can be used to study the power angle stability of power systems with a high proportion of renewable energy. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 299
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

20 pages, 2321 KiB  
Article
Electric Vehicle Energy Management Under Unknown Disturbances from Undefined Power Demand: Online Co-State Estimation via Reinforcement Learning
by C. Treesatayapun, A. J. Munoz-Vazquez, S. K. Korkua, B. Srikarun and C. Pochaiya
Energies 2025, 18(15), 4062; https://doi.org/10.3390/en18154062 - 31 Jul 2025
Viewed by 277
Abstract
This paper presents a data-driven energy management scheme for fuel cell and battery electric vehicles, formulated as a constrained optimal control problem. The proposed method employs a co-state network trained using real-time measurements to estimate the control law without requiring prior knowledge of [...] Read more.
This paper presents a data-driven energy management scheme for fuel cell and battery electric vehicles, formulated as a constrained optimal control problem. The proposed method employs a co-state network trained using real-time measurements to estimate the control law without requiring prior knowledge of the system model or a complete dataset across the full operating domain. In contrast to conventional reinforcement learning approaches, this method avoids the issue of high dimensionality and does not depend on extensive offline training. Robustness is demonstrated by treating uncertain and time-varying elements, including power consumption from air conditioning systems, variations in road slope, and passenger-related demands, as unknown disturbances. The desired state of charge is defined as a reference trajectory, and the control input is computed while ensuring compliance with all operational constraints. Validation results based on a combined driving profile confirm the effectiveness of the proposed controller in maintaining the battery charge, reducing fluctuations in fuel cell power output, and ensuring reliable performance under practical conditions. Comparative evaluations are conducted against two benchmark controllers: one designed to maintain a constant state of charge and another based on a soft actor–critic learning algorithm. Full article
(This article belongs to the Special Issue Forecasting and Optimization in Transport Energy Management Systems)
Show Figures

Figure 1

18 pages, 5712 KiB  
Article
A Fractional Fourier Transform-Based Channel Estimation and Equalization Algorithm for Mud Pulse Telemetry
by Jingchen Zhang, Zitong Sha, Lei Wan, Yishan Su, Jiang Zhu and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(8), 1468; https://doi.org/10.3390/jmse13081468 - 31 Jul 2025
Viewed by 214
Abstract
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, [...] Read more.
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, this work proposes a fractional Fourier transform (FrFT)-based channel estimation and equalization method. Leveraging the energy aggregation of linear frequency-modulated signals in the fractional Fourier domain, the time delay and attenuation parameters of the multipath channel can be estimated accurately. Furthermore, a fractional Fourier domain equalizer is proposed to pre-filter the frequency-selective fading channel using fractionally spaced decision feedback equalization. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results demonstrate that this method can significantly reduce multipath effects, effectively control the impact of noise, and facilitate subsequent demodulation. The field experiment results indicate that the demodulation of real data achieves advanced data rate communication (over 12 bit/s) and a low bit error rate (below 0.5%), which meets engineering requirements in a 3000 m drilling system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop