Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,057)

Search Parameters:
Keywords = encapsulation of particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2486 KB  
Article
In Vitro Evaluation of the Effect of Size and PEGylation on Inhalable Liposomes for Pulmonary Drug Delivery
by Juliana Carrillo-Romero, Laura Fernández-Méndez, Endika de la Iglesia, Alberto Katsumiti, Lorena Germán, Desirè Di Silvio, Jesús Ruíz-Cabello, Susana Carregal-Romero and Felipe Goñi-de-Cerio
Nanomaterials 2026, 16(3), 200; https://doi.org/10.3390/nano16030200 - 3 Feb 2026
Abstract
The development of effective inhalable drugs remains a key challenge in the treatment of pulmonary diseases, due to the physiological barriers of the respiratory tract and the lack of predictive models that accurately reproduce the human lung environment. In this context, liposomes (LP) [...] Read more.
The development of effective inhalable drugs remains a key challenge in the treatment of pulmonary diseases, due to the physiological barriers of the respiratory tract and the lack of predictive models that accurately reproduce the human lung environment. In this context, liposomes (LP) have emerged as promising nanocarriers for pulmonary drug delivery due to their high biocompatibility, surfactant-like composition, capacity to encapsulate both hydrophilic and lipophilic drugs, and potential to provide sustained drug release while reducing systemic toxicity. This study evaluates the influence of size and PEGylation on their physicochemical properties, cytotoxicity, interaction with the pulmonary mucus, and cellular internalisation. LP of 100 nm (LP 100), 200 nm (LP 200), and 600 nm (LP 600) were characterised physiochemically and evaluated in pulmonary cell lines (A549 and Calu-3) exposed in liquid–liquid interface (LLI) and air–liquid interface (ALI) by nebulisation. In addition, artificial pulmonary mucus (APM) was employed to analyse LP penetration through the pulmonary mucus barrier. Results indicate that LP 100 exhibits greater colloidal stability, lower cytotoxicity, and sustained migration through the APM over time with respect to larger particles. PEGylation of LP 100 (LP-PEG) further increases their stability and ability to penetrate the APM, although cellular internalisation is reduced due to the steric effect of the PEG coating. These findings highlight the importance of adjusting the size and surface modifications of LPs according to the therapeutic target of the drug, optimising their persistence on the epithelial surface or their cellular uptake. Full article
(This article belongs to the Special Issue Nanomaterials 2026: Innovations and Future Perspectives)
Show Figures

Graphical abstract

18 pages, 2861 KB  
Article
Co-Release of Cytarabine and Polyphenol-Rich Extract from Polycaprolactone Microparticles Towards Leukemia Therapy
by Jenifer Leyva Castro, Laura A. de la Rosa, Emilio Álvarez Parrilla, Imelda Olivas Armendáriz, Jazmín Cristina Stevens Barrón and Christian Chapa González
Polymers 2026, 18(3), 394; https://doi.org/10.3390/polym18030394 - 2 Feb 2026
Viewed by 47
Abstract
Polymer-based drug delivery systems offer robust opportunities to improve chemotherapy performance while mitigating systemic toxicity, a critical challenge in leukemia treatment. In this study, poly(ε-caprolactone) (PCL) microparticles were developed as carriers for the co-delivery of cytarabine (ARA-C), a frontline antileukemic agent, and a [...] Read more.
Polymer-based drug delivery systems offer robust opportunities to improve chemotherapy performance while mitigating systemic toxicity, a critical challenge in leukemia treatment. In this study, poly(ε-caprolactone) (PCL) microparticles were developed as carriers for the co-delivery of cytarabine (ARA-C), a frontline antileukemic agent, and a pecan-derived polyphenolic extract (PRE) as a complementary bioactive component. Microparticles were prepared by a double emulsion solvent evaporation method and formulated with varying drug and extract loadings. The systems were characterized in terms of morphology, particle size, colloidal properties, encapsulation efficiency, and chemical composition using optical microscopy, scanning electron microscopy, dynamic light scattering, zeta potential analysis, UV–Vis spectroscopy, Folin–Ciocalteu assay, and FTIR spectroscopy. In vitro release studies revealed sustained and formulation-dependent release profiles for both ARA-C and PRE, which were successfully fitted to kinetic models, indicating diffusion- and matrix-controlled release mechanisms. Additionally, preliminary cell viability assays using fibroblasts supported the cytocompatibility of the formulations. The results support the use of PCL-based microparticles as reproducible polymeric systems for the co-encapsulation and controlled release of cytarabine and polyphenol-rich extracts, contributing to the development of combination delivery approaches relevant to leukemia treatment. Full article
(This article belongs to the Special Issue Functional Polymers for Drug Delivery and Their Effects)
Show Figures

Graphical abstract

9 pages, 255 KB  
Article
Quasi-Power Law Ensembles: Nonextensive Statistics or Superstatistics
by Maciej Rybczyński, Grzegorz Wilk and Zbigniew Włodarczyk
Entropy 2026, 28(2), 171; https://doi.org/10.3390/e28020171 - 2 Feb 2026
Viewed by 100
Abstract
In phenomenological studies of multiparticle production, transverse-momentum spectra measured in experiments frequently display an approximately power-law falloff, for which the Tsallis-type functional form is commonly employed as an effective parametrization. Within this framework, the emergence of such spectra is interpreted as a manifestation [...] Read more.
In phenomenological studies of multiparticle production, transverse-momentum spectra measured in experiments frequently display an approximately power-law falloff, for which the Tsallis-type functional form is commonly employed as an effective parametrization. Within this framework, the emergence of such spectra is interpreted as a manifestation of nonextensive statistical behavior. An analogous power-law structure, however, can be reproduced without explicitly postulating Tsallis statistics by assuming the presence of intrinsic fluctuations of the local temperature (T) in the hadronizing medium; in that case, the observed deviations from a purely exponential spectrum are encapsulated by the nonextensivity index (q). We show that temperature fluctuation mechanisms capable of generating Tsallis-like power-law distributions in multiparticle production necessarily induce nontrivial inter-particle correlations among the emitted hadrons. Building on this observation, we outline a strategy to discriminate fluctuations realized on an event-by-event basis from those arising predominantly through event-to-event variability. Such a separation may be particularly pertinent for the characterization of high-multiplicity (high-density) final states produced at the Large Hadron Collider. Full article
(This article belongs to the Special Issue Complexity in High-Energy Physics: A Nonadditive Entropic Perspective)
Show Figures

Figure 1

20 pages, 23995 KB  
Article
Chitosan-Based Composite Films Reinforced with Zein–Inulin–Thyme Essential Oil Pickering Emulsion for Enhanced Structural Integrity and Preservation Capacity
by Liufeng Wang, Hongxin Xue, Yujie Ling, Xinping Zhong, Kuntai Li, Qiuming Zheng, Xiaoqing Chen, Xinyi He and Minghui Tan
Foods 2026, 15(3), 484; https://doi.org/10.3390/foods15030484 - 31 Jan 2026
Viewed by 211
Abstract
Herein, zein–inulin-stabilized thyme essential oil (TEO) Pickering emulsions were prepared via ultrasonication. The addition of inulin (0.12–0.5%) enhanced emulsion stability and antibacterial activity, with particle sizes ranging from 73.7 to 789.8 nm. Chitosan (CS) composite films were then fabricated using different TEO loading [...] Read more.
Herein, zein–inulin-stabilized thyme essential oil (TEO) Pickering emulsions were prepared via ultrasonication. The addition of inulin (0.12–0.5%) enhanced emulsion stability and antibacterial activity, with particle sizes ranging from 73.7 to 789.8 nm. Chitosan (CS) composite films were then fabricated using different TEO loading methods. Films incorporating Pickering emulsions exhibited denser and smoother structures due to hydrogen bonding between the emulsion and chitosan matrix, while electrostatic interactions between zein and inulin enabled effective TEO encapsulation. Compared to the pure CS film, the Pickering emulsion active films exhibited improved thermal stability, with a maximum decomposition temperature of 260 °C, blocked up to 82.22% of UV light in the UVA region (320–400 nm), displayed increased hydrophobicity (maximum water contact angle of 75.70°), and showed the strongest scavenging activity toward both DPPH (93.27%) and ABTS (98.42%). Moreover, these films effectively reduced weight loss, minimized firmness decline, suppressed pH increase, and inhibited microbial growth, thereby delaying blueberry spoilage. Based on the appearance and total soluble solids content of blueberries, the chitosan Pickering emulsion (containing 0.25% inulin) film (type VI) presented the best preservation performance among the eight tested films. This study highlights the potential of chitosan-based Pickering emulsion active films for food packaging applications. Full article
Show Figures

Graphical abstract

24 pages, 1982 KB  
Article
Nanostructured Lipid Carriers Containing Norfloxacin and 2-Aminothiophene Derivative Reduces Fluoroquinolone Resistance in Multidrug-Resistant Staphylococcus aureus Strains by Efflux Pump Inhibition
by Aléxia Gonçalves Dias, Izabele de Souza Araújo, Rodrigo Santos Aquino de Araújo, Malu Maria Lucas dos Reis, Cícera Datiane de Morais Oliveira Tintino, Saulo Relison Tintino, Gildênia Alves de Araújo, Priscilla Augusta de Sousa Fernandes, Henrique Douglas Melo Coutinho, Elquio Eleamen Oliveira and Francisco Jaime Bezerra Mendonça-Junior
Pharmaceutics 2026, 18(2), 183; https://doi.org/10.3390/pharmaceutics18020183 - 30 Jan 2026
Viewed by 195
Abstract
Background/Objectives: Multidrug resistance (MDR) remains a critical global public health concern, compromising the efficacy of currently available antibiotics. As the development of new antibiotics offers limited long-term solutions, alternative approaches such as efflux pump inhibition have gained attention. This study reports the development [...] Read more.
Background/Objectives: Multidrug resistance (MDR) remains a critical global public health concern, compromising the efficacy of currently available antibiotics. As the development of new antibiotics offers limited long-term solutions, alternative approaches such as efflux pump inhibition have gained attention. This study reports the development of nanostructured lipid carriers (NLCs) co-loaded with Norfloxacin (NOR) and the efflux pump inhibitor 2-amino-thiophen-6CN-Ethyl, to modulate NOR activity against resistant Staphylococcus aureus strains overexpressing efflux pump genes. Methods: NLCs were produced via the hot emulsion method followed by sonication. The formulations were characterized for encapsulation efficiency (EE%), particle size, polydispersity index (PDI), zeta potential, X-ray diffraction (XRD), infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), in vitro release kinetics, and stability. Antibacterial activity was evaluated against S. aureus 1199B and K2068 strains. Results: The NLC formulation containing norfloxacin and 6CN-Ethyl (NLC10NOR + 106CN) demonstrated high EE% for both compounds (99.50% for 6CN-Ethyl and 90.91% for NOR) and physicochemical stability over 60 days (particle size < 255 nm, PDI < 0.3, zeta potential < −20 mV). Structural analyses confirmed amorphization and effective encapsulation of the active constituents. Antibacterial assays showed that NLC10NOR + 106CN significantly increased NOR activity compared to the free drug and physical mixture; the effect in 1199B was notably superior to the NOR + CCCP (carbonyl cyanide m-chlorophenylhydrazone) combination. Conclusions: These findings highlight the potential of NLC-based co-delivery systems as innovative strategies to overcome bacterial resistance, particularly through efflux pump inhibition enhancing antibiotic efficacy. Full article
(This article belongs to the Special Issue Nanosystems for Advanced Diagnostics and Therapy)
Show Figures

Figure 1

17 pages, 1593 KB  
Article
Microencapsulation of Idesia polycarpa Oil: Physicochemical Properties via Spray Drying vs. Freeze Drying
by Yunhe Chang, Haocheng Yang, Bo Zeng, Mingfa Song, Juncai Hou, Lizhi Ma, Hongxia Feng and Yan Zhang
Int. J. Mol. Sci. 2026, 27(3), 1363; https://doi.org/10.3390/ijms27031363 - 29 Jan 2026
Viewed by 114
Abstract
This study systematically compared spray drying (SD) and freeze drying (FD) for microencapsulating Idesia polycarpa oil using a soy protein isolate/maltodextrin (SPI/MD) wall system. SD produced predominantly spherical and compact microcapsules with higher solubility (51.33%), encapsulation efficiency (81.9%), and superior oxidative stability (oxidation [...] Read more.
This study systematically compared spray drying (SD) and freeze drying (FD) for microencapsulating Idesia polycarpa oil using a soy protein isolate/maltodextrin (SPI/MD) wall system. SD produced predominantly spherical and compact microcapsules with higher solubility (51.33%), encapsulation efficiency (81.9%), and superior oxidative stability (oxidation induction period, 6.05 h), together with improved thermal resistance, indicating its suitability for applications requiring enhanced stability and aroma retention. In contrast, FD yielded irregular and porous microcapsules with significantly higher emulsifying activity (29.12 m2 g−1, p < 0.05) but lower solubility and encapsulation efficiency. Integrated physicochemical characterization-including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), particle size and polydispersity index (PDI), ζ-potential, differential scanning calorimetry (DSC), oxidative stability index (OSI) measurements, and volatile profiling via odor activity value (OAV) analysis—revealed clear process-dependent structure–function relationships. The denser SPI/MD matrix formed during SD restricted lipid molecular mobility and oxygen diffusion, thereby suppressing lipid oxidation and promoting the retention of key lipid-derived odorants. Conversely, the porous structure generated by FD facilitated interfacial functionality but increased molecular diffusion pathways. Overall, this work demonstrates that SPI/MD-based microencapsulation functions as a molecular stabilization platform for highly unsaturated plant oils and provides mechanistic guidance for selecting drying strategies to tailor Idesia polycarpa oil microcapsules for specific food applications. Full article
(This article belongs to the Topic Nutritional and Phytochemical Composition of Plants)
Show Figures

Figure 1

20 pages, 4509 KB  
Article
Spinel-Encapsulated Ni-Rich Cathodes for Enhanced Thermal Safety: Unraveling the Decomposition Kinetics and Interfacial Reconstruction
by Linjie Xie, Huiqi Sun, Jiawei Dou, Juncheng Jiang and Chen Liang
Nanomaterials 2026, 16(3), 183; https://doi.org/10.3390/nano16030183 - 29 Jan 2026
Viewed by 154
Abstract
High-energy Ni-rich layered cathodes are critical for next-generation lithium-ion batteries yet remain limited by severe interfacial degradation and thermal vulnerability under high-voltage operation. In this work, a robust spinel-layered heterostructure is constructed by encapsulating LiNi0.8Co0.1Mn0.1O2 (NCM811) [...] Read more.
High-energy Ni-rich layered cathodes are critical for next-generation lithium-ion batteries yet remain limited by severe interfacial degradation and thermal vulnerability under high-voltage operation. In this work, a robust spinel-layered heterostructure is constructed by encapsulating LiNi0.8Co0.1Mn0.1O2 (NCM811) with a LiNi0.5Mn1.5O4 (LNMO) spinel shell via a scalable sol–gel route. Structural characterizations confirm that the coating maintains the secondary-particle architecture, while X-ray photoelectron spectroscopy reveals a chemically reconditioned interface, achieved by the scavenging residual lithium species and suppressing of rock-salt-like surface reconstruction. Consequently, the optimized 4 wt% LNMO@NCM811 electrode demonstrates significantly enhanced high-voltage (2.8–4.4 V) stability, maintaining 41.84% of its initial capacity after 200 cycles compared to only 15.75% for the pristine sample. Crucially, thermogravimetric-differential scanning calorimetry (TG-DSC) uncovers the kinetic origin of this safety improvement: the spinel shell alters the thermal decomposition pathway, delaying the 10% mass loss temperature (T10%) from 515.2 °C to 716.6 °C and suppressing the total exothermic heat release from 208.3 J g−1 to 81.5 J g−1. Collectively, these results demonstrate that the co-free spinel encapsulation is a dual-functional strategy to simultaneously stabilize surficial chemistry and intrinsically enhance the thermal safety of Ni-rich cathodes for carbon-neutral energy storage applications. Full article
Show Figures

Graphical abstract

42 pages, 2400 KB  
Review
Advancing Greenhouse Air Filtration: Biodegradable Nanofiber Filters with Sustained Antimicrobial Performance
by Amirali Bajgholi, Reza Jafari and Alireza Saidi
Textiles 2026, 6(1), 15; https://doi.org/10.3390/textiles6010015 - 27 Jan 2026
Viewed by 159
Abstract
Air quality management in greenhouses is critical to safeguarding plant health and occupational safety, yet conventional filtration methods often fall short in performance and sustainability. These enclosed environments are prone to the accumulation of bioaerosols, including fungi, bacteria, pollen, and dust particles, which [...] Read more.
Air quality management in greenhouses is critical to safeguarding plant health and occupational safety, yet conventional filtration methods often fall short in performance and sustainability. These enclosed environments are prone to the accumulation of bioaerosols, including fungi, bacteria, pollen, and dust particles, which can compromise crop productivity and pose health risks to workers. This review explores recent advancements in air filtration technologies for controlled environments such as greenhouses, where airborne particulate matter, bioaerosols, and volatile organic compounds (VOCs) present ongoing challenges. Special focus is given to the development of filtration media based on electrospun nanofibers, which offer high surface area, tunable porosity, and low airflow resistance. The use of biodegradable polymers in these systems to support environmental sustainability is examined, along with electrospinning techniques that enable precise control over fiber morphology and functionalization. Antimicrobial enhancements are discussed, including inorganic agents such as metal nanoparticles and bio-based options like essential oils. Essential oils, known for their broad-spectrum antimicrobial properties, are assessed for their potential in long-term, controlled-release applications through nanofiber encapsulation. Overall, this paper highlights the potential of integrating sustainable materials, innovative fiber fabrication techniques, and nature-derived antimicrobials to advance air filtration performance while meeting ecological and health-related standards. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Graphical abstract

15 pages, 3030 KB  
Article
Design of Multifunctional SC-PLA Pesticide Carrier System and Study of Controlled-Release Performance
by Xuanxuan Wang, Ruizhe Wang, Dongxia Han, Yaling Zhou and Qinwei Gao
Materials 2026, 19(3), 492; https://doi.org/10.3390/ma19030492 - 26 Jan 2026
Viewed by 151
Abstract
To construct a high-performance avermectin (Avm) carrier system, this study utilized the advantages of stereocomplex (SC) crystal formation between poly (L-lactic acid) (PLLA) and poly (D-lactic acid) (PDLA) to prepare Avm-loaded stereocomplex polylactic acid (SC-PLA) nanoformulations via the emulsion solvent evaporation method. The [...] Read more.
To construct a high-performance avermectin (Avm) carrier system, this study utilized the advantages of stereocomplex (SC) crystal formation between poly (L-lactic acid) (PLLA) and poly (D-lactic acid) (PDLA) to prepare Avm-loaded stereocomplex polylactic acid (SC-PLA) nanoformulations via the emulsion solvent evaporation method. The results showed the successful formation of SC-PLA after introducing PDLA into the PLLA matrix, and the influence of SC-PLA crystallinity enabled the fabrication of tunable Avm@SC-PLA nanospheres with a regular spherical morphology. Avm@SC-PLA exhibited controlled release characteristics and possessed pH-responsive properties with specific release behaviors under pH 5.5, 7.4, and 8.0 conditions. The Avm@SC-PLA sustained-release nano system had a series of advantages, including controllable particle size, efficient drug loading, excellent sustained-release performance, good UV-shielding ability, high stability, favorable spreadability, and strong affinity for different leaves. In conclusion, the Avm@SC-PLA nanoformulation not only achieves effective loading and stable encapsulation of Avm but also possesses good structural stability and environmental responsiveness. It provides a novel PLA-based carrier strategy for the efficient delivery of Avm and holds potential application value in the pesticide and pharmaceutical fields. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

16 pages, 10020 KB  
Article
Chitosan/Carboxymethyl Cellulose Nanocomposites Prepared via Electrolyte Gelation–Spray Drying for Controlled Ampicillin Delivery and Enhanced Antibacterial Activity
by Anh Dzung Nguyen, Vinh Nghi Nguyen, Vu Hoa Tran, Huu Hung Dinh, Dinh Sy Nguyen, Thi Huyen Nguyen, Van Bon Nguyen and San Lang Wang
Polymers 2026, 18(3), 319; https://doi.org/10.3390/polym18030319 - 24 Jan 2026
Viewed by 249
Abstract
This study reports the fabrication of chitosan/carboxymethyl cellulose (C/M) nanocomposites by electrolyte gelation–spray drying and the evaluation of their antibacterial performance as carriers for the antibiotic ampicillin. Chitosan (C), a cationic biopolymer derived from chitin, was combined with the anionic polysaccharide carboxymethyl cellulose [...] Read more.
This study reports the fabrication of chitosan/carboxymethyl cellulose (C/M) nanocomposites by electrolyte gelation–spray drying and the evaluation of their antibacterial performance as carriers for the antibiotic ampicillin. Chitosan (C), a cationic biopolymer derived from chitin, was combined with the anionic polysaccharide carboxymethyl cellulose (M) at different mass ratios to form stable nanocomposites via electrostatic interactions and then collected in a spray dryer. The resulting particles exhibited mean diameters ranging from 800 to 1500 nm and zeta potentials varying from +90 to −40 mV, depending on the C/M ratio. The optimal formulation (C/M = 2:1 ratio) achieved a high recovery yield (71.1%), lower PDI (0.52), and ampicillin encapsulation efficiency EE (82.4%). Fourier transform infrared spectroscopy (FTIR) confirmed the presence of hydrogen bonding and ionic interactions among C/M, and ampicillin within the nanocomposite matrix. The nanocomposites demonstrated controlled ampicillin release and pronounced antibacterial activity against Staphylococcus aureus, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 3.2 µg/mL and 5.3 µg/mL, respectively, which were lower than those of free ampicillin. These results indicate that the chitosan/carboxymethyl cellulose nanocomposites are promising, eco-friendly carriers for antibiotic delivery and antibacterial applications. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 2471 KB  
Article
Vaccination with Lipid Nanoparticle-Delivered VP2-DNA Elicits Immune Protection in Chickens Against Novel Variant Infectious Bursal Disease Virus (nVarIBDV)
by Yulong Zhang, Ziwen Wu, Hangbo Yu, Guodong Wang, Runhang Liu, Dan Ling, Erjing Ke, Xianyun Liu, Tengfei Xu, Suyan Wang, Yuntong Chen, Yongzhen Liu, Hongyu Cui, Yanping Zhang, Yulu Duan, Yulong Gao and Xiaole Qi
Vaccines 2026, 14(2), 113; https://doi.org/10.3390/vaccines14020113 - 24 Jan 2026
Viewed by 263
Abstract
Background/Objective: Infectious bursal disease (IBD) is an acute and highly contagious immunosuppressive disease in chickens caused by infectious bursal disease virus (IBDV). In recent years, a novel variant IBDV (nVarIBDV) has emerged and spread widely, inducing severe immunosuppression and posing a substantial threat [...] Read more.
Background/Objective: Infectious bursal disease (IBD) is an acute and highly contagious immunosuppressive disease in chickens caused by infectious bursal disease virus (IBDV). In recent years, a novel variant IBDV (nVarIBDV) has emerged and spread widely, inducing severe immunosuppression and posing a substantial threat to the poultry industry. More importantly, owing to antigenic variations, nVarIBDV can escape the immune protection of the existing vaccines. Therefore, it is imperative to develop a new vaccine that is antigenically matched to nVarIBDV. Methods: The major protective antigen gene VP2 of the representative nVarIBDV strain SHG19 was inserted into the eukaryotic expression plasmid pCAGGS to construct the recombinant plasmid pCASHGVP2. Subsequently, pCASHGVP2 was encapsulated in lipid nanoparticles (LNPs) to form pCASHGVP2-LNP nanoparticles. Finally, using the SPF chicken model, the immune efficacy of pCASHGVP2-LNP was preliminarily assessed by administering two vaccine doses (10 and 20 μg) and two immunization regimens (single or double immunization). Results: Efficient VP2 protein expression from pCASHGVP2 was confirmed by in vitro transfection experiments. The prepared pCASHGVP2-LNP nanoparticles exhibited an optimal particle size distribution and acceptable polydispersity index, indicating a homogeneous formulation. Furthermore, animal experiments showed that the candidate DNA vaccine elicited specific neutralizing antibodies after double immunization and protected immunized chickens from disease induced by nVarIBDV challenge. Conclusions: This study reports the first development of an LNP-encapsulated VP2 DNA vaccine (pCASHGVP2-LNP) against nVarIBDV, highlighting its potential application for the prevention of nVarIBDV. Full article
(This article belongs to the Special Issue Advances in DNA Vaccine Research)
Show Figures

Figure 1

25 pages, 2766 KB  
Article
Design and Optimization of Pullulan-Isononanoate Films with Bioactive-Loaded Liposomes for Potential Biomedical Use
by Amjed A. Karkad, Aleksandar Marinković, Aleksandra Jovanović, Katarina Simić, Stefan Ivanović, Milena Milošević and Tamara Erceg
Polymers 2026, 18(2), 305; https://doi.org/10.3390/polym18020305 - 22 Jan 2026
Viewed by 211
Abstract
This study reports the synthesis and detailed characterization of pullulan-isononanoate (Pull-Iso), as well as the preparation and characterization of Pull-Iso films incorporating liposomes loaded with silibinin (SB) and smoke tree (Cotinus coggygria) extract (STExt), to explore the physicochemical and functional properties [...] Read more.
This study reports the synthesis and detailed characterization of pullulan-isononanoate (Pull-Iso), as well as the preparation and characterization of Pull-Iso films incorporating liposomes loaded with silibinin (SB) and smoke tree (Cotinus coggygria) extract (STExt), to explore the physicochemical and functional properties of pullulan-based biomaterials for potential biomedical applications. Pullulan was successfully esterified with isononanoic acid chloride, as confirmed by 1H and 13C NMR (Nuclear Magnetic Resonance) and Fourier Transform Infrared (FTIR) spectroscopy. Modification significantly reduced the glass transition temperature (Tg), indicating enhanced chain mobility due to the introduction of bulky side chains. Prepared liposomes, embedding SB and extracted smoke tree compounds, exhibited particle sizes ~2000 nm with moderate polydispersity (~0.340) and zeta potential values around –20 mV, demonstrating lower colloidal stability over 60 days, thereby justifying their encapsulation within films. Optical microscopy revealed uniform liposome dispersion in Pull-Iso film with 0.5 g of liposomes, while higher liposome loading (0.75 g of liposomes) induced aggregation and microstructural irregularities. Mechanical analysis showed a reduction in tensile strength and strain at higher liposome content. The incorporation of liposomes encapsulating STExt and SB significantly enhanced the antioxidant activity of Pull-Iso-based films in a concentration-dependent manner, as demonstrated by DPPH and ABTS radical scavenging assays. These preliminary findings suggest that pullulan esterification and controlled liposome incorporation may enable the development of flexible, bioactive-loaded films, which could represent a promising platform for advanced wound dressing applications, warranting further investigation. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials, 3rd Edition)
Show Figures

Figure 1

26 pages, 5269 KB  
Article
Development and Optimization of Resveratrol-Loaded NLCs via Low-Energy Methods: A Promising Alternative to Conventional High-Energy or Solvent-Based Techniques
by Nicoly T. R. Britto, Lilian R. S. Montanheri, Juliane N. B. D. Pelin, Raquel A. G. B. Siqueira, Matheus de Souza Alves, Tereza S. Martins, Ian W. Hamley, Patrícia S. Lopes, Vânia R. Leite-Silva and Newton Andreo-Filho
Processes 2026, 14(2), 393; https://doi.org/10.3390/pr14020393 - 22 Jan 2026
Viewed by 189
Abstract
High-energy methods dominate the development of lipid nanoparticles but often require specialized equipment that increases production costs. Low-energy approaches, particularly those free of organic solvents, offer a promising alternative. This study aimed to obtain nanostructured lipid carriers (NLCs) using a solvent-free, low-energy process [...] Read more.
High-energy methods dominate the development of lipid nanoparticles but often require specialized equipment that increases production costs. Low-energy approaches, particularly those free of organic solvents, offer a promising alternative. This study aimed to obtain nanostructured lipid carriers (NLCs) using a solvent-free, low-energy process combining microemulsification and phase inversion. Cetearyl alcohol and PEG-40 hydrogenated castor oil were selected as the solid lipid and surfactant, respectively; the formulation and process were optimized through a Box–Behnken Design. Incorporation of the ionic surfactant extended colloidal stability, while the poloxamer in the aqueous phase enhanced steric stabilization. Resveratrol was efficiently encapsulated (E.E. = 98%), contributing to reduced particle size (291 nm), improved homogeneity (PDI = 0.25), and positive surface charge (+43 mV). Scale-up yielded stable particles carrying resveratrol with a mean size of 507 nm, PDI = 0.24, and ZP = +52 mV. The optimized formulation remained stable for 90 days at 8 °C. In vitro release demonstrated a sustained and controlled release profile, with significantly lower resveratrol release compared to the free compound. Thermal analysis confirmed drug incorporation within the lipid matrix, while transmission electron microscopy (TEM) revealed spherical particles (~200 nm) and SAXS indicated a nanostructure of ~50 nm. Overall, this study demonstrates that solvent-free, low-energy processing can produce stable and scalable NLC formulations, successfully encapsulating resveratrol with favorable physicochemical properties and controlled release behavior. These findings highlight a simple, cost-effective strategy for developing lipid-based nanocarriers with potential applications in drug delivery. Full article
Show Figures

Figure 1

22 pages, 2864 KB  
Article
Chitosan-Loaded Vanillin Nanoformulation as an Edible Coating for Post-Harvest Preservation of Indian Gooseberry (Amla)
by Monisha Soni, Archana Kumari, Aarohi Singh, Sangeeta Kumari, Umakant Banjare, Nawal Kishore Dubey and Abhishek Kumar Dwivedy
Foods 2026, 15(2), 395; https://doi.org/10.3390/foods15020395 - 22 Jan 2026
Viewed by 136
Abstract
This is the first investigation that attempts to synthesize chitosan-loaded vanillin nanoformulation (vanillin-Nf) as a novel edible coating agent to prolong the storage life of Indian gooseberry (amla). Different concentrations of vanillin were encapsulated into chitosan via ionic gelation approach using sodium tripolyphosphate [...] Read more.
This is the first investigation that attempts to synthesize chitosan-loaded vanillin nanoformulation (vanillin-Nf) as a novel edible coating agent to prolong the storage life of Indian gooseberry (amla). Different concentrations of vanillin were encapsulated into chitosan via ionic gelation approach using sodium tripolyphosphate as a cross-linker. Vanillin-Nf 1:1 (w/v) exhibited maximum loading capacity (2.502 ± 0.008%) and encapsulation efficiency (54.483 ± 1.165%). The physico-chemical characterization of vanillin-Nf through SEM, DLS, FT-IR, and XRD techniques confirmed effective incorporation of vanillin into the chitosan biomatrix and formation of spherical nanocapsules, with a mean particle size of 232.83 nm, zeta potential +69.66 mV, and polydispersity index 0.296. The in vitro release profile of vanillin exhibited a biphasic and regulated release pattern. The application of vanillin-Nf as an edible coating solution on amla (Phyllanthus emblica L.) fruits was highly effective in reducing decay incidence up to 42.84% and extended their shelf-life to 15 days at 25 ± 2 °C. The vanillin-Nf coating significantly reduced weight loss in amla fruits (24.39 ± 1.02%) in comparison to control. In addition, vanillin-Nf coating also helped in preserving the key quality parameters, including pH, chlorophyll content, total soluble solids, total phenols, and antioxidant capacity of Indian gooseberries to a substantial extent at the end of storage. Collectively, our findings indicate that vanillin-Nf coating is an effective post-harvest approach for controlling decay, prolonging shelf-life, and maintaining the nutritional attributes of Indian gooseberries, highlighting its potential for commercial application in the food and agriculture industry. Full article
Show Figures

Graphical abstract

22 pages, 7468 KB  
Article
Pulmonary Delivery of Inhalable Sustained Release Nanocomposites Microparticles Encapsulating Osimertinib for Non-Small Cell Lung Cancer Therapy
by Iman M. Alfagih, Alanood Almurshedi, Basmah Aldosari, Bushra Alquadeib, Baraa Hajjar, Hafsa Elwali, Hadeel ALtukhaim, Eman Alzahrani, Sara Alhumaidan and Ghaida Alharbi
Pharmaceutics 2026, 18(1), 134; https://doi.org/10.3390/pharmaceutics18010134 - 21 Jan 2026
Viewed by 253
Abstract
Background/Objective: Osimertinib (OSI) is a third-generation tyrosine kinase inhibitor approved for non-small cell lung cancer (NSCLC) therapy. OSI is administered orally; this route limits the amount of OSI reaching the tumor in the lungs and is associated with serious systemic toxicity. This study [...] Read more.
Background/Objective: Osimertinib (OSI) is a third-generation tyrosine kinase inhibitor approved for non-small cell lung cancer (NSCLC) therapy. OSI is administered orally; this route limits the amount of OSI reaching the tumor in the lungs and is associated with serious systemic toxicity. This study aimed to develop a dry powder inhalable formulation to provide tumor-targeted delivery and minimize systemic toxicity. To the best of our knowledge, this is the first study to prepare and evaluate a dry powder inhalation formulation of OSI. Methods: Chitosan-coated PLGA nanoparticles (PLGA-C NPs) encapsulating OSI were prepared using a single emulsion-solvent evaporation technique. PLGA-C NPs were assembled into respirable nanocomposite microparticles (NCMPs) via spray drying with L-leucine as a carrier. PLGA-C NPs were characterized for particle size, zeta-potential, encapsulation efficiency, and in vitro efficacy in A-549 cell line. NCMPs were evaluated for solid-state properties, aerosolization performance, stability and in vitro release. Results: PLGA-C NPs exhibited a particle size of 145.18 ± 3.0 nm, high encapsulation efficiency and a positive zeta potential. In vitro studies demonstrated a 3.6-fold reduction in IC50 compared to free OSI, superior antimigratory effects and enhanced cell cycle arrest. Solid-state characterization of NCMPs demonstrated drug encapsulation in the polymer without chemical interaction. NCMPs exhibited excellent aerosolization (mass median aerodynamic diameter of 1.09 ± 0.23 μm, fine particle fraction of 73.48 ± 8.6%) and sustained drug release (61.76 ± 3.9% at 24 h). Stability studies confirmed the physicochemical stability integrity. Conclusions: These findings suggest that this novel dry powder inhalable OSI formulation may improve therapeutic outcomes while reducing systemic toxicity. Full article
(This article belongs to the Special Issue Anticancer Nanotherapeutics for Lung Cancer Therapy)
Show Figures

Figure 1

Back to TopTop