Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,206)

Search Parameters:
Keywords = endothelial differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13338 KB  
Article
Multi-Omic and Spatial Profiling Identifies an Epithelial DKK1 Associated with Microenvironmental Remodeling in Pancreatic Ductal Adenocarcinoma
by Jiajia Xu, Kaiqiang Qian, Yanyu Ding, Jianghao Cheng, Xu Zhang, Yong Huang and Bo Liu
Curr. Issues Mol. Biol. 2026, 48(2), 182; https://doi.org/10.3390/cimb48020182 - 5 Feb 2026
Abstract
Objective: This study aimed to identify clinically relevant regulators of pancreatic ductal adenocarcinoma (PDAC), a disease characterized by stromal remodeling and immune suppression, and to define their links to malignant progression and microenvironmental reprogramming. Methods: We integrated multi-cohort bulk, single-cell, and spatial transcriptomic [...] Read more.
Objective: This study aimed to identify clinically relevant regulators of pancreatic ductal adenocarcinoma (PDAC), a disease characterized by stromal remodeling and immune suppression, and to define their links to malignant progression and microenvironmental reprogramming. Methods: We integrated multi-cohort bulk, single-cell, and spatial transcriptomic datasets and subsequently validated bulk differential expression and network analyses with machine learning-based prioritization in an independent combined cohort (TCGA-PAAD plus GSE62452). Single-cell mapping was used to assess cell-type specificity, positioning candidates along inferCNV- and pseudotime-defined malignant continua. In Visium sections, a DKK1-associated program score quantified intratumoral spatial heterogeneity and informed our analyses of ligand–receptor communication. Bulk immune deconvolution linked gene levels to immune infiltration patterns, and functional assays were used to test the impact of DKK1 knockdown on migration, proliferation, clonogenic growth, and apoptosis in PDAC cells. Results: Four reproducible tumor-associated genes—DKK1, COL10A1, SULF1, and SLC24A3—were prioritized and validated externally. DKK1 was predominantly expressed by epithelial tumor cells and tracked along a malignant progression continuum. Spatially, the DKK1 program localized to epithelial-dominant regions, revealed pronounced intratumoral heterogeneity, and highlighted epithelial–endothelial and endothelial–immune signaling in high-score areas. Immune deconvolution associated higher DKK1 expression with increased myeloid infiltration and reduced cytotoxic lymphocyte signatures. Functionally, DKK1 knockdown impaired migration, proliferation, and clonogenicity while increasing apoptosis. Conclusions: We demonstrate that DKK1 is an epithelial-derived regulator linked to malignant progression and tumor–stroma–immune remodeling, supporting its potential as a biomarker and therapeutic target in PDAC treatment, including rational combinations with stroma-modulating strategies and immunotherapy. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era, 3rd Edition)
Show Figures

Figure 1

17 pages, 2507 KB  
Article
Annurca Apple By-Products at Different Ripening Stages Inhibit AGE Formation and Protect Against AGE-Induced Cytotoxicity Through Antioxidant Activity
by Maria Liccardo, Pasquale Perrone, Shana Perrella, Ivana Sirangelo, Stefania D’Angelo and Clara Iannuzzi
Antioxidants 2026, 15(2), 200; https://doi.org/10.3390/antiox15020200 - 3 Feb 2026
Viewed by 151
Abstract
Annurca apple extract is gaining growing attention for its beneficial properties, particularly its outstanding antioxidant activity. Using a combination of biophysical, cell, and molecular biology techniques, this study investigates the sustainable valorization of Annurca apple by-products at different ripening stages and their role [...] Read more.
Annurca apple extract is gaining growing attention for its beneficial properties, particularly its outstanding antioxidant activity. Using a combination of biophysical, cell, and molecular biology techniques, this study investigates the sustainable valorization of Annurca apple by-products at different ripening stages and their role in the formation of advanced glycation end-products (AGEs), as well as in protection against AGE-related cytotoxicity. AGEs are a class of compounds formed by non-enzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. They can be produced endogenously or ingested through dietary sources and tobacco smoke. AGEs accumulate in nearly all mammalian tissues and are linked to various health issues, such as diabetes and its related complications, cardiovascular disease, and neurodegenerative disorders. Our data show that Annurca apple by-products at different ripening stages differentially counteract AGEs’ formation by inhibiting protein glycation and protect against AGE-induced cytotoxicity in endothelial cells. In particular, the extracts reduce AGE-induced reactive oxygen species (ROS) production, thereby inhibiting MAPK signaling pathways and caspase-3 activation. Moreover, ripening significantly enhances the concentration of bioactive compounds and the extent of cellular protection. This study highlights new beneficial properties of Annurca apple extracts and suggests that adopting nutritional interventions may support health and potentially reduce the risk of complications associated with AGE accumulation. Full article
Show Figures

Figure 1

20 pages, 3317 KB  
Article
Study on the Effect of N-Carbamylglutamate (NCG) on Reproductive Performance and Regulation Mechanism of Primary Lake Sheep
by Tianli Gao, Chunyang Li, Juanshan Zheng, Yingpai Zhaxi, Yuan Cai, Rongxin Zang, Huixia Liu, Yanmei Yang, Sai Li, Xiaodi Shi and Chen Huang
Animals 2026, 16(3), 464; https://doi.org/10.3390/ani16030464 - 2 Feb 2026
Viewed by 114
Abstract
The aim of this study was to investigate the effects of dietary supplementation with 0.11% N-carbamylglutamate (NCG) during early pregnancy (0–90 days) on reproductive performance and fetal development, and to elucidate the underlying placental regulatory mechanisms in primiparous Hu sheep. Twenty-two 10-month-old sexually [...] Read more.
The aim of this study was to investigate the effects of dietary supplementation with 0.11% N-carbamylglutamate (NCG) during early pregnancy (0–90 days) on reproductive performance and fetal development, and to elucidate the underlying placental regulatory mechanisms in primiparous Hu sheep. Twenty-two 10-month-old sexually mature primiparous Hu sheep meeting the mating criteria were randomly assigned to two groups. The control group was fed a basal diet, while the NCG group received the basal diet supplemented with 0.11% NCG, with both feeding regimens maintained for 90 days. By measuring uterine and fetal growth indices, maternal plasma biochemical parameters, and amino acid levels, as well as assessing cotyledon indices and observing cotyledon morphology and histological structure, basic data related to placental function and fetal growth in pregnant ewes was collected. Combined with transcriptomic sequencing of maternal placental tissue, the mechanism by which NCG influences placental function and fetal growth and development in pregnant ewes was further investigated. The supplementation of NCG could increase the number of fetuses, total weight of fetuses, the number of corpus luteum and the ratio of fetuses to corpus luteum, but the difference was not significant (p > 0.05). The levels of plasma NO, inducible Nitric Oxide Synthase (iNOS) and several amino acids were significantly increased (p < 0.05). In ewes’ uteri, the average uterine weight, number of uterine glands, total cotyledon weight, and average weight per cotyledon were significantly increased (p < 0.05), whereas uterine mucosal thickness was markedly decreased. The Quantitative Real-time PCR (q-PCR) results for differentially expressed genes were consistent with those of transcriptomic analysis, showing significant changes in the expression levels of certain differentially expressed genes in maternal placental tissues. These changes regulated pathways such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), phosphatidylinositol 3-kinase–protein kinase B (PI3K–AKT) signaling pathways and Mitogen-Activated Protein Kinase (MAPK) pathway, which are involved in angiogenesis, energy supply and metabolism, and somatic growth and development. Dietary supplementation with NCG during early pregnancy can significantly improve the reproductive performance of primiparous Hu sheep, optimize the intrauterine environment and nutrient supply, and thereby facilitate pregnancy maintenance and fetal development. The underlying mechanism may involve promoting endogenous arginine synthesis in ewes, increasing plasma levels of NO, arginine, and certain amino acids, which collectively validate the positive effects of NCG on the reproductive performance and growth of Hu sheep during early pregnancy at the molecular level. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

25 pages, 3301 KB  
Article
Three-Dimensional Human Liver Micro Organoids and Bone Co-Culture Mimics Alcohol-Induced BMP Dysregulation and Bone Remodeling Defects
by Yuxuan Xin, Guanqiao Chen, Mohammad Majd Hammour, Xiang Gao, Fabian Springer, Elke Maurer, Andreas K. Nüssler and Romina H. Aspera-Werz
Cells 2026, 15(3), 274; https://doi.org/10.3390/cells15030274 - 1 Feb 2026
Viewed by 161
Abstract
Hepatic osteodystrophy (HOD) is a frequent complication of chronic liver disease, marked by impaired osteogenesis and elevated fracture risk, particularly under sustained alcohol exposure. Bone morphogenetic proteins (BMPs), which play a crucial role in maintaining bone homeostasis, are dysregulated in alcoholic liver disease. [...] Read more.
Hepatic osteodystrophy (HOD) is a frequent complication of chronic liver disease, marked by impaired osteogenesis and elevated fracture risk, particularly under sustained alcohol exposure. Bone morphogenetic proteins (BMPs), which play a crucial role in maintaining bone homeostasis, are dysregulated in alcoholic liver disease. Specifically, decreased BMP2 and increased BMP13 have been linked to impaired osteogenesis and cartilage-like shifts in bone progenitors. A human in vitro system that recapitulates this hepatic BMP imbalance is needed to dissect mechanisms and identify targets. To address this, we established a long-term human three-dimensional liver–bone co-culture model that integrates hepatocytes (HepaRG), hepatic stellate cells (LX-2), and human umbilical vein endothelial cells (HUVECs) with bone scaffolds seeded with osteoblast precursors (SCP-1) and osteoclast precursors (THP-1). This study aimed to characterize the effects of chronic 50 mM alcohol exposure on hepatic fibrogenic activation and BMP ligand secretion, and to investigate the associated BMP-responsive signaling involved in bone cell lineage differentiation and functional activity. The results demonstrated alcohol-induced hepatic CYP2E1 activation and fibrogenic remodeling with EMT signatures, as well as a decrease in BMP2 and an increase in BMP13, without affecting BMP9. Liver-derived factors activated both canonical and non-canonical BMP signaling in bone progenitors, reduced osteoblast activity and mineralization, preserved osteoclast TRAP activity, and shifted the lineage toward chondrogenesis (SOX9↑, RUNX2↓). Notably, this BMP profile and skeletal phenotype reflect clinical observations in chronic liver disease, indicating that the model recapitulates key in vivo pathological features. This human liver micro-organoid co-culture reproduces alcohol-induced hepatic BMP dysregulation and downstream bone defects, offering an organoid-centric, microengineered platform for mechanistic studies and BMP-targeted therapeutic screening in HOD. Full article
Show Figures

Graphical abstract

19 pages, 10797 KB  
Article
Integrative Multi-Omics and Machine Learning Identify ID1 as a Candidate Gene Associated with Abdominal Aortic Aneurysm
by Feng Guo, Michael Keese, Yu Zhao and Qining Fu
Curr. Issues Mol. Biol. 2026, 48(2), 156; https://doi.org/10.3390/cimb48020156 - 30 Jan 2026
Viewed by 133
Abstract
Abdominal aortic aneurysm (AAA) is a fatal vascular disorder driven by immune dysregulation and extracellular matrix (ECM) degradation, yet its molecular mechanisms remain unclear. This study investigated the mechanistic role of ID1 in AAA using an integrative multi-omics and machine learning approach. Two [...] Read more.
Abdominal aortic aneurysm (AAA) is a fatal vascular disorder driven by immune dysregulation and extracellular matrix (ECM) degradation, yet its molecular mechanisms remain unclear. This study investigated the mechanistic role of ID1 in AAA using an integrative multi-omics and machine learning approach. Two bulk transcriptomic datasets (GSE232911 and GSE183464) were analyzed through differential expression, WGCNA, and three machine learning algorithms (LASSO, Random Forest, and SVM-RFE), followed by immune infiltration analysis via ssGSEA and CIBERSORT. ID1 and CYP4B1 were identified by all three machine learning algorithms, but only ID1 showed stable downregulation and consistent discriminatory ability across independent datasets. (AUC = 0.939 and 0.868). Functional enrichment and immune deconvolution linked low ID1 expression to enhanced adaptive immune signaling, increased M1 macrophages, γδ T cells, and memory B cells, and reduced neutrophil and mast cell activity. Single-cell RNA sequencing (GSE226492) confirmed endothelial- and fibroblast-specific ID1 downregulation in AAA. These findings identify ID1 as a candidate gene associated with vascular immune remodeling and extracellular matrix–related pathways, providing a basis for future mechanistic investigation in AAA. Full article
(This article belongs to the Special Issue Featured Papers in Bioinformatics and Systems Biology)
Show Figures

Figure 1

12 pages, 3011 KB  
Article
Heparan Sulfates Regulate Vascular Reactivity in Syndecan 1 Knockout Mice
by Simone R. Potje, Aishwarya Katiki, Paulo W. Pires and Andreia Zago Chignalia
Int. J. Mol. Sci. 2026, 27(3), 1386; https://doi.org/10.3390/ijms27031386 - 30 Jan 2026
Viewed by 108
Abstract
Heparan sulfates (HS) are polysaccharides abundantly expressed in the extracellular matrix and the glycocalyx of endothelial cells, having a putative role in vascular function. The role of HS in vascular reactivity remains unclear. Herein, we sought to determine whether HS regulate the vascular [...] Read more.
Heparan sulfates (HS) are polysaccharides abundantly expressed in the extracellular matrix and the glycocalyx of endothelial cells, having a putative role in vascular function. The role of HS in vascular reactivity remains unclear. Herein, we sought to determine whether HS regulate the vascular tone in physiological conditions. Using male, 6–8-weeks-old, CD1, C57BL/6, syndecan 1 (Sdc1−/−) and glypican 1 (Gpc1−/−) knockout mice, we investigated if the degradation of HS with heparinase III altered vascular reactivity to norepinephrine (NE), acetylcholine (ACh) and potassium chloride (KCl). Our findings indicate that HS are crucial players in the vascular response to NE and ACh in CD1, C57BL/6, and Sdc1−/− but not in Gpc1−/− mice. Both Sdc1−/− and Gpc1−/− showed increased compensatory expression of syndecan 2 and syndecan 4. However, while Sdc1−/− showed decreased expression of glypican 1, Gpc1−/− showed increased expression of syndecan 1 in aortic homogenates. The lack of response to the vascular reactivity effects of heparinase III in Gpc1−/− suggests a differential role of HS to proteoglycan function in the regulation of the vascular tone. Our data demonstrate a physiological role for HS in the regulation of the vascular tone in physiological conditions. Full article
(This article belongs to the Special Issue Glycobiology in Human Health and Disease)
Show Figures

Graphical abstract

16 pages, 1057 KB  
Article
Combined Therapy Versus Fortified Anti-VEGF Monotherapy in Type C Polypoidal Choroidal Vasculopathy: Long-Term Outcomes and Exploratory Biomarker Insights
by Windsor Wen-Jin Chao, Howard Wen-Haur Chao and Hsiao-Ming Chao
Int. J. Mol. Sci. 2026, 27(3), 1224; https://doi.org/10.3390/ijms27031224 - 26 Jan 2026
Viewed by 159
Abstract
While standard anti- vascular endothelial growth factor (VEGF) therapy, with or without photodynamic therapy (PDT), is effective for patients with polypoidal choroidal vasculopathy (PCV), not all achieve optimal visual outcomes. This study aimed to compare fortified (double the dose and the volume of [...] Read more.
While standard anti- vascular endothelial growth factor (VEGF) therapy, with or without photodynamic therapy (PDT), is effective for patients with polypoidal choroidal vasculopathy (PCV), not all achieve optimal visual outcomes. This study aimed to compare fortified (double the dose and the volume of the standard one) anti-VEGF combined with PDT versus fortified anti-VEGF monotherapy and to investigate biomolecular profiles and disease relationships among PCV, neovascular age-related macular degeneration (nvAMD), and central serous chorioretinopathy (CSCR). The goal was to identify novel pathways to inform future therapeutic strategies, including hypoxia-inducible factors (HIF)-1α inhibitors. This retrospective cohort study included 23 eyes with indocyanine green-confirmed type C PCV. One eye treated with transpupillary thermotherapy was not included in the following two groups. Patients received either combined therapy (PDT + fortified-dose anti-VEGF; n = 12) or fortified-dose anti-VEGF monotherapy (n = 10). Primary outcomes were changes in best-corrected visual acuity (BCVA) and central retinal thickness (CRT). Secondary outcomes included injection burden and recurrence. Exploratory analyses examined aqueous biomarkers, including VEGF, placental growth factor (PlGF), β-catenin, HIF-1α, and Wnt1 across PCV, CSCR, and nvAMD to identify novel therapeutic targets. Significant (p = 0.003/p = 0.005) median CRT reduction was similar (p = 0.468) between groups (combined/monotherapy: 137.5 µm/106.5 µm). BCVA (median [Q1, Q3]) change in logarithm of the minimum angle of resolution (LogMAR) was not statistically significant (p = 0.279), with 0.25 [0.00, 0.98] in the combined group versus 0.00 [−0.03, 0.28] in the monotherapy group. Treatment burden of anti-VEGFs per person per year was lower with combined therapy (1.16 ± 0.47# PDT + 2.81 ± 0.92# anti-VEGF injections) compared with monotherapy (4.61 ± 1.49# injections). Six eyes demonstrated recurrence at a mean of 15.5 months. Incomplete regression of polyps and branching vascular networks was observed in all eyes. Exploratory biomarker analysis revealed significantly (p < 0.05) higher VEGF and PlGF levels in nvAMD compared with PCV. nvAMD also demonstrated significantly (p < 0.05) higher β-catenin and lower HIF-1α levels relative to PCV and CSCR, while no significant biomarker differences were observed between PCV and CSCR. Combined therapy or monotherapy with fortified anti-VEGFs reduced treatment burden and achieved significant anatomical improvement but did not yield superior functional outcomes, highlighting the therapeutic difficulty of type C PCV. Biomarker profiling revealed shared hypoxia-related mechanisms between PCV and CSCR, with elevated HIF-1α compared to nvAMD indicating a “preliminary” possible role for HIF-1α inhibitors. Differential expression of these biomarkers highlights additional molecular pathways that may inform future targeted interventions. Full article
(This article belongs to the Special Issue Molecular Insight into Retinal Diseases: 2nd Edition)
Show Figures

Figure 1

14 pages, 966 KB  
Article
Profiles of Growth Factors Secreted by In Vitro-Stimulated Paediatric Acute Leukaemia Blasts of Myeloid and Lymphoid Origin
by Anna Kozub, Rafał Szarek, Mikołaj Szczęsny, Dagmara Jaworska, Wojciech Młynarski, Jerzy Kowalczyk, Tomasz Szczepański, Zenon P. Czuba and Łukasz Sędek
Int. J. Mol. Sci. 2026, 27(2), 933; https://doi.org/10.3390/ijms27020933 - 17 Jan 2026
Viewed by 321
Abstract
The research on cytokine or growth factor (GF) release by leukaemic blasts is a largely unexplored area. This study aimed to evaluate the differential secretory potential of paediatric B-cell precursor and T-cell acute lymphoblastic leukaemia (BCP-ALL and T-ALL, respectively) and acute myeloid leukaemia [...] Read more.
The research on cytokine or growth factor (GF) release by leukaemic blasts is a largely unexplored area. This study aimed to evaluate the differential secretory potential of paediatric B-cell precursor and T-cell acute lymphoblastic leukaemia (BCP-ALL and T-ALL, respectively) and acute myeloid leukaemia cells (AMLs) for selected GFs, both basally and upon stimulation with phytohemagglutinin (PHA), lipopolysaccharide (LPS), or phorbol 12-myristate 13-acetate with ionophore A23187 (PMA + I). The concentrations of five GFs: granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) in the supernatants were measured using the Bio-Plex multiplex immunoassay. AML blasts showed the highest basal concentrations of G-CSF, GM-CSF, and VEGF. PHA and LPS stimulation non-selectively enhanced the secretion of G-CSF, GM-CSF, VEGF, and PDGF in BCP-ALL and AML blasts. PMA + I was the strongest GF release inducer, particularly for BCP-ALL and T-ALL blasts, with the latter also showing higher responsiveness to PHA and LPS. Our findings reveal differential, leukaemia-type dependent GF secretion patterns. Lineage-specific responses may be exploitable for targeted therapeutic approaches for distinct AL types. This study is the first to comprehensively assess the extracellular secretion of multiple GFs by paediatric AL cells in cultures using a Bio-Plex multiplex immunoassay. Full article
Show Figures

Figure 1

26 pages, 7456 KB  
Article
Multicellular Model Reveals the Mechanism of AEE Alleviating Vascular Endothelial Cell Injury via Anti-Inflammatory and Antioxidant Effects
by Ji Feng, Qi Tao, Meng-Zhen Li, Zhi-Jie Zhang, Qin-Fang Yu and Jian-Yong Li
Int. J. Mol. Sci. 2026, 27(2), 877; https://doi.org/10.3390/ijms27020877 - 15 Jan 2026
Viewed by 340
Abstract
Vascular endothelial injury is a key pathological characteristic of multiple diseases, such as atherosclerosis, stroke, and mastitis. Aspirin eugenol ester (AEE) has been confirmed to exert a significant protective effect on vascular endothelial injury. However, the universal action patterns and underlying mechanisms of [...] Read more.
Vascular endothelial injury is a key pathological characteristic of multiple diseases, such as atherosclerosis, stroke, and mastitis. Aspirin eugenol ester (AEE) has been confirmed to exert a significant protective effect on vascular endothelial injury. However, the universal action patterns and underlying mechanisms of AEE across different pathological scenarios have not been systematically elucidated. This study aimed to investigate the effect and mechanism of AEE in alleviating multiple vascular endothelial injury models. Nine vascular endothelial injury models were established by treating bovine aortic endothelial cells (BAECs), mouse aortic endothelial cells (MAECs), and human umbilical vein endothelial cells (Huvecs) with ethanol (EtOH), hydrogen peroxide (H2O2), and copper sulfate (CuSO4), respectively. The protective effects of AEE were systematically evaluated via morphological observation, detection of inflammatory responses, and oxidative stress markers. Furthermore, metabolomics was employed to identify and analyze differentially expressed metabolites between the nine model groups and AEE groups. AEE exerted protective effects on all nine vascular endothelial injury models, inhibiting inflammation and oxidative stress induced by all inducers. Metabolomic analysis revealed that the differentially expressed metabolites modulated by AEE in most models were primarily enriched in lipid metabolism, amino acid metabolism, coenzyme biosynthesis, and other related pathways. AEE could improve vascular endothelial injury by upregulating antioxidant substance which included eicosapentaenoic acid (EPA), choline, coenzyme A (CoA), glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), as well as downregulating substances that cause endothelial oxidative damage, including phytosphingosine (PS), palmitic acid (PA), and arachidonic acid (AA). Full article
Show Figures

Figure 1

15 pages, 1077 KB  
Article
Long Non-Coding RNA MALAT1 Regulates HMOX1 in Sickle Cell Disease-Associated Pulmonary Hypertension
by Viranuj Sueblinvong, Sarah S. Chang, Jing Ma, David R. Archer, Solomon Ofori-Acquah, Roy L. Sutliff, Changwon Park, C. Michael Hart, Benjamin T. Kopp and Bum-Yong Kang
Cells 2026, 15(2), 154; https://doi.org/10.3390/cells15020154 - 15 Jan 2026
Viewed by 232
Abstract
Pulmonary hypertension (PH) causes morbidity and mortality in sickle cell disease (SCD). The release of heme during hemolysis triggers endothelial dysfunction and contributes to PH. Long non-coding RNAs (lncRNAs) may play a pivotal role in endothelial dysfunction and PH pathogenesis. This study assessed [...] Read more.
Pulmonary hypertension (PH) causes morbidity and mortality in sickle cell disease (SCD). The release of heme during hemolysis triggers endothelial dysfunction and contributes to PH. Long non-coding RNAs (lncRNAs) may play a pivotal role in endothelial dysfunction and PH pathogenesis. This study assessed the regulatory role of the lncRNA–heme oxygenase-1 (HMOX1) axis in SCD-associated PH pathogenesis. Total RNAs were isolated from the lungs of 15–17-week-old sickle cell (SS) mice and littermate controls (AA) mice and subjected to lncRNA expression profiling using the Arrystar™ lncRNA array. Volcano plot filtering was used to screen for differentially expressed lncRNAs and mRNAs with statistical significance (fold change > 1.8, p < 0.05). A total of 3915 lncRNAs were upregulated and a total of 3545 lncRNAs were downregulated in the lungs of SS mice compared to AA mice. To validate differentially expressed lncRNAs, six upregulated lncRNAs and six downregulated lncRNAs were selected for quantitative PCR. MALAT1 expression was significantly upregulated in the lungs of SS mice and in hemin-treated human pulmonary artery endothelial cells (HPAECs), suggesting that hemolysis induces MALAT1. Functional studies revealed that MALAT1 depletion increased, while MALAT1 overexpression decreased, the endothelial dysfunction markers endothelin-1 (ET-1) and vascular cell adhesion molecule-1 (VCAM1), indicating a protective role of MALAT1 in maintaining endothelial homeostasis. In vivo, adenoviral MALAT1 overexpression attenuated PH, right ventricular hypertrophy (RVH), vascular remodeling, and reduced ET-1 and VCAM1 expression in SS mice. Given that HMOX1 protects endothelial cells during hemolysis, we observed that HMOX1 expression and activity were elevated in SS mouse lungs and hemin-treated HPAECs. HMOX1 knockdown enhanced ET-1 and VCAM1 expression, confirming its endothelial-protective function. Importantly, MALAT1 overexpression increased HMOX1 expression and activity, whereas MALAT1 knockdown reduced HMOX1 levels and mRNA stability. Collectively, these findings identify MALAT1 as a protective regulator that mitigates endothelial dysfunction, vascular remodeling, and PH in SCD, at least in part through the induction of HMOX1. These results suggest that SCD modulates the MALAT1–HMOX1 axis, and further characterization of MALAT1 function may provide new insights into SCD-associated endothelial dysfunction and PH pathogenesis, as well as identify novel therapeutic targets. Full article
(This article belongs to the Special Issue Sickle Cell Disease: Pathogenesis, Diagnosis and Treatment)
Show Figures

Graphical abstract

30 pages, 1985 KB  
Review
Sotatercept in Pulmonary Arterial Hypertension: Molecular Mechanisms, Clinical Evidence, and Emerging Role in Reverse Remodelling
by Ioan Tilea, Dragos-Gabriel Iancu, Ovidiu Fira-Mladinescu, Nicoleta Bertici and Andreea Varga
Int. J. Mol. Sci. 2026, 27(2), 767; https://doi.org/10.3390/ijms27020767 - 12 Jan 2026
Viewed by 441
Abstract
Pulmonary arterial hypertension (PAH) is a severe, progressive vasculopathy characterized by endothelial dysfunction, medial hypertrophy, and maladaptive vascular and cardiac remodelling that ultimately leads to right-heart failure and premature death. Despite advances in vasodilator therapies targeting endothelin, nitric oxide, and prostacyclin pathways, a [...] Read more.
Pulmonary arterial hypertension (PAH) is a severe, progressive vasculopathy characterized by endothelial dysfunction, medial hypertrophy, and maladaptive vascular and cardiac remodelling that ultimately leads to right-heart failure and premature death. Despite advances in vasodilator therapies targeting endothelin, nitric oxide, and prostacyclin pathways, a substantial proportion of patients fail to achieve or maintain a low-risk profile, highlighting the need for disease-modifying strategies. Dysregulation of transforming growth factor-β (TGF-β) superfamily signalling, with excessive activin and growth differentiation factor activity and impaired bone morphogenetic protein signalling, plays a central role in PAH pathobiology. Sotatercept, a first-in-class activin signalling inhibitor, restores this imbalance by selectively trapping pro-proliferative ligands, thereby addressing a key molecular driver of pulmonary vascular remodelling. Evidence from pivotal phase II and III trials—PULSAR, STELLAR, ZENITH, and HYPERION—demonstrates that sotatercept significantly improves exercise capacity, haemodynamics, and risk status when added to background therapy. This review summarises the molecular mechanisms underlying sotatercept’s therapeutic effects, synthesises the current clinical evidence, and discusses its emerging role as a disease-modifying agent capable of promoting reverse pulmonary vascular remodelling within contemporary PAH management. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

12 pages, 410 KB  
Article
The Effect of Fatty Acid-Binding Protein 3 Exposure on Endothelial Transcriptomics
by Hien C. Nguyen, Aman Singh, Christina A. Castellani, Mohammad Qadura and Krishna K. Singh
DNA 2026, 6(1), 4; https://doi.org/10.3390/dna6010004 - 8 Jan 2026
Viewed by 260
Abstract
Background: Fatty acid-binding protein 3 (FABP3) is released in circulation following myocardial infarction, and an increased level of circulatory FABP3 has also been reported in peripheral artery disease patients, exposing endothelial cells to higher levels of FABP3. Recently, loss of endothelial FABP3 was [...] Read more.
Background: Fatty acid-binding protein 3 (FABP3) is released in circulation following myocardial infarction, and an increased level of circulatory FABP3 has also been reported in peripheral artery disease patients, exposing endothelial cells to higher levels of FABP3. Recently, loss of endothelial FABP3 was shown to protect endothelial cells against inflammation-induced endothelial dysfunction; however, the effect of FABP3 exposure on endothelial cells is unknown. Accordingly, to study the effect of FABP3 exposure on endothelial cells, we performed transcriptomic profiling following recombinant human FABP3 (rhFABP3) treatment of endothelial cells. Methods: Cultured human endothelial cells were treated with either a vehicle or rhFABP3 (50 ng/mL, 6 h); then, RNA sequencing was performed. Gene expression analysis followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses was performed to identify differentially expressed genes and affected cellular functions and pathways. Results: Differential gene expression analysis revealed kinesin family member 26b (KIF26B) to be the most upregulated and survival of motor neuron 2 (SMN2) to be the most downregulated genes in rhFABP3-treated compared to vehicle-treated endothelial cells. Most of the differentially expressed genes were associated with endothelial cell motility, immune response, and angiogenesis. GO and KEGG analyses indicated that rhFABP3 exposure impacts several crucial pathways, predominantly “Regulation of leukocyte mediated cytotoxicity” and “Natural killer cell mediated cytotoxicity”, suggesting its involvement in endothelial cell physiology and response mechanisms to cardiovascular stress. Conclusions: This is the first study to evaluate rhFABP3-induced transcriptomics in human endothelial cells. Our data reveal novel genes and pathways affected by the exposure of endothelial cells to FABP3. Further research is necessary to validate these findings and fully understand FABP3’s role in endothelial biology and in cardiovascular diseases like myocardial infarction and peripheral artery disease. Full article
Show Figures

Figure 1

35 pages, 1739 KB  
Review
Mesenchymal Stromal/Stem Cell-Based Therapies for Liver Regeneration: Current Status and Future Directions
by Seohyun Choi and Jaemin Jeong
Int. J. Mol. Sci. 2026, 27(2), 619; https://doi.org/10.3390/ijms27020619 - 7 Jan 2026
Viewed by 515
Abstract
The global burden of acute and chronic liver diseases warrants safe and effective regenerative therapies that can complement or defer liver transplantation. Mesenchymal stromal/stem cells (MSCs) have been recognized as versatile biologics that modulate inflammation, reverse fibrosis, and promote hepatic repair predominantly through [...] Read more.
The global burden of acute and chronic liver diseases warrants safe and effective regenerative therapies that can complement or defer liver transplantation. Mesenchymal stromal/stem cells (MSCs) have been recognized as versatile biologics that modulate inflammation, reverse fibrosis, and promote hepatic repair predominantly through paracrine signaling. In hepatic milieu, MSCs act on hepatocytes, hepatic stellate cells, endothelial cells, and immune cell subsets through trophic factors and extracellular vesicles (EVs). Despite demonstrating hepatocyte-like differentiation of MSCs, their in vivo efficacy is primarily attributed to micro-environmental reprogramming rather than durable engraftment. This review covers MSC biology, liver regeneration, and cell-based versus EV therapies, including administration, dosing, quality, and safety. Future directions focus on biomarkers, multi-center trials, and engineered MSC/EV platforms for scalable personalized liver regeneration. Full article
Show Figures

Figure 1

20 pages, 8826 KB  
Article
Discovery of New Markers for Haemogenic Endothelium and Haematopoietic Progenitors in the Mouse Yolk Sac
by Guillermo Diez-Pinel, Alessandro Muratore, Christiana Ruhrberg and Giovanni Canu
J. Dev. Biol. 2026, 14(1), 4; https://doi.org/10.3390/jdb14010004 - 6 Jan 2026
Viewed by 476
Abstract
Erythro-myeloid progenitors (EMPs) originate from the haemogenic endothelium in the yolk sac via an endothelial-to-haematopoietic transition (EHT) to generate blood and immune cells that support embryo development. Yet, the transitory nature of EHT and the limited availability of molecular markers have constrained our [...] Read more.
Erythro-myeloid progenitors (EMPs) originate from the haemogenic endothelium in the yolk sac via an endothelial-to-haematopoietic transition (EHT) to generate blood and immune cells that support embryo development. Yet, the transitory nature of EHT and the limited availability of molecular markers have constrained our understanding of the origin, identity, and differentiation dynamics of EMPs. Here, we have refined the annotation of yolk sac haemato-vascular populations in publicly available single-cell RNA sequencing (scRNAseq) datasets from mouse embryos to identify novel molecular markers of haemogenic endothelium and EMPs. By sub-clustering key cell populations followed by pseudotime analysis, we refined cluster annotations and then reconstructed differentiation trajectories. Subsequent differential gene expression analysis between clusters identified novel cell surface markers for haemogenic endothelial cells (Fxyd5 and Scarf1) and EMPs (Fcer1g, Tyrobp, and Mctp1). Further, we have identified candidate signalling and metabolic pathways that may regulate yolk sac haematopoietic emergence and differentiation. The specificity of FXYD5, SCARF1, and FCER1G for haemogenic endothelium and EMPs was validated by immunostaining of the mouse yolk sac. These insights into the transcriptional dynamics in the yolk sac should support future investigation of EHT and haematopoietic differentiation during early mammalian development. Full article
Show Figures

Figure 1

21 pages, 1320 KB  
Review
Mesothelial Cells in Fibrosis: Focus on Intercellular Crosstalk
by Nadezhda Bakalenko, Evdokiya Kuznetsova, Konstantin Dergilev, Irina Beloglazova and Anna Malashicheva
Biomolecules 2026, 16(1), 85; https://doi.org/10.3390/biom16010085 - 5 Jan 2026
Viewed by 406
Abstract
Mesothelial cells line serosal cavities and internal organs, playing a vital role in maintaining serosal integrity and homeostasis. Their remarkable plasticity and ability to undergo mesothelial-to-mesenchymal transition (MMT) position them as key regulators of tissue repair. However, when normal repair processes fail, mesothelial [...] Read more.
Mesothelial cells line serosal cavities and internal organs, playing a vital role in maintaining serosal integrity and homeostasis. Their remarkable plasticity and ability to undergo mesothelial-to-mesenchymal transition (MMT) position them as key regulators of tissue repair. However, when normal repair processes fail, mesothelial cells can acquire a profibrotic phenotype. They actively contribute to all stages of fibrosis development, including inflammation, fibrin accumulation, myofibroblast differentiation, and extracellular matrix (ECM) remodeling. Fibrotic progression involves multiple cell types, and communication among them is essential for its perpetuation. Mesothelial cells are implicated in bidirectional crosstalk with fibroblasts, macrophages, lymphocytes, and endothelial cells of the serosal microenvironment through direct contact, paracrine signaling, and extracellular vesicle exchange. These interactions regulate immune cell recruitment, cytokine balance, endothelial permeability, and ECM deposition, while, in turn, immune and endothelial cells modulate mesothelial activation, proliferation, and transition. Understanding this complex network of intercellular communication provides new insights into fibrosis pathogenesis and reveals promising targets for antifibrotic therapies. Full article
(This article belongs to the Special Issue New Insights into Mesothelial Cells)
Show Figures

Figure 1

Back to TopTop