The Effect of Fatty Acid-Binding Protein 3 Exposure on Endothelial Transcriptomics
Abstract
1. Introduction
2. Materials and Methods
Cell Culture and Treatment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, H.C.; Qadura, M.; Singh, K.K. Role of the Fatty Acid Binding Proteins in Cardiovascular Diseases: A Systematic Review. J. Clin. Med. 2020, 9, 3390. [Google Scholar] [CrossRef]
- Li, B.; Syed, M.H.; Khan, H.; Singh, K.K.; Qadura, M. The Role of Fatty Acid Binding Protein 3 in Cardiovascular Diseases. Biomedicines 2022, 10, 2283. [Google Scholar] [CrossRef] [PubMed]
- Denisenko, Y.K.; Kytikova, O.Y.; Novgorodtseva, T.P.; Antonyuk, M.V.; Gvozdenko, T.A.; Kantur, T.A. Lipid-Induced Mechanisms of Metabolic Syndrome. J. Obes. 2020, 2020, 5762395. [Google Scholar] [CrossRef]
- Karbek, B.; Özbek, M.; Bozkurt, N.C.; Ginis, Z.; Güngünes, A.; Ünsal, I.Ö.; Cakal, E.; Delibası, T. Heart-type fatty acid binding protein (H-FABP): Relationship with arterial intima-media thickness and role as diagnostic marker for atherosclerosis in patients with ımpaired glucose metabolism. Cardiovasc. Diabetol. 2011, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Binas, B.; Danneberg, H.; Mcwhir, J.; Mullins, L.; Clark, A.J. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 1999, 13, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Chmurzyńska, A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J. Appl. Genet. 2006, 47, 39–48. [Google Scholar] [CrossRef]
- Zhuang, L.; Li, C.; Chen, Q.; Jin, Q.; Wu, L.; Lu, L.; Yan, X.; Chen, K. Fatty acid-binding protein 3 contributes to ischemic heart injury by regulating cardiac myocyte apoptosis and MAPK pathways. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H971–H984. [Google Scholar] [CrossRef]
- Glatz, J.F.; Kleine, A.H.; van Nieuwenhoven, F.A.; Hermens, W.T.; van Dieijen-Visser, M.P.; van der Vusse, G.J. Fatty-acid-binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br. Heart J. 1994, 71, 135–140. [Google Scholar] [CrossRef]
- Knowlton, A. Leakage of heart fatty acid binding protein with ischemia and reperfusion in the rat. J. Mol. Cell. Cardiol. 1989, 21, 577–583. [Google Scholar] [CrossRef]
- Haastrup, B.; Gill, S.; Kristensen, S.R.; Jørgensen, P.J.; Glatz, J.F.C.; Haghfelt, T.; Hørder, M. Biochemical Markers of Ischaemia for the Early Identification of Acute Myocardial Infarction without ST Segment Elevation. Cardiology 2000, 94, 254–261. [Google Scholar] [CrossRef]
- Bergheanu, S.C.; Bodde, M.C.; Jukema, J.W. Pathophysiology and treatment of atherosclerosis: Current view and future perspective on lipoprotein modification treatment. Neth. Heart J. 2017, 25, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004, 109, III27–III32. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Nguyen, H.; Michels, D.; Bazinet, H.; Matkar, P.N.; Liu, Z.; Esene, L.; Adam, M.; Bugyei-Twum, A.; Mebrahtu, E.; et al. BReast CAncer susceptibility gene 2 deficiency exacerbates oxidized LDL-induced DNA damage and endothelial apoptosis. Physiol. Rep. 2020, 8, e14481. [Google Scholar] [CrossRef]
- Syed, M.H.; Zamzam, A.; Khan, H.; Singh, K.; Forbes, T.L.; Rotstein, O.; Abdin, R.; Eikelboom, J.; Qadura, M. Fatty acid binding protein 3 is associated with peripheral arterial disease. JVS Vasc. Sci. 2020, 1, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, A.; Syed, M.H.; Harlock, J.; Eikelboom, J.; Singh, K.K.; Abdin, R.; Qadura, M. Urinary fatty acid binding protein 3 (uFABP3) is a potential biomarker for peripheral arterial disease. Sci. Rep. 2021, 11, 11061. [Google Scholar] [CrossRef]
- Zamzam, A.; Syed, M.H.; Rotstein, O.D.; Eikelboom, J.; Klein, D.J.; Singh, K.K.; Abdin, R.; Qadura, M. Validating fatty acid binding protein 3 as a diagnostic and prognostic biomarker for peripheral arterial disease: A three-year prospective follow-up study. EClinicalMedicine 2023, 55, 101766. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Bu, S.; Nikfarjam, S.; Rasheed, B.; Michels, D.C.R.; Singh, A.; Singh, S.; Marszal, C.; McGuire, J.J.; Feng, Q.; et al. Loss of fatty acid binding protein 3 ameliorates lipopolysaccharide-induced inflammation and endothelial dysfunction. J. Biol. Chem. 2023, 299, 102921. [Google Scholar] [CrossRef]
- Félétou, M. The Endothelium: Part 1, Multiple Functions of the Endothelial Cells—Focus on Endothelium-Derived Vasoactive Mediators; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2011. Available online: http://www.ncbi.nlm.nih.gov/books/NBK57149/ (accessed on 9 April 2025).
- Pober, J.S.; Min, W.; Bradley, J.R. Mechanisms of Endothelial Dysfunction, Injury, and Death. Annu. Rev. Pathol. Mech. Dis. 2009, 4, 71–95. [Google Scholar] [CrossRef]
- Sewe, S.O.; Silva, G.; Sicat, P.; Seal, S.E.; Visendi, P. Trimming and Validation of Illumina Short Reads Using Trimmomatic, Trinity Assembly, and Assessment of RNA-Seq Data. In Plant Bioinformatics: Methods and Protocols; Edwards, D., Ed.; Springer: New York, NY, USA, 2022; pp. 211–232. [Google Scholar] [CrossRef]
- Leggett, R.M.; Ramirez-Gonzalez, R.H.; Clavijo, B.J.; Waite, D.; Davey, R.P. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Front. Genet. 2013, 4, 288. [Google Scholar] [CrossRef]
- Schneider, V.A.; Graves-Lindsay, T.; Howe, K.; Bouk, N.; Chen, H.-C.; Kitts, P.A.; Murphy, T.D.; Pruitt, K.D.; Thibaud-Nissen, F.; Albracht, D.; et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017, 27, 849–864. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fischer, A.; Zuther, E.; Hincha, D.K. Evaluation of Seven Different RNA-Seq Alignment Tools Based on Experimental Data from the Model Plant Arabidopsis thaliana. Int. J. Mol. Sci. 2020, 21, 1720. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lun, A.T.L.; Smyth, G.K. From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 2016, 5, 1438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiang, J.; Tang, L.; Li, J.; Lu, Q.; Tian, G.; He, B.-S.; Yang, J. Identifying Breast Cancer-Related Genes Based on a Novel Computational Framework Involving KEGG Pathways and PPI Network Modularity. Front. Genet. 2021, 12, 596794. [Google Scholar] [CrossRef]
- Chicco, D.; Agapito, G. Nine quick tips for pathway enrichment analysis. PLoS Comput. Biol. 2022, 18, e1010348. [Google Scholar] [CrossRef]
- Jafari, M.; Ansari-Pour, N. Why, When and How to Adjust Your P Values? Cell J. 2019, 20, 604–607. [Google Scholar] [CrossRef]
- Wang, J.; Cui, F.; Wang, X.; Xue, Y.; Chen, J.; Yu, Y.; Lu, H.; Zhang, M.; Tang, H.; Peng, Z. Elevated kinesin family member 26B is a prognostic biomarker and a potential therapeutic target for colorectal cancer. J. Exp. Clin. Cancer Res. 2015, 34, 13. [Google Scholar] [CrossRef]
- Li, H.; Shen, S.; Chen, X.; Ren, Z.; Li, Z.; Yu, Z. miR-450b-5p loss mediated KIF26B activation promoted hepatocellular carcinoma progression by activating PI3K/AKT pathway. Cancer Cell Int. 2019, 19, 205. [Google Scholar] [CrossRef]
- Susman, M.W.; Karuna, E.P.; Kunz, R.C.; Gujral, T.S.; Cantú, A.V.; Choi, S.S.; Jong, B.Y.; Okada, K.; Scales, M.K.; Hum, J.; et al. Kinesin superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in vertebrates. eLife 2017, 6, e26509. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, R.-R.; Wang, X.-J.; Su, Z.-X.; Chen, X.; Shi, D.-B.; Guo, X.-Y.; Liu, H.-T.; Gao, P. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer. Oncogene 2017, 36, 5609–5619. [Google Scholar] [CrossRef]
- Barrow, A.D.; Martin, C.J.; Colonna, M. The Natural Cytotoxicity Receptors in Health and Disease. Front. Immunol. 2019, 10, 909. Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.00909 (accessed on 12 April 2025). [CrossRef]
- Kim, H.K.; Jeong, M.G.; Hwang, E.S. Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation. Mol. Cells 2021, 44, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Nanbakhsh, A.; Malarkannan, S. The Role of microRNAs in NK Cell Development and Function. Cells 2021, 10, 2020. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.B.; Mager, D.L. Role of Runt-related Transcription Factor 3 (RUNX3) in Transcription Regulation of Natural Cytotoxicity Receptor 1 (NCR1/NKp46), an Activating Natural Killer (NK) Cell Receptor. J. Biol. Chem. 2012, 287, 7324–7334. [Google Scholar] [CrossRef] [PubMed]
- Eckelhart, E.; Warsch, W.; Zebedin, E.; Simma, O.; Stoiber, D.; Kolbe, T.; Rülicke, T.; Mueller, M.; Casanova, E.; Sexl, V. A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 2011, 117, 1565–1573. [Google Scholar] [CrossRef]
- Obajdin, J.; Davies, D.M.; Maher, J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin. Exp. Immunol. 2020, 202, 11–27. [Google Scholar] [CrossRef]
- Bermak, J.C.; Li, M.; Bullock, C.; Zhou, Q.Y. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat. Cell Biol. 2001, 3, 492–498. [Google Scholar] [CrossRef]
- Jung, J.; Kim, J.; Roh, S.H.; Jun, I.; Sampson, R.D.; Gee, H.Y.; Choi, J.Y.; Lee, M.G. The HSP70 co-chaperone DNAJC14 targets misfolded pendrin for unconventional protein secretion. Nat. Commun. 2016, 7, 11386. [Google Scholar] [CrossRef]
- Isken, O.; Postel, A.; Bruhn, B.; Lattwein, E.; Becher, P.; Tautz, N. CRISPR/Cas9-Mediated Knockout of DNAJC14 Verifies This Chaperone as a Pivotal Host Factor for RNA Replication of Pestiviruses. J. Virol. 2019, 93, e01714-18. [Google Scholar] [CrossRef]
- Zarouchlioti, C.; Parfitt, D.A.; Li, W.; Gittings, L.M.; Cheetham, M.E. DNAJ Proteins in neurodegeneration: Essential and protective factors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160534. [Google Scholar] [CrossRef]
- Day, J.W.; Howell, K.; Place, A.; Long, K.; Rossello, J.; Kertesz, N.; Nomikos, G. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr. 2022, 22, 632. [Google Scholar] [CrossRef] [PubMed]
- Raimer, A.C.; Gray, K.M.; Matera, A.G. SMN—A chaperone for nuclear RNP social occasions? RNA Biol. 2017, 14, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Hai-Long, W.; Xiao-Hua, P.; Jian-Jun, Y. The Prognostic Value of Heart-Type Fatty Acid Binding Protein in Patients with Acute Coronary Syndrome. J. Coll. Physicians Surg. Pak. 2018, 28, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Przysinda, A.; Feng, W.; Li, G. Diversity of Organism-Wide and Organ-Specific Endothelial Cells. Curr. Cardiol. Rep. 2020, 22, 19. [Google Scholar] [CrossRef]
- Bryant, A.; Li, Z.; Jayakumar, R.; Serrano-Pozo, A.; Woost, B.; Hu, M.; Woodbury, M.E.; Wachter, A.; Lin, G.; Kwon, T.; et al. Endothelial Cells Are Heterogeneous in Different Brain Regions and Are Dramatically Altered in Alzheimer’s Disease. J. Neurosci. 2023, 43, 4541–4557. [Google Scholar] [CrossRef]
- Wu, Y.-W.; Chen, J.-W.; Tsai, H.-Y.; Leu, H.-B.; Chang, C.-C.; Chang, T.-T. Fatty acid binding protein 3 activates endothelial adhesion of circulating monocytes and impairs endothelial angiogenesis. Br. J. Pharmacol. 2025, 182, 1989–2013. [Google Scholar] [CrossRef]

| Top Upregulated Differentially Expressed Genes | |||
| HUGO Gene | Gene Name | Log (2) Fold Change | p-Value |
| KIF26B | Kinesin Family Member 26B | 7.10 | 7.16 × 10−7 |
| NCR1 | Natural Cytotoxicity-Triggering Receptor 1 | 4.17 | 3.89 × 10−5 |
| DNAJC14 | DnaJ Heat Shock Protein Family (Hsp40) Member | 1.95 | 4.31 × 10−2 |
| CCDC125 | Coiled-Coil Domain Containing 125 | 1.42 | 2.90 × 10−2 |
| IMPDH1P10 | Inosine Monophosphate Dehydrogenase 1 Pseudogene 10 | 8.75 | 2.87 × 10−10 |
| MICE | Unnamed | 7.19 | 9.12 × 10−7 |
| PKD1P3 | Polycystin 1, Transient Receptor Potential Channel Interacting Pseudogene 3 | 1.62 | 5.55 × 10−3 |
| Top Downregulated Differentially Expressed Genes | |||
| SMN2 | Survival Of Motor Neuron 2, Centromeric | −2.28 | 8.64 × 10−3 |
| CFAP298-TCP10L | CFAP298-TCP10L Readthrough | −3.10 | 2.02 × 10−3 |
| Unnamed | Glycosyl Hydrolases Family 38 C-Terminal Beta Sandwich Domain-Containing Protein | −3.45 | 3.44 × 10−5 |
| CENPBD1P | CENPB DNA-Binding Domain Containing 1, Pseudogene | −8.98 | 1.02 × 10−7 |
| Upregulated GO terms | |||
| GO Terms | GO Categories | DE Genes | FDR (p-Adjusted) |
| Regulation of leukocyte-mediated cytotoxicity | BP | 3 | 2.73 × 10−3 |
| Regulation of cell killing | BP | 3 | 2.73 × 10−3 |
| Leukocyte-mediated cytotoxicity | BP | 3 | 2.73 × 10−3 |
| Positive regulation of T cell-mediated cytotoxicity | BP | 2 | 2.73 × 10−3 |
| Regulation of lymphocyte-mediated immunity | BP | 3 | 2.73 × 10−3 |
| Regulation of T cell-mediated cytotoxicity | BP | 2 | 3.04 × 10−3 |
| Positive regulation of leukocyte-mediated cytotoxicity | BP | 2 | 3.53 × 10−3 |
| Positive regulation of cell killing | BP | 2 | 3.64 × 10−3 |
| T cell-mediated cytotoxicity | BP | 2 | 3.64 × 10−3 |
| Downregulated GO terms | |||
| SMN complex | CC | 2 | 1.63 × 10−3 |
| Canonical inflammasome complex | CC | 2 | 1.63 × 10−3 |
| Gemini of coiled bodies | CC | 2 | 1.63 × 10−3 |
| SMN-Sm protein complex | CC | 2 | 2.81 × 10−3 |
| DNA-templated transcription termination | BP | 2 | 3.29 × 10−3 |
| Pyroptosis | BP | 2 | 3.29 × 10−3 |
| Positive regulation of interleukin-1 beta production | BP | 2 | 3.49 × 10−3 |
| Spliceosomal snRNP assembly | BP | 2 | 3.49 × 10−3 |
| Positive regulation of interleukin-1 production | BP | 2 | 3.78 × 10−3 |
| Immune response-regulating signaling pathway | BP | 4 | 3.94 × 10−3 |
| Upregulated Pathways | ||
| KEGG Pathway Terms | DE Genes | FDR (p-Adjusted) |
| Natural killer cell-mediated cytotoxicity | 2 | 8.09 × 10−2 |
| JAK-STAT signaling pathway | 2 | 8.09 × 10−2 |
| Downregulated Pathways | ||
| NOD-like receptor signaling pathway | 2 | 3.94 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nguyen, H.C.; Singh, A.; Castellani, C.A.; Qadura, M.; Singh, K.K. The Effect of Fatty Acid-Binding Protein 3 Exposure on Endothelial Transcriptomics. DNA 2026, 6, 4. https://doi.org/10.3390/dna6010004
Nguyen HC, Singh A, Castellani CA, Qadura M, Singh KK. The Effect of Fatty Acid-Binding Protein 3 Exposure on Endothelial Transcriptomics. DNA. 2026; 6(1):4. https://doi.org/10.3390/dna6010004
Chicago/Turabian StyleNguyen, Hien C., Aman Singh, Christina A. Castellani, Mohammad Qadura, and Krishna K. Singh. 2026. "The Effect of Fatty Acid-Binding Protein 3 Exposure on Endothelial Transcriptomics" DNA 6, no. 1: 4. https://doi.org/10.3390/dna6010004
APA StyleNguyen, H. C., Singh, A., Castellani, C. A., Qadura, M., & Singh, K. K. (2026). The Effect of Fatty Acid-Binding Protein 3 Exposure on Endothelial Transcriptomics. DNA, 6(1), 4. https://doi.org/10.3390/dna6010004

