Nanostructured Lipid Carriers Containing Norfloxacin and 2-Aminothiophene Derivative Reduces Fluoroquinolone Resistance in Multidrug-Resistant Staphylococcus aureus Strains by Efflux Pump Inhibition
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacterial Strains, Culture Media and Drugs for Biological Assays
2.3. Component Selection
2.3.1. Selection of Solid and Liquid Lipids
2.3.2. Selection of Stabilizers
2.3.3. Selection of Solid–Liquid Lipid Ratio
2.3.4. Selection of Sonication Amplitude and Time
2.3.5. Selection of Zwitterionic Surfactant Concentration
2.4. Preparation of Nanostructured Lipid Carriers Containing 6CN-Ethyl and Norfloxacin
2.5. Characterization Study of Prepared Nanostructured Lipid Carriers
2.5.1. Particle Size, Polydispersity Index and Zeta Potential
2.5.2. Determination of Encapsulation Efficiency
2.5.3. Macroscopic Analysis of Nanostructured Lipid Carriers
2.5.4. Scanning Electron Microscopy (SEM)
2.5.5. Characterization by X-Ray Diffraction (XRD)
2.5.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.7. Differential Scanning Calorimetry (DSC)
2.5.8. In Vitro Drug Release Kinetics
2.6. Stability Study of Nanostructured Lipid Carriers
2.7. Evaluation of the Modulation of NLC Antibiotic Activity in S. aureus 1199B and S. aureus K2068 Strains by Minimum Inhibitory Concentration (MIC) Reduction
2.8. Statistical Analysis
3. Results and Discussion
3.1. Determination of Components for the Preparation of Nanostructured Lipid Carriers
3.1.1. Selection of Solid and Liquid Lipids
3.1.2. Selection of Stabilizers
3.1.3. Selection of Solid–Liquid Lipid Ratio
3.1.4. Selection of Sonication Amplitude and Time
3.1.5. Selection of Zwitterionic Surfactant Concentration
3.2. Characterization of Nanostructured Lipid Carriers
3.2.1. Determination of Encapsulation Efficiency
3.2.2. X-Ray Diffraction (XRD)
3.2.3. Scanning Electron Microscopy (SEM)
3.2.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.5. Differential Scanning Calorimetry
3.2.6. In Vitro Drug-Release Kinetics
3.3. Stability Study of Nanostructured Lipid Carriers
3.4. Evaluation of the Modulation of the Nanostructured Lipid Carrier Antibiotic Activity in S. aureus 1199B and S. aureus K2068 Strains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATR | Attenuated Total Reflectance |
| BHI | Brain Heart Infusion |
| CCCP | Carbonyl Cyanide m-Chlorophenylhydrazone |
| CFU | Colony Forming Units |
| DLS | Dynamic Light Scattering |
| DSC | Differential Scanning Calorimetry |
| DMSO | Dimethyl Sulfoxide |
| EE% | Encapsulation Efficiency |
| ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. |
| FTIR | Fourier Transform Infrared Spectroscopy |
| MATE | Multidrug and Toxic Compound Extrusion |
| MDR | Multidrug Resistance |
| MepA | Multidrug Efflux Protein A |
| MRSA | Methicillin-Resistant Staphylococcus aureus |
| MIC | Minimum Inhibitory Concentration |
| MFS | Major Facilitator Superfamily |
| M.p. | Melting point |
| NLCs | Nanostructured Lipid Carriers |
| NOR | Norfloxacin |
| NorA | NorA efflux pump |
| PDI | Polydispersity Index |
| PVA | Polyvinyl Alcohol |
| S. aureus | Staphylococcus aureus |
| SEM | Standard Error of the Mean |
| XRD | X-ray Diffraction |
| ZP | Zeta Potential |
References
- Chandal, N.; Tambat, R.; Kalia, R.; Gautam, K.; Mahey, N.; Jachar, S.; Nandanwar, H. Efflux pump inhibitory potential of indole derivatives as an arsenal against norA over-expressing Staphylococcus aureus. Microbiol. Spectr. 2023, 11, e04876-22. [Google Scholar] [CrossRef] [PubMed]
- Dashtbani, R.A.; Brown, M.H. Efflux pump mediated antimicrobial resistance by staphylococci in health-related environments: Challenges and the quest for inhibition. Antibiotics 2021, 10, 1502. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Compagne, N.; Vieira da Cruz, A.; Müller, R.T.; Hartkoorn, R.C.; Flipo, M.; Pos, K.M. Update on the discovery of efflux pump inhibitors against critical priority Gram-negative bacteria. Antibiotics 2023, 12, 180. [Google Scholar] [CrossRef]
- Huang, H.; Wan, P.; Luo, X.; Lu, Y.; Li, X.; Xiong, W.; Zeng, Z. Tigecycline resistance-associated mutations in the MepA efflux pump in Staphylococcus aureus. Microbiol. Spectr. 2023, 11, e00634-23. [Google Scholar] [CrossRef]
- Duvauchelle, V.; Meffre, P.; Benfodda, Z. Green methodologies for the synthesis of 2-aminothiophene. Environ. Chem. Lett. 2023, 21, 597–621. [Google Scholar] [CrossRef]
- Liger, F.; Bouhours, P.; Ganem-Elbaz, C.; Jolivalt, C.; Pellet-Rostaing, S.; Popowycz, F.; Paris, J.M.; Lemaire, M. C2 Arylated Benzo[b]thiophene Derivatives as Staphylococcus aureus NorA Efflux Pump Inhibitors. ChemMedChem 2016, 11, 320–330. [Google Scholar] [CrossRef]
- Da Cruz, R.M.D.; Zelli, R.; Benshain, S.; Da Cruz, R.M.D.; Siqueira-Júnior, J.P.; Décout, J.L.; Mingeot-Leclercq, M.P.; Mendonça-Junior, F.J.B. Synthesis and evaluation of 2-aminothiophene derivatives as Staphylococcus aureus efflux pump inhibitors. ChemMedChem 2020, 15, 716–725. [Google Scholar] [CrossRef]
- Mahdavi, B.; Hosseyni-Tabar, S.M.; Rezaei-Seresht, E.; Rezaei-Seresht, H.; Falanji, F. Synthesis and biological evaluation of novel hybrid compounds derived from gallic acid and 2-aminothiophene derivatives. J. Iran. Chem. Soc. 2020, 17, 809–815. [Google Scholar] [CrossRef]
- Scotti, L.; Scotti, M.T.; Lima, E.O.; Sobral da Silva, M.; Lima, M.C.A.; Pitta, I.R.; De Moura, R.O.; Oliveira, J.G.B.; Da Cruz, R.M.D.; Mendonça-Junior, F.J.B. Experimental methodologies and evaluations of computer-aided drug design methodologies applied to a series of 2-aminothiophene derivatives with antifungal activities. Molecules 2012, 17, 2298–2315. [Google Scholar] [CrossRef]
- Luna, I.S.; Neves, W.W.; de Lima-Neto, R.G.; Albuquerque, A.P.B.; Pitta, M.G.R.; Rêgo, M.J.B.M.; Neves, R.P.; Scotti, M.T.; Mendonça-Junior, F.J.B. Design, synthesis and antifungal activity of new schiff bases bearing 2-aminothiophene derivatives obtained by molecular simplification. J. Braz. Chem. Soc. 2021, 32, 1017–1029. [Google Scholar] [CrossRef]
- De Sousa Fernandes, P.A.; de Araújo, R.S.A.; Gonçalves Alencar, G.; Gonçalves, S.A.; de Araújo, G.A.; de Sousa Rodrigues, E.Y.; Alves, D.S.; de Almeida, R.S.; de Morais Oliveira-Tintino, C.D.; Sidrônio, M.G.S.; et al. 2-Aminothiophene derivatives reduce resistance to fluoroquinolones in Staphylococcus aureus strains which overexpress NorA and MepA efflux pumps. Biochimie 2025, 239, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, J.; Ahn, J. Advances in the discovery of efflux pump inhibitors as novel potentiators to control antimicrobial-resistant pathogens. Antibiotics 2023, 12, 1417. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles from liposomes to mRNA vaccine delivery: A landscape of research diversity and advancement. ACS Nano 2021, 15, 16982–17015. [Google Scholar] [CrossRef] [PubMed]
- Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S.M.H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S.S.; Asare, K.; Nokhodchi, A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm. Dev. Technol. 2022, 27, 525–544. [Google Scholar] [CrossRef] [PubMed]
- Abla, K.K.; Hijazi, S.M.; Mehanna, M.M. Augmented efficiency of azithromycin for MRSA ocular infections management: Limonene-based nanostructured lipid carriers in-situ approach. J. Drug Deliv. Sci. Technol. 2023, 87, 104764. [Google Scholar] [CrossRef]
- Khan, S.; Sharma, A.; Jain, V. An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv. Pharm. Bull. 2023, 13, 446–460. [Google Scholar] [CrossRef]
- Mendonça Junior, F.J.B.; Lima-Neto, R.G.; Oliveira, T.B.; Lima, M.C.A.; Pitta, I.R.; Galdino, S.L.; Da Cruz, R.M.D.; Araújo, R.S.A.; Neves, R.P. Synthesis and evaluation of the antifungal activity of 2-(Substituted-Amino)-4,5-Dialkyl-Thiophene-3-Carbonitrile Derivatives. Am. J. Pharm. 2011, 30, 1492–1501. [Google Scholar]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, N. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Pereira, L.C.; Bom, M.; Ribeiro, A.; Almeida, C.; Rosado, C. Exploring stearic-acid-based nanoparticles for skin applications—Focusing on stability and cosmetic benefits. Cosmetics 2023, 10, 99. [Google Scholar] [CrossRef]
- Eleraky, N.E.; Omar, M.M.; Mahmoud, H.A.; Abou-Taleb, H.A. Nanostructured lipid carriers to mediate brain delivery of Temazepam: Design and in vivo study. Pharmaceutics 2020, 12, 451. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, M.; Assi, S.; Fatokun, A.A.; Khan, I. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. J. Pharm. Sci. 2021, 110, 2859–2872. [Google Scholar] [CrossRef] [PubMed]
- Syed, A.S.N.A.; Ashari, S.E.; Tan, J.K.; Kassim, N.K.; Hassan, M.; Zainuddin, N.; Mohamad, R.; Mat Azmi, I.D. Screening and selection of formulation components of nanostructured lipid carriers system for Mitragyna speciosa (Korth). Ind. Crops Prod. 2023, 198, 116668. [Google Scholar] [CrossRef]
- Abdul Ghani, S.M.; Roslan, N.Z.I.; Muda, R.; Abdul-Aziz, A. Encapsulation of Ficus deltoidea extract in nanostructured lipid carrier for anti-melanogenic activity. Sci. Pharm. 2020, 88, 50. [Google Scholar] [CrossRef]
- Cortés, H.; Hernández-Parra, H.; Bernal-Chávez, S.A.; Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Borbolla-Jiménez, F.V.; González-Torres, M.; Magaña, J.J.; Leyva-Gómez, G. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials 2021, 14, 3197. [Google Scholar] [CrossRef]
- Latifah, L.; Hendradi, E.; Isadiartuti, D. Effect ratio of stearic acid and oleic acid on characteristics of diclofenac sodium nanostructured lipid carrier. Pharm. Educ. 2024, 24, 336–342. [Google Scholar] [CrossRef]
- Rahman, F.; Hendradi, E.; Purwanti, T. Lipids selection and methods of nanostructured lipid carrier for topical use. Int. J. Drug Deliv. Technol. 2024, 14, 1880–1889. [Google Scholar] [CrossRef]
- Sakellari, G.I.; Zafeiri, I.; Batchelor, H.; Spyropoulos, F. Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hydrocoll. Health 2021, 1, 100024. [Google Scholar] [CrossRef]
- Ajiboye, A.L.; Nandi, U.; Galli, M.; Trivedi, V. Olanzapine loaded nanostructured lipid carriers via high shear homogenization and ultrasonication. Sci. Pharm. 2021, 89, 25. [Google Scholar] [CrossRef]
- Shojaeiarani, J.; Bajwa, D.; Holt, G. Sonication amplitude and processing time influence the morphology and dispersion of cellulose nanocrystals. Nanocomposites 2020, 6, 41–46. [Google Scholar] [CrossRef]
- Al-Haj, W.A.; Nsairat, H.; El-Tanani, M. Pimozide-loaded nanostructured lipid carriers: Repurposing strategy against lung cancer. Sci. Prog. 2024, 107, 00368504241296304. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.R.; Ribeiro, L.N.M.; Breitkreitz, M.C.; Guilherme, V.A.; Rodrigues da Silva, G.H.; Mitsutake, H.; Alcântara, A.C.S.; Yokaichiya, F.; Franco, M.K.K.D.; Clemens, D.; et al. A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers. Sci. Rep. 2021, 11, 21463. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.H.; Chen, H.L.; Dong, J.R. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives. Appl. Sci. 2023, 13, 1726. [Google Scholar] [CrossRef]
- Schubert, M.A.; Harms, M.; Müller-Goymann, C.C. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur. J. Pharm. Sci. 2006, 27, 226–236. [Google Scholar] [CrossRef]
- Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020, 12, 288. [Google Scholar] [CrossRef]
- Zardini, A.A.; Mohebbi, M.; Farhoosh, R.; Bolurian, S. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. J. Food Sci. Technol. 2018, 55, 287–298. [Google Scholar] [CrossRef]
- Thangadurai, S.; Shukla, S.K.; Srivastava, A.K.; Anjaneyulu, Y. X-ray powder diffraction patterns for certain fluoroquinolone antibiotic drugs. Acta Pharm. 2003, 53, 295–303. [Google Scholar]
- Idris, A.H.; Che Abdullah, C.A.; Yusof, N.A.; Asmawi, A.A.; Abdul Rahman, M.B. Nanostructured lipid carrier co-loaded with docetaxel and magnetic nanoparticles: Physicochemical characterization and in vitro evaluation. Pharmaceutics 2023, 15, 1319. [Google Scholar] [CrossRef]
- Angelo, T.; El-Sayed, N.; Jurisic, M.; Koenneke, A.; Gelfuso, G.M.; Cunha-Filho, M.; Taveira, S.F.; Lemor, R.; Schneider, M.; Gratieri, T. Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers. Sci. Rep. 2020, 10, 176. [Google Scholar] [CrossRef]
- Liang, D.; Li, F.; Duan, J.; Sun, W.; Yu, X. Two novel hydrate salts of norfloxacin with phenolic acids and their physicochemical properties. Antibiotics 2024, 13, 888. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Yao, J.; Xu, W.; Wang, L.M.; Wang, H.X. Investigation on the quality diversity and quality-FTIR characteristic relationship of sunflower seed oils. RSC Adv. 2019, 9, 27347–27360. [Google Scholar] [CrossRef] [PubMed]
- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A.P. FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Ribeiro, M.D.M.M.; Arellano, D.B.; Grosso, C.R.F. Effect of adding oleic acid to stearic acid in the production of lipid microparticles by spray-cooling: Influence on encapsulation efficiency and release profile. Food Res. Int. 2012, 47, 38–44. [Google Scholar] [CrossRef]
- Andrade, J.; González-Martínez, C.; Chiralt, A. The incorporation of carvacrol into poly(vinyl alcohol) films encapsulated in lecithin liposomes. Polymers 2020, 12, 497. [Google Scholar] [CrossRef]
- Raimi-Abraham, B.T.; Moffat, J.G.; Belton, P.S.; Barker, S.A.; Craig, D.Q.M. Generation and characterization of standardized forms of trehalose dihydrate and their associated solid-state behavior. Cryst. Growth Des. 2014, 14, 4955–4967. [Google Scholar] [CrossRef]
- De Mello, V.A.; Ricci-Júnior, E. Encapsulation of naproxen in nanostructured system: Structural characterization and in vitro release studies. Química Nova 2011, 34, 933–939. [Google Scholar] [CrossRef]
- Bratu, I.; Borodi, G.; Kacsó, I.; Moldovan, Z.; Filip, C.; Dragan, F.; Vasilescu, M.; Simon, S. New solid form of norfloxacin: Structural studies. J. Spectrosc. 2011, 25, 53–62. [Google Scholar] [CrossRef]
- Padhi, S.; Mazumder, R.; Bisht, S. Preformulation screening of lipids using solubility parameter concept in conjunction with experimental research to develop ceftriaxone loaded nanostructured lipid carriers. Braz. J. Pharm. Sci. 2023, 59, e21308. [Google Scholar] [CrossRef]
- Ferreira, E.B.; Da Silva Júnior, W.F.; Pinheiro, J.G.O.; Fonseca, A.G.; Lemos, T.M.A.M.; Rocha, H.A.O.; De Azevedo, E.P.; Mendonça Júnior, F.J.B.; Lima, Á.A.N. Characterization and antiproliferative activity of a novel 2-amino-thiophene derivative–β-cyclodextrin binary system. Molecules 2018, 23, 3130. [Google Scholar] [CrossRef]
- Uner, M. Preparation, characterization and physicochemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): A review. Curr. Drug Deliv. 2006, 3, 241–250. [Google Scholar]
- Araújo, I.S.; Dias, A.G.; Vieira, A.J.L.; Rodrigues, R.R.L.; Melo, C.O.; Rodrigues, K.A.F.; Araújo, R.S.A.; Nayarisseri, A.; Oliveira, E.E.; Mendonça-Junior, F.J.B. Advances in leishmaniasis therapy: Preparation, characterization and in vitro evaluation of poly (lactic acid) polymeric nanoparticles with the drug candidate SB-83. Nanotechnology 2025, 36, 015101. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Tanwar, R.; Brar, A.S.; Gulati, P. Norfloxacin-loaded lipospheres: A novel lipid-based approach for enhanced solubility, stability and bioavailability. J. Neonatal Surg. 2025, 14, 618–632. [Google Scholar] [CrossRef]
- Datta, A.; Kumari, L.; Ghosh, R.; Bag, J.; Roy, S.J. Advancing Norfloxacin Delivery Via Nanoemulsion Technology: Preclinical Insights. BioNanoScience 2026, 16, 30. [Google Scholar] [CrossRef]
- Ortiz, A.C.; Yañez, O.; Salas-Huenuleo, E.; Morales, J.O. Development of a nanostructured lipid carrier (NLC) by a low-energy method: Comparison of release kinetics and molecular dynamics simulation. Pharmaceutics 2021, 13, 531. [Google Scholar] [CrossRef]
- Porbaha, P.; Ansari, R.; Kiafar, M.R.; Bashiry, R.; Khazaei, M.M.; Dadbakhsh, A.; Azadi, A. A comparative mathematical analysis of drug release from lipid-based nanoparticles. AAPS PharmSciTech 2024, 25, 208. [Google Scholar] [CrossRef]
- Almoussalam, M.; Zhu, H. Encapsulation of cancer therapeutic agent dacarbazine using nanostructured lipid carrier. J. Vis. Exp. 2016, 110, 53760. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Pochapski, D.J.; Santos, C.C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef]
- Elmowafy, M.; Ibrahim, H.M.; Ahmed, M.A.; Shalaby, K.; Salama, A.; Hefesha, H. Atorvastatin-loaded nanostructured lipid carriers (NLCs): Strategy to overcome oral delivery drawbacks. Drug Deliv. 2017, 24, 932–941. [Google Scholar] [CrossRef]
- Morakul, S.; Praphanwittaya, P.; Srichana, T. Stability enhancement of cannabidiol-loaded nanostructured lipid carriers using mixed surfactants. Pharmaceutics 2023, 15, 537. [Google Scholar]
- Kumawat, M.; Nabi, B.; Daswani, M.; Viguar, I.; Pal, N.; Sharma, P.; Tiwari, S.; Sarma, D.K.; Shubham, S.; Kumar, M. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microb. Pathog. 2023, 181, 106182. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, J.; Czarnecka, B.; Harmon, D.E.; Ruiz, C. The multidrug efflux pump regulator AcrR directly represses motility in Escherichia coli. mSphere 2023, 8, e00430-23. [Google Scholar] [CrossRef] [PubMed]
- Pasqua, M.; Grossi, M.; Zennaro, A.; Fanelli, G.; Micheli, G.; Barras, F.; Colonna, B.; Prosseda, G. The varied role of efflux pumps of the MFS family in the interplay of bacteria with animal and plant cells. Microorganisms 2019, 7, 285. [Google Scholar] [CrossRef]
- Dlamini, S.; Omolo, C.A.; Elhassan, E.; Ismail, E.A.; Peters, X.Q.; Kassam, S.Z.F.; Gafar, M.A.; Govender, J.; Chemonges, C.C.; Govender, T. Enhancing activity and overcoming ciprofloxacin resistance via multifunctional nanostructured lipid carriers. J. Drug Deliv. Sci. Technol. 2025, 86, 106933. [Google Scholar] [CrossRef]
- Andrade, S.; Ramalho, M.J.; Santos, S.B.; Melo, L.D.R.; Santos, R.S.; Guimarães, N.; Azevedo, N.F.; Loureiro, J.A.; Pereira, M.C. Fighting methicillin-resistant Staphylococcus aureus with targeted nanoparticles. Int. J. Mol. Sci. 2023, 24, 9030. [Google Scholar] [CrossRef]
- Dong, Z.; Xie, S.; Zhu, L.; Wang, Y.; Wang, X.; Zhou, W. Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanoparticles for oral delivery. Drug Deliv. 2011, 18, 441–450. [Google Scholar] [CrossRef]








| Formulations | Stabilizers | Particle Diameter | Polydispersity Index | Macroscopic Aspects |
|---|---|---|---|---|
| F1 | Pluronic® 0.5% | 268 a (±6) | 0.39 d (±0.02) | Presence of agglomerates |
| F2 | PVA 0.5% | 601 b (±6) | 0.33 e (±0.01) | Presence of agglomerates |
| F3 | Tween® 0.5% | 330 (±5) | 0.304 (±0.03) | Presence of agglomerates |
| F4 | Pluronic® 1.0% | 353.4 (±1.7) | 0.198 (±0.01) | Presence of agglomerates |
| F5 | PVA 1.0% | 336.1 (±2.3) | 0.249 (±0.01) | Homogeneous |
| F6 | Tween® 1.0% | 382.1 (±2.9) | 0.304 (±0.01) | Homogeneous |
| F7 | Pluronic® 3.0% | 322.50 (±0.35) | 0.171 (±0.01) | Presence of agglomerates |
| F8 | PVA 3.0% | 407.7 (±1.1) | 0.204 (±0.02) | Presence of agglomerates |
| F9 | Tween® 3.0% | 1283 c (±85) | 0.77 c (±0.02) | Phase separation |
| Formulations | Stearic Acid:Oleic Acid | Particle Diameter | Polydispersity Index |
|---|---|---|---|
| F10 | 70:30 | 473.1 (±4.6) | 0.35 c (±0.02) |
| F11 | 60:40 | 336.1 a (±2.3) | 0.25 (±0.01) |
| F12 | 50:50 | 396.8 b (±3.1) | 0.22 (±0.01) |
| Formulations | Sonication Amplitude/Time | Particle Diameter | Polydispersity Index |
|---|---|---|---|
| F13 | 30%/1 min | 614.0 a (±332) | 0.66 b (±0.18) |
| F14 | 30%/2 min | 404.0 (±209) | 0.42 (±0.11) |
| F15 | 30%/3 min | 238.9 (±9.4) | 0.52 (±0.03) |
| F16 | 30%/4 min | 263.0 (±116) | 0.46 (±0.11) |
| F17 | 30%/5 min | 202.0 (±31) | 0.35 (±0.01) |
| F18 | 50%/1 min | 300.8 (±3.7) | 0.39 (±0.03) |
| F19 | 50%/2 min | 171.9 (±0.9) | 0.220 (±0.006) |
| F20 | 50%/3 min | 170.2 (±1.1) | 0.22 (±0.04) |
| F21 | 50%/4 min | 177.7 (±1.9) | 0.27 (±0.03) |
| F22 | 50%/5 min | 164.9 (±0.32) | 0.18 (±0.01) |
| F23 | 70%/1 min | 299.6 (±2.3) | 0.21 (±0.01) |
| F24 | 70%/2 min | 214.5 (±3.3) | 0.222 (±0.007) |
| F25 | 70%/3 min | 184.5 (±2.7) | 0.29 (±0.03) |
| F26 | 70%/4 min | 261.8 (±3.6) | 0.30 (±0.03) |
| F27 | 70%/5 min | 206.2 (±1.2) | 0.34 (±0.02) |
| Formulations | Lectin | Particle Diameter | Polydispersity Index |
|---|---|---|---|
| F28 | 15 mg | 276.0 (±16) | 0.341 (±0.008) |
| F29 | 25 mg | 233.4 (±3.5) | 0.25 (±0.01) a |
| F30 | 50 mg | 269.0 (±15) | 0.45 (±0.01) |
| F31 | 100 mg | 298.0 (±39) | 0.50 (±0.14) |
| NLC-Blank | Day 1 | Day 7 | Day 14 | Day 30 | Day 60 | Day 90 |
| Particle diameter | 196 a | 181 a | 180 a | 201 b | 235 | 232 |
| (±1.9) | (±5.2) | (±10) | (±9.2) | (±8.1) | (±3.2) | |
| Polydispersity Index | 0.08 | 0.11 | 0.09 | 0.14 | 0.18 | 0.27 |
| (±0.06) | (±0.08) | (±0.10) | (±0.09) | (±0.08) | (±0.09) | |
| Zeta Potential | −17.5 | −23.2 cf | −25.0 ef | −24.9 e | −28.4 d | −25.1 e |
| (±1.7) | (±0.57) | (±0.97) | (±1.8) | (±1.6) | (±0.47) | |
| NLC10NOR + 106CN | Day 1 | Day 7 | Day 14 | Day 30 | Day 60 | Day 90 |
| Particle diameter | 244 | 250 | 221 b | 216 b | 241 | 349 |
| (±7.4) | (±7.6) | (±1.7) | (±4.6) | (±4.7) | (±125) | |
| Polydispersity Index | 0.32 | 0.31 | 0.26 | 0.14 | 0.28 | 0.38 |
| (±0.00) | (±0.27) | (±0.04) | (±0.11) | (±0.05) | (±0.11) | |
| Zeta Potential | −34.09 dgk | −32.96 dhk | −33.26 dghk | −31.8 dgh | −23.9 cij | −23.9 cij |
| (±0.84) | (±0.91) | (±0.85) | (±2.1) | (±2.6) | (±1.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dias, A.G.; Araújo, I.d.S.; Araújo, R.S.A.d.; Reis, M.M.L.d.; Tintino, C.D.d.M.O.; Tintino, S.R.; Araújo, G.A.d.; Fernandes, P.A.d.S.; Coutinho, H.D.M.; Oliveira, E.E.; et al. Nanostructured Lipid Carriers Containing Norfloxacin and 2-Aminothiophene Derivative Reduces Fluoroquinolone Resistance in Multidrug-Resistant Staphylococcus aureus Strains by Efflux Pump Inhibition. Pharmaceutics 2026, 18, 183. https://doi.org/10.3390/pharmaceutics18020183
Dias AG, Araújo IdS, Araújo RSAd, Reis MMLd, Tintino CDdMO, Tintino SR, Araújo GAd, Fernandes PAdS, Coutinho HDM, Oliveira EE, et al. Nanostructured Lipid Carriers Containing Norfloxacin and 2-Aminothiophene Derivative Reduces Fluoroquinolone Resistance in Multidrug-Resistant Staphylococcus aureus Strains by Efflux Pump Inhibition. Pharmaceutics. 2026; 18(2):183. https://doi.org/10.3390/pharmaceutics18020183
Chicago/Turabian StyleDias, Aléxia Gonçalves, Izabele de Souza Araújo, Rodrigo Santos Aquino de Araújo, Malu Maria Lucas dos Reis, Cícera Datiane de Morais Oliveira Tintino, Saulo Relison Tintino, Gildênia Alves de Araújo, Priscilla Augusta de Sousa Fernandes, Henrique Douglas Melo Coutinho, Elquio Eleamen Oliveira, and et al. 2026. "Nanostructured Lipid Carriers Containing Norfloxacin and 2-Aminothiophene Derivative Reduces Fluoroquinolone Resistance in Multidrug-Resistant Staphylococcus aureus Strains by Efflux Pump Inhibition" Pharmaceutics 18, no. 2: 183. https://doi.org/10.3390/pharmaceutics18020183
APA StyleDias, A. G., Araújo, I. d. S., Araújo, R. S. A. d., Reis, M. M. L. d., Tintino, C. D. d. M. O., Tintino, S. R., Araújo, G. A. d., Fernandes, P. A. d. S., Coutinho, H. D. M., Oliveira, E. E., & Mendonça-Junior, F. J. B. (2026). Nanostructured Lipid Carriers Containing Norfloxacin and 2-Aminothiophene Derivative Reduces Fluoroquinolone Resistance in Multidrug-Resistant Staphylococcus aureus Strains by Efflux Pump Inhibition. Pharmaceutics, 18(2), 183. https://doi.org/10.3390/pharmaceutics18020183

