Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (859)

Search Parameters:
Keywords = endangered plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2638 KiB  
Article
Population Viability Analysis of the Federally Endangered Endemic Jacquemontia reclinata (Convolvulaceae): A Comparative Analysis of Average vs. Individual Matrix Dynamics
by John B. Pascarella
Conservation 2025, 5(3), 40; https://doi.org/10.3390/conservation5030040 - 6 Aug 2025
Abstract
Due to small population size, Population Viability Analysis (PVA) of endangered species often pools all individuals into a single matrix to decrease variation in estimation of transition rates. These pooled populations may mask significant environmental variation among populations, affecting estimates. Using 10 years [...] Read more.
Due to small population size, Population Viability Analysis (PVA) of endangered species often pools all individuals into a single matrix to decrease variation in estimation of transition rates. These pooled populations may mask significant environmental variation among populations, affecting estimates. Using 10 years of population data (2000–2010) on the endangered plant Jacquemontia reclinata in Southeastern Florida, USA, I parameterized a stage-structured matrix model and calculated annual growth rates (lambdas)and elasticity for each year using stochastic matrix models. The metapopulation model incorporating actual dynamics of the two largest populations showed a lower occupancy rate and higher risk of extinction at an earlier time compared to a model that used the average of all natural populations. Analyses were consistent that incorporating population variation versus average dynamics in modeling J. reclinata demography results in more variation and greater extinction risk. Local variation may be due to both weather (including minimum winter temperature and total annual precipitation) and local disturbance dynamics in these urban preserves. Full article
Show Figures

Figure 1

16 pages, 17592 KiB  
Article
Functional Identification of Acetyl-CoA C-Acetyltransferase Gene from Fritillaria unibracteata
by Zichun Ma, Qiuju An, Xue Huang, Hongting Liu, Feiying Guo, Han Yan, Jiayu Zhou and Hai Liao
Horticulturae 2025, 11(8), 913; https://doi.org/10.3390/horticulturae11080913 (registering DOI) - 4 Aug 2025
Abstract
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active [...] Read more.
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active ingredient production of plants; however, the functional characterization of MVA-pathway genes in the Liliaceae family remains poorly documented. In this study, an Acetyl-CoA C-acetyltransferase gene (FuAACT) was first cloned from F. unibracteata. It exhibited structural features of the thiolase family and showed the highest sequence identity with the Dioscorea cayenensis homolog. The Km, Vmax, and Kcat of the recombinant FuAACT were determined to be 3.035 ± 0.215 μM, 0.128 ± 0.0058 μmol/(min·mg), and 1.275 ± 0.0575 min−1, respectively. The optimal catalytic conditions for FuAACT were ascertained to be 30 °C and pH 8.9. It was stable below 50 °C. His361 was confirmed to be a key amino acid residue to enzymatic catalysis by site-directed mutagenesis. Subsequent subcellular localization experiments demonstrated that FuAACT was localized in chloroplasts and cytoplasm. FuAACT-overexpressing transgenic Arabidopsis thaliana plants showed higher drought tolerance than wild-type plants. This phenotypic difference was corroborated by significant differences in seed germination rate, lateral root number, plant height, and leaf number (p < 0.05). Furthermore, the FuAACT transgenic plants resulted in the formation of a more developed fibrous root system. These results indicated that the FuAACT gene revealed substantial biological activity in vitro and in vivo, hopefully providing the basis for its further research and application in liliaceous ornamental and medicinal plants. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
Show Figures

Figure 1

15 pages, 1019 KiB  
Article
Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC
by Janhvi Mishra Rawat, Mrinalini Agarwal, Shivani Negi, Jigisha Anand, Prabhakar Semwal, Balwant Rawat, Rajneesh Bhardwaj and Debasis Mitra
Bacteria 2025, 4(3), 38; https://doi.org/10.3390/bacteria4030038 - 1 Aug 2025
Viewed by 106
Abstract
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In [...] Read more.
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In this study, a simple, reproducible protocol for in vitro propagation of N. jatamansi was established using shoot tip explants, cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators, including N6-benzylaminopurine, thidiazuron (TDZ), and naphthalene acetic acid (NAA). MS media supplemented with 2.0 μM TDZ and 0.5 µM NAA created a significant shoot induction with an average of 6.2 shoots per explant. These aseptically excised individual shoots produced roots on MS medium supplemented with Indole Butyric Acid or NAA within 14 days of the transfer. The PGPR, viz., Bacillus subtilis and Pseudomonas corrugata, inoculation resulted in improved growth, higher chlorophyll content, and survival of in vitro-rooted plants (94.6%) after transfer to the soil. Moreover, the PGPRs depicted a two-fold higher total phenolics (45.87 mg GAE/g DW) in plants. These results clearly demonstrate the beneficial effects of P. corrugata and B. subtilis on the growth, survival, and phytochemical content of N. jatamansi. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Figure 1

22 pages, 6172 KiB  
Article
Ethnomedicinal Properties of Wild Edible Fruit Plants and Their Horticultural Potential Among Indigenous Isan Communities in Roi Et Province, Northeastern Thailand
by Piyaporn Saensouk, Surapon Saensouk, Thawatphong Boonma, Auemporn Junsongduang, Min Khant Naing and Tammanoon Jitpromma
Horticulturae 2025, 11(8), 885; https://doi.org/10.3390/horticulturae11080885 (registering DOI) - 1 Aug 2025
Viewed by 220
Abstract
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the [...] Read more.
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the diversity, traditional uses, phenology, and conservation status of these species to inform sustainable management and conservation efforts. Field surveys and ethnobotanical interviews with 200 informants (100 men, 100 women; random ages) were conducted across 20 local communities to identify species diversity and usage patterns, while phenological observations and conservation assessments were performed to understand reproductive cycles and species vulnerability between January and December 2023. A total of 68 species from 32 families were recorded, with peak flowering in March–April and fruiting in May–June. Analyses of Species Use Value (0.19–0.48) and Relative Frequency of Citation (0.15–0.44) identified key species with significant roles in food security and traditional medicine. Uvaria rufa had the highest SUV (0.48) and RFC (0.44). Informant consensus on medicinal applications was strong for ailments such as gastrointestinal and lymphatic disorders. Economically important species were also identified, with some contributing notable income through local trade. Conservation proposed one species as Critically Endangered and several others as Vulnerable. The results highlight the need for integrated conservation strategies, including community-based initiatives and recognition of Other Effective area-based Conservation Measures (OECMs), to ensure the preservation of biodiversity, traditional knowledge, and local livelihoods. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 167
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

21 pages, 576 KiB  
Review
Role of Enzyme Technologies and Applied Enzymology in Valorising Seaweed Bioproducts
by Blessing Mabate, Lithalethu Mkabayi, Deandra Rochelle Goddard, Coleen Elizabeth Grobler and Brett Ivan Pletschke
Mar. Drugs 2025, 23(8), 303; https://doi.org/10.3390/md23080303 - 29 Jul 2025
Viewed by 324
Abstract
Seaweeds, classified as non-vascular plants, have definite advantages over terrestrial plants as they grow rapidly, can be cultivated in coastal environments, and are dependable and non-endangered sources of biomass. Algal bioproducts, which include a wide range of bioactive compounds, have drawn much interest [...] Read more.
Seaweeds, classified as non-vascular plants, have definite advantages over terrestrial plants as they grow rapidly, can be cultivated in coastal environments, and are dependable and non-endangered sources of biomass. Algal bioproducts, which include a wide range of bioactive compounds, have drawn much interest because of their applications in nutraceuticals, pharmaceuticals, agriculture, and cosmetics. Particularly in the pharmaceutical and nutraceutical fields, algal bioproducts have shown tremendous activity in regulating enzymes involved in human diseases. However, the drawbacks of conventional extraction methods impede the complete exploitation of seaweed biomass. These include low efficiency, high cost, and potential harm to the environment. Enzyme technology developments in recent years present a viable way to overcome these challenges. Enzymatic processes improve product yields and reduce the environmental impact of processing, while facilitating the more effective extraction of valuable bioactive compounds as part of an integrated biorefinery approach. Enzyme-assisted biorefinery techniques can greatly advance the creation of a circular bioeconomy and increase the yield of extracted seaweed bioproducts, thus improving their value. With the potential to scale up to industrial levels, these biotechnological developments in enzymatic extraction are developing rapidly and can advance the sustainable exploitation of seaweed resources. This review emphasises the increasing importance of enzyme technologies in the seaweed biorefinery and their contribution to developing more environmentally friendly, economically feasible, and sustainable methods for valorising products derived from seaweed. In the biorefinery industry, enzyme-assisted methods have enormous potential for large-scale industrial applications with further development, opening the door to a more sustainable, circular bioeconomy. Full article
(This article belongs to the Special Issue Research on Seaweed-Degrading Enzymes)
Show Figures

Figure 1

28 pages, 3098 KiB  
Article
Geobotanical Study, DNA Barcoding, and Simple Sequence Repeat (SSR) Marker Analysis to Determine the Population Structure and Genetic Diversity of Rare and Endangered Prunus armeniaca L.
by Natalya V. Romadanova, Nazira A. Altayeva, Alina S. Zemtsova, Natalya A. Artimovich, Alexandr B. Shevtsov, Almagul Kakimzhanova, Aidana Nurtaza, Arman B. Tolegen, Svetlana V. Kushnarenko and Jean Carlos Bettoni
Plants 2025, 14(15), 2333; https://doi.org/10.3390/plants14152333 - 28 Jul 2025
Viewed by 427
Abstract
The ongoing genetic erosion of natural Prunus armeniaca populations in their native habitats underscores the urgent need for targeted conservation and restoration strategies. This study provides the first comprehensive characterization of P. armeniaca populations in the Almaty region of Kazakhstan, integrating morphological descriptors [...] Read more.
The ongoing genetic erosion of natural Prunus armeniaca populations in their native habitats underscores the urgent need for targeted conservation and restoration strategies. This study provides the first comprehensive characterization of P. armeniaca populations in the Almaty region of Kazakhstan, integrating morphological descriptors (46 parameters), molecular markers, geobotanical, and remote sensing analyses. Geobotanical and remote sensing analyses enhanced understanding of accession distribution, geological features, and ecosystem health across sites, while also revealing their vulnerability to various biotic and abiotic threats. Of 111 morphologically classified accessions, 54 were analyzed with 13 simple sequence repeat (SSR) markers and four DNA barcoding regions. Our findings demonstrate the necessity of integrated morphological and molecular analyses to differentiate closely related accessions. Genetic analysis identified 11 distinct populations with high heterozygosity and substantial genetic variability. Eight populations exhibited 100% polymorphism, indicating their potential as sources of adaptive genetic diversity. Cluster analysis grouped populations into three geographic clusters, suggesting limited gene flow across Gorges (features of a mountainous landscape) and greater connectivity within them. These findings underscore the need for site-specific conservation strategies, especially for genetically distinct, isolated populations with unique allelic profiles. This study provides a valuable foundation for prioritizing conservation targets, confirming genetic redundancies, and preserving genetic uniqueness to enhance the efficiency and effectiveness of the future conservation and use of P. armeniaca genetic resources in the region. Full article
Show Figures

Figure 1

24 pages, 5977 KiB  
Article
An Investigation into the Evolutionary Characteristics and Expression Patterns of the Basic Leucine Zipper Gene Family in the Endangered Species Phoebe bournei Under Abiotic Stress Through Bioinformatics
by Yizhuo Feng, Almas Bakari, Hengfeng Guan, Jingyan Wang, Linping Zhang, Menglan Xu, Michael Nyoni, Shijiang Cao and Zhenzhen Zhang
Plants 2025, 14(15), 2292; https://doi.org/10.3390/plants14152292 - 25 Jul 2025
Viewed by 314
Abstract
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This [...] Read more.
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This study comprehensively analyzed the PbbZIP gene family in P. bournei, identifying 71 PbbZIP genes distributed across all 12 chromosomes. The amino acid count in these genes ranged from 74 to 839, with molecular weights varying from 8813.28 Da to 88,864.94 Da. Phylogenetic analysis categorized the PbbZIP genes into 12 subfamilies (A-K, S). Interspecific collinearity analysis revealed homologous PbbZIP genes between P. bournei and Arabidopsis thaliana. A promoter cis-acting element analysis indicated that PbbZIP genes contain various elements responsive to plant hormones, stress signals, and light. Additionally, expression analysis of public RNA-seq data showed that PbbZIP genes are distributed across multiple tissues, exhibiting distinct expression patterns specific to root bark, root xylem, stem bark, stem xylem, and leaves. We also performed qRT-PCR analysis on five representative PbbZIP genes (PbbZIP14, PbbZIP26, PbbZIP32, PbbZIP67, and PbbZIP69). The results demonstrated significant differences in the expression of PbbZIP genes under various abiotic stress conditions, including salt stress, heat, and drought. Notably, PbbZIP67 and PbbZIP69 exhibited robust responses under salt or heat stress conditions. This study confirmed the roles of the PbbZIP gene family in responding to various abiotic stresses, thereby providing insights into its functions in plant growth, development, and stress adaptation. The findings lay a foundation for future research on breeding and enhancing stress resistance in P. bournei. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

18 pages, 265 KiB  
Article
AI in Biodiversity Education: The Bias in Endangered Species Information and Its Implications
by Luis de Pedro Noriega, Javier Bobo-Pinilla, Jaime Delgado-Iglesias, Roberto Reinoso-Tapia, Ana María Gallego and Susana Quirós-Alpera
Sustainability 2025, 17(14), 6554; https://doi.org/10.3390/su17146554 - 18 Jul 2025
Viewed by 867
Abstract
The use of AI-generated content in education is significantly increasing, but its reliability for teaching natural sciences and, more specifically, biodiversity-related contents still remains understudied. The need to address this question is substantial, considering the relevance that biodiversity conservation has on human sustainability, [...] Read more.
The use of AI-generated content in education is significantly increasing, but its reliability for teaching natural sciences and, more specifically, biodiversity-related contents still remains understudied. The need to address this question is substantial, considering the relevance that biodiversity conservation has on human sustainability, and the recurrent presence of these topics in the educational curriculum, at least in Spain. The present article tests the existence of biases in some of the most widely used AI tools (ChatGPT-4.5, DeepSeek-V3, Gemini) when asked a relevant and objective research question related to biodiversity. The results revealed both taxonomic and geographic biases in all the lists of endangered species provided by these tools when compared to IUCN Red List data. These imbalances may contribute to the perpetuation of plant blindness, zoocentrism, and Western centrism in classrooms, especially at levels where educators lack specialized training. In summary, the present study highlights the potential harmful impact that AI’s cultural and social biases may have on biodiversity education and Sustainable Development Goals-aligned learning and appeals to an urgent need for model refinement (using scientific datasets) and teacher AI literacy to mitigate misinformation. Full article
(This article belongs to the Special Issue Sustainable Education in the Age of Artificial Intelligence (AI))
18 pages, 1646 KiB  
Article
Initial Analysis of Plant Soil for Evidence of Pathogens Associated with a Disease of Seedling Ocotea monteverdensis
by William D. Eaton, Debra A. Hamilton, Alexander Lemenze and Patricia Soteropoulos
Microorganisms 2025, 13(7), 1682; https://doi.org/10.3390/microorganisms13071682 - 17 Jul 2025
Viewed by 251
Abstract
Seedlings of the ecologically important, critically endangered tree Ocotea monteverdensisis experience high mortality in the Monteverde, Costa Rica, cloud forests at the onset of the wet season, yet there are no studies suggesting the disease etiology. Here, healthy and diseased plant root and [...] Read more.
Seedlings of the ecologically important, critically endangered tree Ocotea monteverdensisis experience high mortality in the Monteverde, Costa Rica, cloud forests at the onset of the wet season, yet there are no studies suggesting the disease etiology. Here, healthy and diseased plant root and bulk soils were analyzed for various carbon and nitrogen (N) metrics and respiration levels, and DNA sequence-based bacterial and fungal community compositions. All nitrogen metric levels were greater in diseased vs. healthy plant root soils, which could enhance pathogen growth and pathogenic mechanisms. Greater DNA percentages from several potential pathogens were found in diseased vs. healthy plant root soils, suggesting this disease may be associated with a root pathogen. The DNA of the fungus Mycosphaerella was at greater levels in diseased vs. healthy plant root soils than other potential pathogens. Mycosphaerella causes similar diseases in other plants, including coffee, after onset of the wet season. The O. monteverdensis disease also occurs in seedlings planted within or near former coffee plantations at wet season onset. Distance-based linear model analyses indicated that NO3 levels best predicted the pattern of fungal pathogens in the soils, and Mycosphaerella and Tremella best predicted the patterns of the different N metrics in the soils, supporting their possible roles in this disease. Full article
Show Figures

Figure 1

19 pages, 3821 KiB  
Article
Species Conservation Dependence on a Reliable Taxonomy as Emphasized by the Extinction Risk Assessment of Grindelia atlantica (Asteraceae: Astereae)
by Fernando Fernandes, João Iganci, Tatiana Teixeira de Souza-Chies and Gustavo Heiden
Conservation 2025, 5(3), 36; https://doi.org/10.3390/conservation5030036 - 16 Jul 2025
Viewed by 535
Abstract
Accurate taxonomy is fundamental for assessing extinction risks and implementing conservation strategies. We evaluated the extinction risk of Grindelia atlantica (Asteraceae), endemic to southern Brazil, using the IUCN criteria, and comparing three scenarios of taxonomic accuracy and data availability. Herbaria records and field [...] Read more.
Accurate taxonomy is fundamental for assessing extinction risks and implementing conservation strategies. We evaluated the extinction risk of Grindelia atlantica (Asteraceae), endemic to southern Brazil, using the IUCN criteria, and comparing three scenarios of taxonomic accuracy and data availability. Herbaria records and field surveys confirmed the historical existence of five records and currently only two remaining, isolated populations, totaling 633 individuals (513 in Pelotas and Rio Grande; 120 in Jaguarão). Habitat loss and invasive species are the primary threats. Analyses resulted in an Extent of Occurrence of 475.832 km2 and an Area of Occupancy of 36 km2. These findings, coupled with significant population decline, justify the classification as Critically Endangered. The results emphasize the critical role of reliable taxonomy in conservation biology. They demonstrate the impact of a few errors on extinction risk assessments, which can unfold in the misallocation of resources or insufficient protection. This is critical, particularly for endemic species like G. atlantica in the threatened Pampas, one of Brazil’s most degraded biomes and the least represented in preserves. The creation of a conservation unit is proposed as an urgent measure to ensure the survival of this species and its habitat, benefiting other endemic and rare threatened animal and plant species. Full article
Show Figures

Figure 1

16 pages, 1945 KiB  
Article
Assembly and Comparative Analysis of Complete Mitochondrial Genome Sequence of Endangered Medicinal Plant Trichopus zeylanicus
by Biju Vadakkemukadiyil Chellappan, P. R. Shidhi, Anu Sasi, Rashid Ismael Hag Ibrahim and Hamad Abu Zahra
Curr. Issues Mol. Biol. 2025, 47(7), 553; https://doi.org/10.3390/cimb47070553 - 16 Jul 2025
Viewed by 320
Abstract
Plant mitochondrial genomes exhibit extensive size variability and structural complexity. Here, we report the complete mitochondrial genome of Trichopus zeylanicus, an endemic medicinal plant from the Western Ghats. The mitochondrial genome was assembled using a combination of Illumina short-read and PacBio long-read [...] Read more.
Plant mitochondrial genomes exhibit extensive size variability and structural complexity. Here, we report the complete mitochondrial genome of Trichopus zeylanicus, an endemic medicinal plant from the Western Ghats. The mitochondrial genome was assembled using a combination of Illumina short-read and PacBio long-read sequencing technologies, followed by extensive annotation and comparative analysis. The circular mitogenome spans 709,127 bp with a GC content of 46%, encoding 32 protein-coding genes, 17 tRNAs, and three rRNAs. Comparative analysis with other monocot mitochondrial genomes revealed conserved gene clusters but also significant lineage-specific rearrangements. Despite genome size similarities, T. zeylanicus displayed marked divergence in gene order, suggesting that genome size does not necessarily correlate with structural conservation. The genome contains 6.7% chloroplast-derived sequences and 324 predicted RNA-editing sites, predominantly in the first and second codon positions. Phylogenetic analysis based on mitochondrial genes placed T. zeylanicus as a distinct lineage within Dioscoreales, supporting its evolutionary uniqueness. This work provides the first mitogenomic resource for Dioscoreales and advances our understanding of mitochondrial diversity and evolution in monocots. Full article
(This article belongs to the Special Issue Technological Advances Around Next-Generation Sequencing Application)
Show Figures

Graphical abstract

24 pages, 3598 KiB  
Article
Comprehensive Analysis of the Complete Mitochondrial Genome of Paeonia ludlowii Reveals a Dual-Circular Structure and Extensive Inter-Organellar Gene Transfer
by Zhefei Zeng, Zhengyan Zhang, Ngawang Norbu, Ngawang Bonjor, Xin Tan, Shutong Zhang, Norzin Tso, Junwei Wang and La Qiong
Biology 2025, 14(7), 854; https://doi.org/10.3390/biology14070854 - 14 Jul 2025
Viewed by 288
Abstract
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first [...] Read more.
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first complete assembly and comprehensive analysis of the P. ludlowii mitochondrial genome. Most remarkably, we discovered that the P. ludlowii mitogenome exhibits an atypical dual-circular structure, representing the first documented occurrence of this architectural feature within the genus Paeonia. The assembled genome spans 314,371 bp and encodes 42 tRNA genes, 3 rRNA genes, and 31 protein-coding genes, with a pronounced adenine–thymine bias. This multipartite genome structure is characterized by abundant repetitive elements (112 functionally annotated SSRs, 33 tandem repeats, and 945 dispersed repeats), which potentially drive genome rearrangements and facilitate adaptive evolution. Analyses of codon usage bias and nucleotide diversity revealed highly conserved gene expression regulation with limited variability. Phylogenetic reconstruction confirms that P. ludlowii, P. suffruticosa, and P. lactiflora form a monophyletic clade, reflecting close evolutionary relationships, while extensive syntenic collinearity with other Paeonia species underscores mitochondrial genome conservation at the genus level. Extensive inter-organellar gene transfer events, particularly from chloroplast to mitochondrion, suggest that such DNA exchanges enhance genetic diversity and promote environmental adaptation. The discovery of the dual-circular architecture provides novel insights into plant mitochondrial genome evolution and structural plasticity. This study elucidates the unique structural characteristics of the P. ludlowii mitochondrial genome and establishes a crucial genetic foundation for developing targeted conservation strategies and facilitating molecular-assisted breeding programs for this endangered species. Full article
Show Figures

Figure 1

19 pages, 2883 KiB  
Article
Health Risk Assessment and Accumulation of Potentially Toxic Elements in Capsella bursa-pastoris (L.) Medik
by Ivana Mikavica, Dragana Ranđelović, Miloš Ilić, Marija Simić, Jelena Petrović, Marija Koprivica and Jelena Mutić
Processes 2025, 13(7), 2222; https://doi.org/10.3390/pr13072222 - 11 Jul 2025
Viewed by 274
Abstract
Capsella bursa-pastoris (L.) Medik (C. bursa-pastoris) is an underexplored medicinal herb and bioindicator of potentially toxic elements (PTEs). Its broad traditional utilization combined with its high capacity for PTE accumulation may endanger human health. Herein, we investigated the concentrations and mobility [...] Read more.
Capsella bursa-pastoris (L.) Medik (C. bursa-pastoris) is an underexplored medicinal herb and bioindicator of potentially toxic elements (PTEs). Its broad traditional utilization combined with its high capacity for PTE accumulation may endanger human health. Herein, we investigated the concentrations and mobility of PTEs (Ba, Co, Cr, Cu, Fe, Mn, Ni, Sr, and Zn) in the urban soil–C. bursa-pastoris system and comprehensively assessed potential health risks associated with exposure to contaminated soils, plant and herbal extracts. Cu, Zn, Sr, and Mn were the most abundant in soils and predominantly phytoavailable. The calculated values of the geo-accumulation index (Igeo) indicated moderate to heavy Cu, Zn, and Sr contamination in the soil. C. bursa-pastoris demonstrated two strategies for PTEs—the exclusion of Ba, Cr, Mn, and Sr, and the accumulation of Cu, Ni, Co, and Fe. Principal Component Analysis (PCA) classified samples from four cities based on the PTE levels in soils, plants, and herbal extracts. Although plant tissues contained elevated levels of PTEs, the estimated daily intake (EDI), target hazard quotient (THQ), and lifetime carcinogenic risk (LCR) demonstrated no significant health risks from consuming C. bursa-pastoris and its extracts. The obtained results indicated the higher sensitivity of children to the hazardous effects of PTEs compared to adults. Extensive risk assessments of polluted soils and inhabiting plants are crucial in PTE monitoring. This study underscored its importance and delivered new insights into the contamination of medicinal herbs, aiming to contribute to implementing safety policies in public health protection. Full article
Show Figures

Graphical abstract

27 pages, 3863 KiB  
Article
Phenotypic Variability of Juglans neotropica Diels from Different Provenances During Nursery and Plantation Stages in Southern Ecuador
by Byron Palacios-Herrera, Santiago Pereira-Lorenzo and Darwin Pucha-Cofrep
Forests 2025, 16(7), 1141; https://doi.org/10.3390/f16071141 - 10 Jul 2025
Viewed by 338
Abstract
Juglans neotropica Diels, an Andean native species classified as endangered by the IUCN, holds significant potential for reforestation and sustainable forest management programs. This study evaluated seed quality, phenotypic variability, and early establishment under nursery and field conditions in southern Ecuador. Three provenance [...] Read more.
Juglans neotropica Diels, an Andean native species classified as endangered by the IUCN, holds significant potential for reforestation and sustainable forest management programs. This study evaluated seed quality, phenotypic variability, and early establishment under nursery and field conditions in southern Ecuador. Three provenance sites—The Tundo, The Victoria, and The Argelia—were evaluated during the nursery phase, and two (The Tundo and The Victoria) in plantations, applying four pre-germination treatments: control, mechanical scarification, hot water, and water-sun exposure. Parameters assessed included seed weight, size, viability, germination, survival, and growth across three planting environments: secondary forest, riparian forest, and pasture. Significant differences in seed morphometry were observed among localities, while germination was influenced by treatment but not provenance. Seed viability remained high for up to six months, decreasing with a 2% loss of moisture. Survival reached 100% with urea application, and 96% of individuals exhibited straight stems after one year. No significant differences in growth were found between localities; however, basal diameter was highest in the pasture (13.2 mm/year−1), and total height was greatest in the secondary forest (54.8 cm/year−1). These findings provide key technical evidence to optimize the propagation and establishment of J. neotropica in ecological restoration and forest production contexts. Full article
(This article belongs to the Special Issue Tree Breeding: Genetic Diversity, Differentiation and Conservation)
Show Figures

Figure 1

Back to TopTop