AI in Biodiversity Education: The Bias in Endangered Species Information and Its Implications
Abstract
1. Introduction
1.1. Artificial Intelligence and Education
1.2. AI in Natural Sciences Education and Research
1.3. Biodiversity Education and Sustainable Development
2. Materials and Methods
3. Results
4. Discussion
4.1. Bias in the Results of the AI
4.1.1. Taxonomic Bias
4.1.2. Geographic Bias
4.1.3. Biases and AI Applications
4.2. AI Implications for Biodiversity Education
5. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
SDG | Sustainable Development Goals |
IUCN | International Union for Conservation of Nature |
Appendix A
Nº | GPT-4.5 | DeepSeek-V3 | Gemini (v.2025) |
---|---|---|---|
1 | Harlequin Frog | Sumatran tiger | Polar Bear |
2 | Panama Golden Frog | Mountain gorilla | Xerocomellus porosporus |
3 | Central American Glass Frog | Bornean orangutan | Asian Elephant |
4 | Darwin’s Frog | Sumatran Orangutan | Western Chimpanzee |
5 | Woodland Salamander | Javan rhinoceros | Darwin’s Fox |
6 | European Woodland Salamander | Black rhinoceros | North Atlantic Right Whale |
7 | Tiger Salamander | Sumatran Elephant | Mexican Fishing Bat |
8 | Scorpion Endemic to Certain Islands | Snow leopard | Iberian Lynx |
9 | Antarctic Albatross | Iberian lynx | Brown-headed Spider Monkey |
10 | Laysan Albatross | Polar bear | Tibetan Bear |
11 | Black Stilt | Giant panda | Irrawaddy River Dolphin |
12 | Philippine Blue-winged Cockatoo | Chinese pangolin | Javan Rhinoceros |
13 | Moluccan Cockatoo | Sunda Pangolin | Omiltemi Rabbit |
14 | California Condor | Vaquita | Venezuelan Red Siskin |
15 | Cock-of-the-Rock | North Atlantic Right Whale | Kakapo |
16 | Spix’s Macaw | Blue Whale | California Condor |
17 | Northern Bald Ibis | Leatherback Sea Turtle | Northern Bald Ibis |
18 | Kakapo | Hawksbill Sea Turtle | Ivory-billed Albatross |
19 | Okarito Kiwi | Green Sea Turtle | Amsterdam Albatross |
20 | Storm Petrel | California Condor | Helmeted Hornbill |
21 | Darwin’s Finch | Philippine Eagle | Spix’s Macaw |
22 | Bannerman’s Turaco | Hyacinth Macaw | North Island Brown Kiwi |
23 | Crayfish | Scarlet Macaw | Amur Leopard |
24 | Franklin’s Bumblebee | Tanimbar Cockatoo | Galapagos Penguin |
25 | Stag Beetle | Northern White Rhinoceros | Bearded Vulture |
26 | Blue Butterfly Morpho | Sumatran rhinoceros | Red-cockaded Woodpecker |
27 | Karner butterfly | Malayan tapir | Balearic Shearwater |
28 | Monarch butterfly | Mountain tapir | Albert’s Lyrebird |
29 | Axolotl | Baird’s tapir | Capercaillie |
30 | Blue whale | Amazonian tapir | Nicobar Pigeon |
31 | North Atlantic right whale | Jaguar | Mauritius Parakeet |
32 | European bison | Red panda bear | Black-bellied Sandgrouse |
33 | Bonobo | Spectacled bear | Shoebill |
34 | Common chimpanzee | Sun bear | Mountain Gorilla |
35 | Amazon river dolphin | Sloth bear | Floreana Thrush |
36 | African forest elephant | Red wolf | Hawksbill Turtle |
37 | Asian elephant | Mexican Grey wolf | Malagasy Tortoise |
38 | Gharial | Northern lynx | Orinoco Crocodile |
39 | Mountain gorilla | Canadian lynx | Tuatara |
40 | Indri | Eurasian lynx | Round Island Python |
41 | Greater bamboo lemur | African lion | Vietnamese Box Turtle |
42 | Bamboo lemur | Asiatic lion | Tarzan’s Chameleon |
43 | Mantilla lemur | Cheetah | Anegada Iguana |
44 | Crowned skull lemur | Asiatic cheetah | San Francisco Garter Snake |
45 | Gray mouse lemur | Striped hyena | Sumatran Tiger |
46 | Ruffed lemur | Brown hyena | Howe Island Giant Gecko |
47 | Sand lemur | Spotted hyena | Axolotl |
48 | Asiatic lion | Darwin’s Fox | Golden Poison Frog |
49 | Amur leopard | Sierra Nevada red Fox | Carriqui Harlequin Toad |
50 | Snow leopard | Arctic Fox | Manduriacu glass frog |
51 | Iberian lynx | Argentine Grey Fox | Chinese giant salamander |
52 | Ethiopian wolf | Patagonian Grey Fox | El Tambor marsupial frog |
53 | Mexican wolf | Pampas Grey Fox | Betic midwife toad |
54 | Barbary macaque | Island Grey Fox | Sagalla caecilians |
55 | Northeastern howler monkey | Channel Islands Grey Fox | Table Mountain ghost frog |
56 | Bornean orangutan | San Miguel Islands Grey Fox | Chinese pangolin |
57 | Sumatran orangutan | Santa Rosa Islands Grey Fox | Apennine fire-bellied toad |
58 | Giant panda | Santa Cruz Islands Grey Fox | Chinese sturgeon |
59 | Pangolin | San Clemente Islands Grey Fox | Freshwater sawfish |
60 | Palm Pangolin | San Nicolas Islands Grey Fox | Giant grouper |
61 | African Wild Dog | San Miguel Islands Grey Fox | Great white shark |
62 | Javan Rhinoceros | Santa Catalina Islands Grey Fox | Atlantic bluefin tuna |
63 | Sumatran Rhinoceros | San Clemente Islands Grey Fox | Australian lungfish |
64 | Black Rhinoceros | San Nicolas Islands Grey Fox | European eel |
65 | Saola | San Miguel Islands Grey Fox | Mekong giant catfish |
66 | Verreaux’s Sifaka | Santa Catalina Islands Grey Fox | Danube salmon |
67 | Malayan Tapir | San Clemente Islands Grey Fox | Blue-eyed black lemur |
68 | Bengal Tiger | San Nicolas Islands Grey Fox | Baxter Springs trout |
69 | Sumatran Tiger | San Miguel Islands Grey Fox | Lord Howe Island land snail |
70 | Red Uakari | Santa Catalina Islands Grey Fox | Swellendam crayfish |
71 | Vaquita | San Clemente Islands Grey Fox | Queen Alexandra birdwing butterfly |
72 | Chinook (Pacific Salmon) | San Nicolas Islands Grey Fox | Giant Wallace’s bee |
73 | Atlantic Sturgeon | San Miguel Islands Grey Fox | Stag beetle Kempsey |
74 | Giant Manta Ray | Santa Catalina Islands Grey Fox | Maratus elephans peacock spider |
75 | Asian Catfish | San Clemente Islands Grey Fox | Staghorn coral |
76 | Mekong Catfish | San Nicolas Islands Grey Fox | Gulf Coast freshwater mussel |
77 | Napoleon Wrasse | San Miguel Islands Grey Fox | Murray freshwater lobster |
78 | Fraser Fir | Santa Catalina Islands Grey Fox | Saola |
79 | Widdringtonia Cedar | San Clemente Islands Grey Fox | Lord Howe Island tree cricket |
80 | Cedar of Lebanon | San Nicolas Islands Grey Fox | Coast redwood |
81 | Cyanea micronesica | San Miguel Islands Grey Fox | Wollemia |
82 | Socotra Dragon Tree | Santa Catalina Islands Grey Fox | Lord Howe pine |
83 | Tree Fern of Certain Rainforests | San Clemente Islands Grey Fox | Jellyfish tree |
84 | European Elm | San Nicolas Islands Grey Fox | Victoria giant water lily |
85 | Wild Orchid | San Miguel Islands Grey Fox | Rafflesia arnoldii |
86 | Madagascar Palm | Santa Catalina Islands Grey Fox | Venus flytrap |
87 | PuyarRaimondii | San Clemente Islands Grey Fox | Jade tree |
88 | Rafflesia arnoldii | San Nicolas Islands Grey Fox | Ghost orchid |
89 | Wollemia Cuban alligator | San Miguel Islands Grey Fox | Tapanuli orangutan |
90 | Orinoco alligator | Santa Catalina Islands Grey Fox | Chilean pine |
91 | Philippine crocodile | San Clemente Islands Grey Fox | Amanita liquii |
92 | Komodo dragon | San Nicolas Islands Grey Fox | Boletus regineus |
93 | Ricord’s iguana | San Miguel Islands Grey Fox | Clavaria zollingeri |
94 | Caribbean iguana | Santa Catalina Islands Grey Fox | Geastrum britannicum |
95 | Hawksbill turtle | San Clemente Islands Grey Fox | Hygrophorus erubescens |
96 | Mekong river turtle | San Nicolas Islands Grey Fox | Mycena interrupta |
97 | Leatherback turtle | San Miguel Islands Grey Fox | Ramaria Botrytis |
98 | Oryctes | Santa Catalina Islands Grey Fox | Sarcosoma globosum |
99 | Northeastern howler monkey | San Clemente Islands Grey Fox | Tricholoma caligatum |
100 | Some Beetle species | San Nicolas Islands Grey Fox | Vaquita |
101 | Ghost orchid | ||
102 | Hawaiian passionflower | ||
103 | Copal resin tree | ||
104 | Wollemi Pine | ||
105 | Giant sequoia | ||
106 | Redwood | ||
107 | Cinchona tree | ||
108 | Cinnamon tree | ||
109 | Tree Vanilla | ||
110 | Nutmeg tree | ||
111 | Elkhorn coral | ||
112 | Brain coral | ||
113 | Star coral | ||
114 | Fire coral | ||
115 | Mushroom coral | ||
116 | Finger coral | ||
117 | Table coral | ||
118 | Column coral | ||
119 | Pillar coral | ||
120 | Brain coral |
References
- Turing, A.M. Computing machinery and intelligence. Mind 1950, 236, 433–460. [Google Scholar] [CrossRef]
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the Dartmouth summer research project on artificial intelligence. AI Mag. 2006, 27, 12. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Aydın, Ö.; Karaarslan, E. Is ChatGPT Leading Generative AI? What is Beyond Expectations? Acad. Platf. J. Eng. Smart Syst. 2023, 11, 118–134. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: London, UK, 2021. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Díaz-Lara, C.; de la Calle Carracedo, M. Inteligencia Artificial en la formación del profesorado de Ciencias Sociales. In Proceedings of the Conference EDUNOVATIC 2024; REDINE, Ed.; Adaya Press: Madrid, Spain, 2024; pp. 70–71. [Google Scholar]
- Chiu, T.K.F.; Xia, Q.; Zhou, X.; Chai, C.S.; Cheng, M. Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Comput. Educ. Artif. Intell. 2023, 4, 100118. [Google Scholar] [CrossRef]
- Porter, B.; Grippa, F. A platform for AI-enabled real-time feedback to promote digital collaboration. Sustainability 2020, 12, 10243. [Google Scholar] [CrossRef]
- Vieriu, A.M.; Petrea, G. The Impact of Artificial Intelligence (AI) on Students’ Academic Development. Educ. Sci. 2025, 15, 343. [Google Scholar] [CrossRef]
- Holmes, W.; Maya, B.; Fadel, C. Artificial Intelligence In Education: Promises and Implications for Teaching; Holmes, W., Maya, B., Fadel, C., Eds.; Center for Curriculum Redesign: Boston, MA, USA, 2019; ISBN 9781794293700. [Google Scholar]
- Luckin, R.; Holmes, W.; Griffiths, M.; Forcier, L.B. Intelligence-Unleashed: An argument for AI in Education; Luckin, R., Holmes, W., Griffiths, M., Forcier, L.B., Eds.; Pearson: London, UK, 2016; ISBN 9780992424886. [Google Scholar]
- Zawacki-Richter, O.; Marín, V.I.; Bond, M.; Gouverneur, F. Systematic review of research on artificial intelligence applications in higher education—Where are the educators? Int. J. Educ. Technol. High. Educ. 2019, 16, 39. [Google Scholar] [CrossRef]
- Ayuso del Puerto, D.; Gutiérrez Esteban, P. La Inteligencia Artificial como recurso educativo durante la formación inicial del profesorado. RIED-Rev. Iberoam. Educ. A Distancia 2022, 25, 347–362. [Google Scholar] [CrossRef]
- Moreno Padilla, R.D. La llegada de la inteligencia artificial a la educación. Rev. Investig. Tecnol. Inf. 2019, 7, 260–270. [Google Scholar] [CrossRef]
- Selwyn, N. Should Robots Replace Teachers? AI and the Future of Education; Polity Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Berendt, B.; Littlejohn, A.; Blakemore, M. AI in education: Learner choice and fundamental rights. Learn. Media Technol. 2020, 45, 312–324. [Google Scholar] [CrossRef]
- Akgun, S.; Greenhow, C. Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI Ethics 2022, 2, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Lin, J.C. Artificial intelligence as a double-edged sword: Wielding the POWER principles to maximize its positive effects and minimize its negative effects. Contemp. Issues Early Child. 2024, 25, 146–153. [Google Scholar] [CrossRef]
- Huang, L. Ethics of Artificial Intelligence in Education: Student Privacy and Data Protection. Sci. Insights Educ. Front. 2023, 16, 2577–2587. [Google Scholar] [CrossRef]
- Sanusi, I.T.; Oyelere, S.S.; Omidiora, J.O. Exploring teachers’ preconceptions of teaching machine learning in high school: A preliminary insight from Africa. Comput. Educ. Open 2022, 3, 100072. [Google Scholar] [CrossRef]
- Almasri, F. Exploring the Impact of Artificial Intelligence in Teaching and Learning of Science: A Systematic Review of Empirical Research. Res. Sci. Educ. 2024, 54, 977–997. [Google Scholar] [CrossRef]
- Kumar, J.A.; Zhuang, M.; Thomas, S. ChatGPT for natural sciences course design: Insights from a strengths, weaknesses, opportunities, and threats analysis. Nat. Sci. Educ. 2024, 53, e70003. [Google Scholar] [CrossRef]
- Valderrama, D.A.; Numpaque, D.S.; Mariño, D.A.; Pinilla, A.Y. Artificial Intelligence in the Teaching of Natural Sciences on the Threshold of the Fifth Industrial Revolution. In Explainable AI for Education: Recent Trends and Challenges; Singh, T., Dutta, S., Vyas, S., Rocha, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 147–168. ISBN 978-3-031-72410-7. [Google Scholar]
- Black, R.W.; Tomlinson, B. University students describe how they adopt AI for writing and research in a general education course. Sci. Rep. 2025, 15, 8799. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, W. The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: Insights from a meta-analysis. Humanit. Soc. Sci. Commun. 2025, 12, 621. [Google Scholar] [CrossRef]
- Bobo-Pinilla, J.; Marcos-Walias, J.; Delgado Iglesias, J.; Reinoso Tapia, R. Overcoming plant blindness: Are the future teachers ready? J. Biol. Educ. 2023, 58, 1466–1480. [Google Scholar] [CrossRef]
- Chan, C.K.Y.; Colloton, T. Generative AI in Higher Education: The ChatGPT Effect; Routledge: New York, NY, USA, 2024. [Google Scholar]
- Niesenbaum, R.A. The integration of conservation, biodiversity, and sustainability. Sustainability 2019, 11, 4676. [Google Scholar] [CrossRef]
- Kopnina, H.; Zhang, S.R.; Anthony, S.; Hassan, A.; Maroun, W. The inclusion of biodiversity into Environmental, Social, and Governance (ESG) framework: A strategic integration of ecocentric extinction accounting. J. Environ. Manag. 2024, 351, 119808. [Google Scholar] [CrossRef] [PubMed]
- Børresen, S.T.; Ulimboka, R.; Nyahongo, J.; Ranke, P.S.; Skjaervø, G.R.; Røskaft, E. The role of education in biodiversity conservation: Can knowledge and understanding alter locals’ views and attitudes towards ecosystem services? Environ. Educ. Res. 2023, 29, 148–163. [Google Scholar] [CrossRef]
- Kilinc, A.; Yeşiltaş, N.K.; Kartal, T.; Demiral, Ü.; Eroğlu, B. School Students’ Conceptions about Biodiversity Loss: Definitions, Reasons, Results and Solutions. Res. Sci. Educ. 2013, 43, 2277–2307. [Google Scholar] [CrossRef]
- UNESCO. Education for Sustainable Development Goals: Learning Objectives. 2017. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000252423 (accessed on 1 February 2025).
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.; Azeiteiro, U.M.; Nicolau, P.B.; Filho, W.L.; Azul, A.M. Biodiversity and Education for Sustainable Development; Springer: Cham, Switzerland, 2020. [Google Scholar]
- IPCC. Special Report on Climate Change and Land. 2019. Available online: https://www.ipcc.ch/srccl/download/ (accessed on 1 February 2025).
- United Nations. Transformar nuestro mundo: La Agenda 2030 para el Desarrollo Sostenible. 2015. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 1 February 2025).
- Ministerio de Educación y Formación Profesional. Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil. Boletín Of. Del Estado 2022, 28, 1–33. [Google Scholar]
- Ministerio de Educación y Formación Profesional. Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. Boletín Of. Del Estado 2022, 2014, 1–109. [Google Scholar]
- Ministerio de Educación y Formación Profesional. Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. Boletín Of. Del Estado 2022, 76, 1–198. [Google Scholar]
- Ministerio de Educación y Formación Profesional. Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato. Boletín Of. Del Estado 2022, 82, 1–325. [Google Scholar]
- Labadze, L.; Grigolia, M.; Machaidze, L. Role of AI chatbots in education: Systematic literature review. Int. J. Educ. Technol. High. Educ. 2023, 20, 56. [Google Scholar] [CrossRef]
- Crompton, H.; Burke, D. Artificial intelligence in higher education: The state of the field. Int. J. Educ. Technol. High. Educ. 2023, 20, 22. [Google Scholar] [CrossRef]
- Hershey, D.R. Plant Content in the National Science Education Standards. Available online: https://files.eric.ed.gov/fulltext/ED501357.pdf (accessed on 1 February 2025).
- Martín-López, B.; García-Llorente, M.; Palomo, I.; Montes, C. The conservation against development paradigm in protected areas: Valuation of ecosystem services in the Doñana social-ecological system (southwestern Spain). Ecol. Econ. 2011, 70, 1481–1491. [Google Scholar] [CrossRef]
- Bennett, J.W. The fungi that ate my house. Science 2015, 349, 1018. [Google Scholar] [CrossRef] [PubMed]
- Havens, K.; Kramer, A.T.; Guerrant, E.O. Getting plant conservation right (or not): The case of the United States. Int. J. Plant Sci. 2014, 175, 3–10. [Google Scholar] [CrossRef]
- Marcos-Walias, J.; Bobo-Pinilla, J.; Iglesias, J.D.; Tapia, R.R. Plant awareness disparity among students of different educational levels in Spain. Eur. J. Sci. Math. Educ. 2023, 11, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Parsley, K.M. Plant awareness disparity: A case for renaming plant blindness. Plants People Planet 2020, 2, 598–601. [Google Scholar] [CrossRef]
- Wandersee, J.H.; Schussler, E.E. Toward a Theory of Plant Blindness. Plant Sci. Bull. 2001, 47, 2–9. [Google Scholar]
- Sanders, D.L. Standing in the shadows of plants. Plants People Planet 2019, 1, 130–138. [Google Scholar] [CrossRef]
- Talbot, N.J. A cure for ‘fungus blindness’. Nat. Plants 2020, 6, 1068–1069. [Google Scholar] [CrossRef]
- Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flouri, T.; Beutel, R.G.; et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 2014, 346, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Erwin, T.L.; Borges, P.A.V.; New, T.R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011, 144, 2647–2655. [Google Scholar] [CrossRef]
- Scudder, G.G.E. The Importance of Insects. In Insect Biodiversity: Science and Society; Foottit, R.G., Adler, P.H., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; Volume I, pp. 9–43. [Google Scholar]
- Davey, G.C.L. Self-reported fears to common indigenous animals in an adult UK population: The role of disgust sensitivity. Br. J. Psychol. 1994, 85, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Fukano, Y.; Soga, M. Why do so many modern people hate insects? The urbanization–disgust hypothesis. Sci. Total Environ. 2021, 777, 146229. [Google Scholar] [CrossRef]
- Lockwood, J.A. The Infested Mind: Why Humans Fear, Loathe, and Love Insects; Oxford University Press: Oxford, UK, 2013; ISBN 9780199930197. [Google Scholar]
- Borgi, M.; Cirulli, F. Attitudes toward Animals among kindergarten children: Species preferences. Anthrozoos 2015, 28, 45–59. [Google Scholar] [CrossRef]
- Allen, R.C. The rise of the West. In Global Economic History: A Very Short Introduction; Allen, R.C., Ed.; Oxford University Press: Oxford, UK, 2011; pp. 14–26. [Google Scholar]
- Qu, Y.; Wang, J. Performance and biases of Large Language Models in public opinion simulation. Humanit. Soc. Sci. Commun. 2024, 11, 1095. [Google Scholar] [CrossRef]
- Tao, Y.; Viberg, O.; Baker, R.S.; Kizilcec, R.F. Cultural bias and cultural alignment of large language models. PNAS Nexus 2024, 3, 346. [Google Scholar] [CrossRef] [PubMed]
- Sileo, D. Attention Overflow: Language Model Input Blur during Long-Context Missing Items Recommendation. arXiv 2024, arXiv:2407.13481. [Google Scholar]
- Lee, K.; Ippolito, D.; Nystrom, A.; Zhang, C.; Eck, D.; Callison-Burch, C.; Carlini, N. Deduplicating Training Data Makes Language Models Better. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Volume 1, pp. 8424–8445. [Google Scholar]
- Ferrara, E. Should ChatGPT be biased? Challenges and risks of bias in large language models. arXiv 2023, arXiv:2304.03738. [Google Scholar]
- Xue, J.; Wang, Y.-C.; Wei, C.; Liu, X.; Woo, J.; Kuo, C.-C.J. Bias and Fairness in Chatbots: An Overview. APSIPA Trans. Signal Inf. Process. 2024, 13, 1–26. [Google Scholar] [CrossRef]
- Alser, M.; Waisberg, E. Concerns with the Usage of ChatGPT in Academia and Medicine: A Viewpoint. Am. J. Med. Open 2023, 9, 100036. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Karp, P.D. An evaluation of ChatGPT and Bard (Gemini) in the context of biological knowledge retrieval. Access Microbiol. 2024, 6, 000790.v3. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Kyrychenko, Y.; Rathje, S.; Collier, N.; van der Linden, S.; Roozenbeek, J. Generative language models exhibit social identity biases. Nat. Comput. Sci. 2024, 5, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, A.; Bryson, J.J.; Narayanan, A. Semantics derived automatically from language corpora contain human-like moral choices. Science 2017, 356, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Glickman, M.; Sharot, T. How human—AI feedback loops alter human perceptual, emotional and social judgements. Nat. Hum. Behav. 2025, 9, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Nazi, Z.A.; Peng, W. Large Language Models in Healthcare and Medical Domain: A Review. Informatics 2024, 11, 57. [Google Scholar] [CrossRef]
- Suresh, H.; Guttag, J. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. In Proceedings of the Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ’21), New York, NY, USA, 5–9 October 2021; ACM: New York, NY, USA, 2021; p. 9. [Google Scholar]
- Naik, I.; Naik, D.; Naik, N. ChatGPT Is All You Need: Untangling Its Underlying AI Models, Architecture, Training Procedure, Capabilities, Limitations And Applications. TechRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Rane, N.; Choudhary, S.; Rane, J. Gemini versus ChatGPT: Applications, performance, architecture, capabilities, and implementation. J. Appl. Artif. Intell. 2024, 5, 69–93. [Google Scholar] [CrossRef]
- Aydin, Ö.; Karaarslan, E.; Erenay, F.S.; Džakula, N.B. Generative AI in Academic Writing: A Comparison of DeepSeek, Qwen, ChatGPT, Gemini, Llama, Mistral, and Gemma. arXiv 2025, arXiv:2503.04765. [Google Scholar]
- Köklükaya, A.N.; Demirhan, E.; Beşoluk, Ş. The Prospective Science Teachers’ Perceptions of Biodiversity. Procedia—Soc. Behav. Sci. 2014, 116, 1562–1567. [Google Scholar] [CrossRef]
- Pérez, J.Q.; Daradoumis, T.; Puig, J.M.M. Rediscovering the use of chatbots in education: A systematic literature review. Comput. Appl. Eng. Educ. 2020, 28, 1549–1565. [Google Scholar] [CrossRef]
GPT-4.5% (SD) | DeepSeek-V3% (SD) | Gemini % (SD) | Random Selection from IUCN; % (SD) | Endangered % (Extrapolated from IUCN) | |
---|---|---|---|---|---|
Insect | 5.7 (1.5) | 2.7 (2.5) | 4.5 (0.6) | 5.7 (1.2) | 36.37 |
Plant | 6.7 (6.1) | 6.1 (1.9) | 12.3 (2.5) | 63.3 (3.1) | 29.6 |
Fungus | 0.7 (1.2) | 0 | 4.7 (4.7) | 0.3 (0.6) | 11.9 |
Arachnid | 1.3 (0.6) | 1 (1) | 1 (0) | 2 (1.4) | 6.26 |
Mollusk | 1.7 (0.6) | 1 (1) | 2 (1) | 5.3 (4.2) | 4.26 |
Crustacean | 1 (1) | 0.7 (1.2) | 2.7 (0.6) | 1.3 (0.6) | 3.84 |
Fish | 6.7 (1.2) | 2.7 (2.5) | 10.7 (1.2) | 7.7 (1.2) | 0.95 |
Amphibian | 6.3 (2.1) | 5.7 (5.5) | 7.3 (2.5) | 0.7 (1.2) | 0.57 |
Reptile | 10.3 (1.5) | 7.7 (6.8) | 10.3 (0.6) | 3.3 (0.6) | 0.39 |
Cnidarian | 1.3 (1.2) | 4.1 (3.6) | 0.7 (0.6) | 0 | 0.37 |
Mammal | 43.3 (1.5) | 53.1 (26.2) | 23.8 (5.5) | 2.7 (1.2) | 0.27 |
Bird | 15 (4.6) | 15.3 (13.3) | 20 (0) | 1.5 (0.7) | 0.23 |
Other | 0 | 0 | 0 | 0.7 (1.2) | 15.87 |
Taxonomic Bias Ratio | |||
GPT-4.5 | Gemini | DeepSeek-V3 | |
Insect | −20.1 | −55.5 | −13.4 |
Plant | −3.8 | −6.9 | −12.3 |
Fungus | −9.7 | −1.5 | na |
Arachnid | −8.5 | na | −5.3 |
Mollusk | −4.5 | −2.3 | −3.3 |
Crustacean | −2.8 | −2.0 | −2.7 |
Fish | 5.0 | 8.4 | 0.7 |
Amphibian | 2.8 | 2.7 | 0.9 |
Reptile | 6.5 | 17.2 | 1.1 |
Cnidarian | 0.8 | 0.5 | 1.0 |
Mammal | 28.2 | 4.2 | 2.0 |
Bird | 3.2 | na | 1.1 |
Geographic Bias Ratio | |||
GPT-4.5 | Gemini | DeepSeek-V3 | |
Asia | 3.3 | −1.4 | 0.0 |
Africa | −2.6 | −3.3 | −3.0 |
South America | −0.5 | −0.7 | −3.1 |
Central America | −2.3 | −6.0 | −0.4 |
Oceania | −0.4 | 0.9 | −0.5 |
Europe | 4.2 | 1.8 | 0.2 |
North America | 2.3 | 13.3 | 0.8 |
Antarctica | 0.9 | 0.4 | 0.9 |
GPT-4.5% (SD) | DeepSeek-V3% (SD) | Gemini % (SD) | Random Selection from IUCN; % (SD) | Endangered % (IUCN) | |
---|---|---|---|---|---|
Asia | 30.5 (1.3) | 26.6 (9.5) | 21.8 (3.2) | 30.3 (4.9) | 26.17 |
Africa | 16.7 (2.6) | 13.1 (3.4) | 17.4 (1.8) | 23.7 (2.1) | 23.32 |
South America | 15.7 (5.4) | 9.5 (2.8) | 16.1 (3.2) | 18.7 (4) | 18.39 |
Central America | 6.9 (2) | 9.2 (6.5) | 4.6 (1.2) | 10.7 (3.2) | 11.56 |
Oceania | 9.5 (1.3) | 7.2 (5.4) | 14.8 (5.6) | 9 (1) | 9.97 |
Europe | 10.2 (0.9) | 7.5 (5.4) | 12.5 (3.5) | 4.7 (2.3) | 6.31 |
North America | 10.1 (2.6) | 26.0 (26.5) | 12.5 (0.6) | 2.7 (1.5) | 4.17 |
Antarctica | 1 (1) | 1 (1) | 0.4 (0.6) | 0 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Pedro Noriega, L.; Bobo-Pinilla, J.; Delgado-Iglesias, J.; Reinoso-Tapia, R.; Gallego, A.M.; Quirós-Alpera, S. AI in Biodiversity Education: The Bias in Endangered Species Information and Its Implications. Sustainability 2025, 17, 6554. https://doi.org/10.3390/su17146554
de Pedro Noriega L, Bobo-Pinilla J, Delgado-Iglesias J, Reinoso-Tapia R, Gallego AM, Quirós-Alpera S. AI in Biodiversity Education: The Bias in Endangered Species Information and Its Implications. Sustainability. 2025; 17(14):6554. https://doi.org/10.3390/su17146554
Chicago/Turabian Stylede Pedro Noriega, Luis, Javier Bobo-Pinilla, Jaime Delgado-Iglesias, Roberto Reinoso-Tapia, Ana María Gallego, and Susana Quirós-Alpera. 2025. "AI in Biodiversity Education: The Bias in Endangered Species Information and Its Implications" Sustainability 17, no. 14: 6554. https://doi.org/10.3390/su17146554
APA Stylede Pedro Noriega, L., Bobo-Pinilla, J., Delgado-Iglesias, J., Reinoso-Tapia, R., Gallego, A. M., & Quirós-Alpera, S. (2025). AI in Biodiversity Education: The Bias in Endangered Species Information and Its Implications. Sustainability, 17(14), 6554. https://doi.org/10.3390/su17146554