Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = emulsion-asphalt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4450 KiB  
Article
Performance Evaluation of Waterborne Epoxy Resin-Reinforced SBS, Waterborne Acrylate or SBR Emulsion for Road
by Hao Fu and Chaohui Wang
Coatings 2025, 15(7), 787; https://doi.org/10.3390/coatings15070787 - 3 Jul 2025
Viewed by 331
Abstract
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of [...] Read more.
To obtain waterborne polymer-modified emulsified asphalt materials with better comprehensive performance, waterborne polymer modifiers including waterborne epoxy resin (WER)-reinforced styrene–butadiene–styrene block copolymer (SBS), waterborne acrylate (WA) or styrene butadiene rubber (SBR) emulsion were prepared. The mechanical strength, toughness, adhesion and impact resistance of these waterborne polymers were evaluated. Furthermore, the correlation between the performance indicators of the waterborne polymers was analyzed. Based on Fourier transform infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis, the mechanism of WER-modified SBS and WA was characterized. The results show that adding 10%–15% WER can significantly improve the mechanical properties of the waterborne polymer. The performances of modified SBS and WA are better than that of modified SBR. When the content of WER is 10%, the tensile strength, elongation at break and pull-off strength of WER-modified SBS and WA are 4.80–6.38 MPa, 476.3%–579.6% and 1.62–1.70 MPa, respectively. The mechanical strength and breaking energy of the waterborne polymers show a significant linear correlation with their application properties such as adhesion, bonding and impact resistance. FTIR and TG analyses indicate that WER-modified SBS or WA prepared via emulsion blending undergo primarily physical modifications, enhancing thermal stability while promoting crosslinking and curing. Full article
(This article belongs to the Special Issue Green Asphalt Materials—Surface Engineering and Applications)
Show Figures

Figure 1

22 pages, 8830 KiB  
Article
Evaluation of the Grading and Morphology of Recycled Asphalt Pavement Clusters Using the Emulsification–Separation Disposal Method
by Peiliang Cong and Kexuan Yu
Appl. Sci. 2025, 15(13), 7375; https://doi.org/10.3390/app15137375 - 30 Jun 2025
Viewed by 236
Abstract
This study proposes a method for separating asphalt and aggregates in recycled asphalt pavement (RAP) materials using surfactants as solvents. This method utilizes surfactants to soften the asphalt by reducing its surface tension, separating the RAP clusters, and washing away the asphalt from [...] Read more.
This study proposes a method for separating asphalt and aggregates in recycled asphalt pavement (RAP) materials using surfactants as solvents. This method utilizes surfactants to soften the asphalt by reducing its surface tension, separating the RAP clusters, and washing away the asphalt from the RAP. The wastewater is recycled during the emulsification–separation process without discharge. Factors affecting the separation effect of RAP, including the type of anionic surfactants, the surfactant concentration, the emulsion-to-RAP ratio, temperature, the rotation rate and time, and the RAP’s particle size, were investigated in depth, and the separation effect and its influence on the aggregate properties were evaluated. The experimental results indicate that when using the optimal process to mix and treat 13.2 mm and 9.5 mm RAP clusters, it is possible to achieve 100% separation of the coarse RAP above 4.75 mm, with a 64.58% reduction in the asphalt content. The angularity of the aggregate remained unchanged after separation. It was observed from scanning electron microscopy (SEM) images that the asphalt on the surface of the coarse aggregate had been eluted, and the morphology of the aggregate surface was completely exposed. This environmentally friendly separation method provides new possibilities for high-content RAP recycling in pavement engineering. Full article
Show Figures

Figure 1

22 pages, 8920 KiB  
Article
Microscopic Mechanisms and Pavement Performance of Waterborne Epoxy Resin-Modified Emulsified Asphalt
by Fan Yang, Fang Yu, Hongren Gong, Liming Yang, Qian Zhou, Lihong He, Wanfeng Wei and Qiang Chen
Materials 2025, 18(12), 2825; https://doi.org/10.3390/ma18122825 - 16 Jun 2025
Viewed by 392
Abstract
To address the deficiencies of traditional emulsified asphalt-pavement maintenance material in cohesive strength, high-temperature rutting resistance, as well as adhesion to aggregates, this study developed waterborne epoxy resin-modified emulsified asphalt (WEA) binders using a two-component waterborne epoxy resin (WER) and systematically investigated their [...] Read more.
To address the deficiencies of traditional emulsified asphalt-pavement maintenance material in cohesive strength, high-temperature rutting resistance, as well as adhesion to aggregates, this study developed waterborne epoxy resin-modified emulsified asphalt (WEA) binders using a two-component waterborne epoxy resin (WER) and systematically investigated their modification mechanisms and pavement performance. The results indicated that WER emulsions and curing agents could polymerize to form epoxy resin within the emulsified asphalt dispersion medium, with the modification process dominated by physical interactions. When the WER content exceeded 12%, a continuous modifier network structure was established within the emulsified asphalt. The epoxy resin formed after curing could significantly increase the polarity component of the binder, thereby increasing the surface free energy. The linear viscoelastic range of the WEA binder exhibited a negative correlation with the dosage of the WER modifier. Notably, when the WER content exceeded 6%, the high-temperature stability (rutting resistance and elastic recovery performance) of the binder was significantly enhanced. Concurrently, stress sensitivity and frequency dependence gradually decrease, demonstrating superior thermomechanical stability. Furthermore, WER significantly enhanced the interfacial interaction and adhesion between the binder and aggregates. However, the incorporation of WER adversely affects the low-temperature cracking resistance of the binder, necessitating strict control over its dosage in practical applications. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

27 pages, 7784 KiB  
Article
Performance and Mechanism Analysis of an Anti-Skid Wear Layer of Active Slow-Release Ice–Snow Melting Modified by Gels
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Haobo Yan and Qi Chen
Gels 2025, 11(6), 449; https://doi.org/10.3390/gels11060449 - 11 Jun 2025
Viewed by 535
Abstract
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate [...] Read more.
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate with salt-storing ceramsite in SMA-10 graded mixtures (0–80% content), we systematically evaluate its mechanical performance and de-icing functionality. The experimental results demonstrate that 40% salt-storing ceramsite content optimizes high-temperature stability while maintaining acceptable low-temperature performance and water resistance. Microstructural analysis reveals that silicone–acrylic emulsion forms a hydrophobic film on ceramsite surfaces, enabling uniform salt distribution and sustained release. The optimal 10% gel modification achieves effective salt retention and controlled release through pore-structure regulation. These findings establish a 40–60% salt-storing ceramsite content range as the practical range for winter pavement applications, offering insights into the design of durable snow-melting asphalt surfaces. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

17 pages, 1228 KiB  
Article
Dynamic Modulus Regression Models for Cold Recycled Asphalt Mixtures
by João Meneses, Kamilla Vasconcelos, Kazuo Kuchiishi and Liedi Bernucci
Infrastructures 2025, 10(6), 143; https://doi.org/10.3390/infrastructures10060143 - 10 Jun 2025
Viewed by 322
Abstract
Cold recycling is an advantageous technique from economic and environmental perspectives for asphalt pavement rehabilitation, interventions, and maintenance. This work covered the investigation of dynamic modulus (|E*|) test models and their effects on cold recycled asphalt mixture (CRAM) |E*| data fitting, considering different [...] Read more.
Cold recycling is an advantageous technique from economic and environmental perspectives for asphalt pavement rehabilitation, interventions, and maintenance. This work covered the investigation of dynamic modulus (|E*|) test models and their effects on cold recycled asphalt mixture (CRAM) |E*| data fitting, considering different mixture parameters such as asphalt binder type and content, active filler type and content, aggregate gradation, reclaimed asphalt pavement content, and curing conditions. Multiple mixtures from a dynamic modulus test database were fitted using six different regression models and the results were analyzed by means of different residuals analysis. Finally, the effects of CRAM composition on |E*| data were graphically assessed. For the analyzed specimens, two models were found to be the most adequate for CRAM’s |E*| data regression. The analysis of CRAM composition showed a strong relation between the compaction method and the stiffness of CRAMs. Full article
Show Figures

Figure 1

22 pages, 5134 KiB  
Article
A Study on the Fracture Properties of Cement Asphalt Emulsion Mixture Based on the SCB Test
by Yunliang Li, Qichen Wang, Xu Li, Yue Zhao, Wenyang Yu, Baocheng Liu and Yiqiu Tan
Materials 2025, 18(9), 1967; https://doi.org/10.3390/ma18091967 - 25 Apr 2025
Viewed by 438
Abstract
Cement asphalt emulsion mixture (CAEM) is a composite material composed of asphalt emulsion, cement, and graded aggregates. Currently, CAEM is primarily applied as a base course material for highways to improve the cracking resistance of pavement structures. To achieve this goal, the fracture [...] Read more.
Cement asphalt emulsion mixture (CAEM) is a composite material composed of asphalt emulsion, cement, and graded aggregates. Currently, CAEM is primarily applied as a base course material for highways to improve the cracking resistance of pavement structures. To achieve this goal, the fracture performance of CAEM plays a crucial role. Experimental studies have demonstrated that the fracture behavior of CAEM exhibits a significant correlation with the amount of asphalt emulsion and binder used. The influence of asphalt emulsion and binder content on the fracture parameters of CAEM was investigated through semi-circular bending (SCB) tests, combined with analyses of peak load and fracture energy. Furthermore, the influences of temperature, loading rate, and notch depth on fracture performance were evaluated. The microstructure of the cured binder was characterized by scanning electron microscopy (SEM), while the deformation behavior of CAEM was assessed through creep tests. The experimental results indicate that, to ensure satisfactory fracture resistance in CAEM, the optimal content of asphalt emulsion should be controlled within the range of 2.0~3.0%, with a corresponding binder content of 6.0%. This study provides theoretical and practical guidance for the material design optimization of CAEM, with a specific focus on enhancing fracture resistance performance. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 5648 KiB  
Article
Performance Evaluation of Highly Modified Asphalt-Based Binders in High Friction Surface Treatment: Comparative Study with Epoxy-Based System
by Alireza Roshan, Magdy Abdelrahman and Mohyeldin Ragab
Buildings 2025, 15(9), 1425; https://doi.org/10.3390/buildings15091425 - 23 Apr 2025
Cited by 1 | Viewed by 380
Abstract
High Friction Surface Treatments (HFSTs) are frequently used to increase skid resistance and reduce collisions, particularly in crash-prone zones, including horizontal curves and intersections. Epoxy-based binders traditionally have been the sole option for HFSTs, but their drawbacks, such as high costs and compatibility [...] Read more.
High Friction Surface Treatments (HFSTs) are frequently used to increase skid resistance and reduce collisions, particularly in crash-prone zones, including horizontal curves and intersections. Epoxy-based binders traditionally have been the sole option for HFSTs, but their drawbacks, such as high costs and compatibility challenges, have led to the search for substitute binders, including asphalt-based options. This study investigates the comparative performance of highly modified asphalt-based binders, including polymer-modified, mastic, and highly modified emulsions, in HFST applications using two aggregate types, Calcined Bauxite (CB) and Rhyolite with different gradations, with an emphasis on their frictional properties, durability, and resistance to polishing. Laboratory evaluations, including the Pendulum Tester (BPT), Dynamic Friction Testing Equipment (DFT), Surface Texture Measurement Apparatus (CTM), and Binder Bond Strength Test (BBS), were carried out to examine the Coefficient of Friction (COF), Mean Profile Depth (MPD), and aggregate bonding and retention. In terms of durability and friction, this study indicated that highly modified asphalt-based binders performed better than PG binders and conventional emulsions. The highest BPT values, both prior to and following polishing, were consistently observed for CB, with the emulsion containing the highest reactive polymer modifier showing the smallest decrease in BPT value (12.86% for CB and 10.34% for Rhyolite). Epoxy showed a greater COF retention over lengthy polishing cycles; however, highly polymer-modified (PM) binders like PG82-22 (PM) performed better than Epoxy under specific conditions. The macrotexture analysis revealed that Epoxy-based samples retained surface texture for further polishing cycles, while Mastic2 and PG82-22 (PM) also showed strong MPD retention. These findings highlight the importance of optimizing aggregate–binder combinations to ensure durable and effective HFST applications. Full article
(This article belongs to the Special Issue New Technologies for Asphalt Pavement Materials and Structures)
Show Figures

Figure 1

19 pages, 2114 KiB  
Article
Establishing Particle Size Recommendations for Cationic Asphalt Emulsions
by Tanner Turben, Pedro Diaz-Romero and Andrew Braham
Constr. Mater. 2025, 5(2), 26; https://doi.org/10.3390/constrmater5020026 - 21 Apr 2025
Viewed by 511
Abstract
Asphalt emulsions are used in flexible pavement maintenance and rehabilitation treatments. Emulsion specifications for material characterization are based on testing methodology dating to the 1930s. Newer test methods, including particle size analysis (PSA) of binder droplets in emulsion, have been explored but not [...] Read more.
Asphalt emulsions are used in flexible pavement maintenance and rehabilitation treatments. Emulsion specifications for material characterization are based on testing methodology dating to the 1930s. Newer test methods, including particle size analysis (PSA) of binder droplets in emulsion, have been explored but not implemented into specifications. The objective of this study is to observe the particle size and performance of cationic slow-setting (CSS) emulsions and establish baseline particle size recommendations for cationic emulsions. Four physical property tests (residue, oversize particles, viscosity, and particle size) and two cold mix asphalt performance tests (indirect tensile strength (IDT) and direct shear test (DST)) were conducted on two emulsions (CSS-1 and CSS-1H) over a six-month period. The physical properties of both emulsions were acceptable, and median particle size of the CSS-1H was approximately 3 microns larger than the CSS-1. The IDT strength and DST shear strength of the CSS-1H were higher than of the CSS-1. Recommendations for particle size were proposed by defining maximum limits on median, d10, d90, and span. It is recommended that the maximum median (d50) size of CSS emulsions is 6.0 microns. Future research is needed to standardize PSA procedures, assess recommendations for a wider range of emulsions, and evaluate applicability of minimum particle size limits. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

15 pages, 6157 KiB  
Article
Preliminary Characterization of Lignin-Modified Binder for Half-Warm-Mix Asphalt
by Ana M. Rodríguez Pasandín, Pablo Orosa Iglesias, Ignacio Pérez Pérez and Ana M. Rodríguez-Alloza
Polymers 2025, 17(8), 1019; https://doi.org/10.3390/polym17081019 - 9 Apr 2025
Viewed by 550
Abstract
There is a growing trend to promote circular economy practices and reduce petroleum-derived product consumption in the paving sector. In this context, a liquid lignin-rich industrial waste was incorporated at 0% (control), 5%, 10%, 15%, and 20% into a bitumen emulsion to manufacture [...] Read more.
There is a growing trend to promote circular economy practices and reduce petroleum-derived product consumption in the paving sector. In this context, a liquid lignin-rich industrial waste was incorporated at 0% (control), 5%, 10%, 15%, and 20% into a bitumen emulsion to manufacture a lignin-based biobinder for half-warm-mix asphalt (HWMA). The mix of the bitumen emulsion and the industrial waste was made using an Ultra-turrax device, with the final mixing temperature monitored using a thermographic camera. Microstructure analysis was conducted using scanning electron microscopy (SEM). The bitumen was extracted and characterized using needle penetration tests at several temperatures. Additionally, the ring-and-ball softening point, penetration index, and ductility were assessed. Incorporating up to 5% of lignin-rich industrial waste led to a lignin-based biobinder that could be used for a more sustainable and bitumen-efficient HWMA production. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

21 pages, 5465 KiB  
Article
Effects of Untreated Waste Lignin as a Sustainable Asphalt Emulsion Substitute on Water Resistance and Environmental Impacts in Reclaimed Half-Warm Asphalt Mixtures
by Ana María Rodríguez Pasandín, Pablo Orosa, Ana María Rodríguez-Alloza, Edoardo Nardi and Natalia Pérez-Barge
Coatings 2025, 15(3), 304; https://doi.org/10.3390/coatings15030304 - 5 Mar 2025
Cited by 1 | Viewed by 1399
Abstract
Polymers are known to produce beneficial effects on asphalt mixtures, and lignin biopolymers could further improve them while contributing to sustainability and circularity. In this research, conventional asphalt emulsion was replaced with liquid waste containing lignin from the wood industry in half-warm mix [...] Read more.
Polymers are known to produce beneficial effects on asphalt mixtures, and lignin biopolymers could further improve them while contributing to sustainability and circularity. In this research, conventional asphalt emulsion was replaced with liquid waste containing lignin from the wood industry in half-warm mix asphalt (HWMA) at varying substitution levels of 0% (control), 5%, 10%, 15%, and 20%. Additionally, 100% reclaimed asphalt pavement (RAP) was used as aggregate. The impact of asphalt emulsion substitution on the mixtures’ adhesion, cohesion, and water resistance was analyzed. Indirect tensile strength tests evaluated the HWMA’s resistance to moisture damage and ductility. Rolling bottle and boiling water tests were conducted to assess the binder-aggregate affinity. Moreover, a Life Cycle Assessment (LCA) was performed to compare the environmental benefits of HWMA with those of Hot Mix Asphalt (HMA). The findings revealed that substituting asphalt emulsion with the waste lignin up to 15% enhances the mixture’s cohesion, while only substitutions up to 5% produce mixtures with enhanced water resistance. Environmental impacts were significantly reduced for all the HWMA studied, with the Global Warming Potential (GWP) showing up to 33.5% reduction compared to a conventional HMA. Full article
(This article belongs to the Special Issue Recent Research in Asphalt and Pavement Materials)
Show Figures

Figure 1

20 pages, 5479 KiB  
Article
Study on the Micro-Surfacing Properties of SBR Modified Asphalt Emulsion with Reclaimed Asphalt Pavement
by Di Yu, Junchi Luo, Huan Lang, Fang Hua, Yongyong Yang and Meng Xie
Materials 2025, 18(4), 802; https://doi.org/10.3390/ma18040802 - 12 Feb 2025
Cited by 1 | Viewed by 858
Abstract
With the updates and differences in the usage of reclaimed asphalt pavement (RAP) separation technology, the production of fine-particle RAP exceeds their usage, resulting in an excess of fine-particle RAP. How to apply this excess RAP on a large scale in micro-surfacing technology [...] Read more.
With the updates and differences in the usage of reclaimed asphalt pavement (RAP) separation technology, the production of fine-particle RAP exceeds their usage, resulting in an excess of fine-particle RAP. How to apply this excess RAP on a large scale in micro-surfacing technology has become a challenge. This study aims to investigate the advantages and disadvantages of incorporating RAP into micro-surfacing. To this end, a mix design process for RAP-containing micro-surfacing, based on the current gradation design procedure and existing research findings, is proposed. The study examines the influence of six different RAP contents, as well as the effects of SBR emulsified asphalt, added water, and RAP on the micro-surfacing mix design. Subsequently, the effects of RAP content on the pavement performance of micro-surfacing are evaluated through rutting deformation rate, wet wheel abrasion, and British pendulum tests. Finally, an economic analysis from a construction perspective is conducted. The results indicate that the optimized mix design process meets specific usage requirements and is effective for RAP-containing micro-surfacing. The mix design results show that the addition of RAP reduces the asphalt demand and mixing time of slurry mixtures. Increasing the amount of added water can meet mixing requirements, but it leads to a reduction in early strength. As the RAP content increases, skid resistance improves, with a maximum increase of 14.9%; the rutting deformation rate increases, and this is the main factor limiting the RAP content, restricting it to no more than 40%; water damage resistance shows an initial increase followed by a decrease, but this does not affect the RAP content. Therefore, the maximum RAP content is limited to 40% without the addition of other additives, mainly due to the phenomenon of weak agglomeration in RAP. Finally, cost calculations show that incorporating 40% RAP can save approximately 17% of the construction costs. Full article
Show Figures

Figure 1

17 pages, 3846 KiB  
Article
Performance Evaluation of Recycled Fibers in Asphalt Mixtures
by Fabricio Leiva-Villacorta and Alvaro Cerdas-Murillo
Constr. Mater. 2024, 4(4), 839-855; https://doi.org/10.3390/constrmater4040045 - 18 Dec 2024
Cited by 1 | Viewed by 1524
Abstract
This study presents the results of using innovative and sustainable recycled fibers in different asphalt mixtures. Laboratory design and performance evaluation were focused on the cracking and rutting resistance of asphalt mixtures reinforced with recycled fibers. Two mixtures were designed for this research: [...] Read more.
This study presents the results of using innovative and sustainable recycled fibers in different asphalt mixtures. Laboratory design and performance evaluation were focused on the cracking and rutting resistance of asphalt mixtures reinforced with recycled fibers. Two mixtures were designed for this research: 1. A dense-graded hot-mix asphalt (HMA) mixture containing 15% reclaimed asphalt pavement (RAP) and a PG 64-22 asphalt binder. 2. A cold-recycled mixture (CRM) incorporating silica fume and Portland cement as a mineral filler and CSS-1H asphalt emulsion. The recycled fibers used in this study included PET, LDPE, and carbon and rubber fibers. A balanced mix design (BMD) approach based on cracking and rutting performance parameters was used to design the control mixtures. The IDEAL-CT (ASTM D8225) was conducted to assess the cracking resistance, and the IDEAL-RT (ASTM D8360) was applied for rutting resistance. For the HMA mixture, results showed that the addition of PET, carbon, and rubber fibers enhanced cracking resistance and influenced the rutting resistance; ANOVA analyses revealed statistically significant differences in both CT index and RT index between the control mixture and the fiber-reinforced mixtures. In the case of the cold-recycled mixtures, the addition of LDPE, PET, and rubber improved cracking resistance; however, a decrease in rutting resistance was also observed among the evaluated CRM samples. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

21 pages, 22949 KiB  
Article
Development of Sustainable Cement Asphalt Mortar Using Agricultural Waste-Derived Bio-Oil and Latex–Acrylic Polymers for Enhanced Durability
by Yeong-Min Kim, Kyungnam Kim and Tri Ho Minh Le
Polymers 2024, 16(22), 3210; https://doi.org/10.3390/polym16223210 - 19 Nov 2024
Viewed by 1231
Abstract
Cement Asphalt Mortar (CAM) is widely applied in infrastructure, particularly in railways, bridge expansion joints, and pavements, due to its combination of cement’s load-bearing capacity and asphalt’s flexibility. Conventional CAM formulations, however, often encounter challenges such as extended setting times, high shrinkage, and [...] Read more.
Cement Asphalt Mortar (CAM) is widely applied in infrastructure, particularly in railways, bridge expansion joints, and pavements, due to its combination of cement’s load-bearing capacity and asphalt’s flexibility. Conventional CAM formulations, however, often encounter challenges such as extended setting times, high shrinkage, and limited durability under extreme environmental conditions. This study addresses these limitations by integrating bio-oil and polymer additives to enhance both the sustainability and performance of CAM mixtures. CAM mixtures were evaluated with cement-to-asphalt emulsion (C/AE) mass ratios of 75:25 and 50:50, incorporating bio-oil contents of 2% and 4% by mass and latex–acrylic polymer proportions ranging from 1% to 2% by mass. The optimized mix design, with a 75:25 cement-to-asphalt emulsion (C/AE) mass ratio, 2% bio-oil, and 1.5% polymer, improved flowability by 25%. This formulation achieved a flow diameter of approximately 205 mm and reduced the flow time to 72 s. Compressive strength tests indicated that this formulation reached an early-stage strength of 10.45 MPa (a 20.8% improvement over the control) and a 28-day strength of 24.18 MPa. Thermal stability tests at 45 °C demonstrated that the optimized CAM retained 86.6% of its compressive strength, compared to a 25% reduction in unmodified mixtures. Chemical resistance assessments in 5% sulfuric acid and 5% sodium hydroxide solutions showed strength retention of 95.03% and 91.98%, respectively, outperforming control mixtures by 17% and 13%. SEM examination revealed a dense, cohesive microstructure, reducing shrinkage to 0.01% from 0.15% in the control. These findings underscore the potential of bio-oil and latex–acrylic polymers to improve the performance and sustainability of CAM mixtures, making them well suited for resilient, rapid-setting infrastructure applications. Full article
Show Figures

Figure 1

30 pages, 11305 KiB  
Article
Optimisation and Composition of the Recycled Cold Mix with a High Content of Waste Materials
by Przemysław Buczyński and Jakub Krasowski
Sustainability 2024, 16(22), 9624; https://doi.org/10.3390/su16229624 - 5 Nov 2024
Cited by 2 | Viewed by 1154
Abstract
This research focuses on a mineral–cement mixture containing bitumen emulsion, designed for cold recycling procedures, the formulation of which includes 80% (m/m) of waste material. Deep cold recycling technology from the MCE mixture guarantees the implementation of a sustainable development policy in the [...] Read more.
This research focuses on a mineral–cement mixture containing bitumen emulsion, designed for cold recycling procedures, the formulation of which includes 80% (m/m) of waste material. Deep cold recycling technology from the MCE mixture guarantees the implementation of a sustainable development policy in the field of road construction. The utilised waste materials include 50% (m/m) reclaimed asphalt pavement (RAP) from damaged asphalt layers and 30% (m/m) recycled aggregate (RA) sourced from the substructure. In order to assess the possibility of using a significant amount of waste materials in the composition of the mineral–cement–emulsion (MCE) mixture, it is necessary to optimise the MCE mix. Optimisation was carried out with respect to the quantity and type of binding agents, such as Portland cement (CEM), bitumen emulsion (EMU), and redispersible polymer powder (RPP). The examination of the impact of the binding agents on the physico-mechanical characteristics of the MCE blend was performed using a Box–Behnken trivalent fractional design. This method has not been used before to optimise MCE mixture composition. This is a novelty in predicting MCE mixture properties. Examinations of the physical properties, mechanical properties, resistance to the effects of climatic factors, and stiffness modulus were conducted on Marshall samples prepared in laboratory settings. Mathematical models determining the variability of the attributes under analysis in correlation with the quantity of the binding agents were determined for the properties under investigation. The MCE mixture composition was optimised through the acquired mathematical models describing the physico-mechanical characteristics, resistance to climatic factors, and rigidity modulus. The optimisation was carried out through the generalised utility function UIII. The optimisation resulted in indicating the proportional percentages of the binders, enabling the assurance of the required properties of the cold recycled mix while utilising the maximum quantity of waste materials. Full article
Show Figures

Figure 1

31 pages, 30206 KiB  
Article
Fabrication of High-Performance Asphalt Mixture Using Waterborne Epoxy-Acrylate Resin Modified Emulsified Asphalt (WEREA)
by Dongwei Chen, Hao Wu, Xiaobao Chen, Yiqun Zhan and Surajo Abubakar Wada
Polymers 2024, 16(19), 2743; https://doi.org/10.3390/polym16192743 - 27 Sep 2024
Cited by 5 | Viewed by 1460
Abstract
Existing research shows that using waterborne epoxy resin (WER) instead of emulsified asphalt as the binder for cold mix asphalt (CMA) can enhance the rutting resistance, high-temperature performance, fracture performance, and early performance of CMA. In order to eliminate the potential drawbacks such [...] Read more.
Existing research shows that using waterborne epoxy resin (WER) instead of emulsified asphalt as the binder for cold mix asphalt (CMA) can enhance the rutting resistance, high-temperature performance, fracture performance, and early performance of CMA. In order to eliminate the potential drawbacks such as insufficient strength and low-temperature performance of CMA during application, a novel method was proposed in this study for the preparation of waterborne epoxy-acrylate resin (WER), specifically tailored to modify emulsified asphalt, resulting in waterborne epoxy-acrylate resin emulsified asphalt (WEREA). The modification effect of WER on emulsified asphalt was evaluated through rheological tests and direct tensile tests. A modified design method based on the conventional Marshall design method was proposed to determine the optimal mix proportions, including the key parameters of specimen compaction and curing. The results revealed that the incorporation of WER led to a substantial improvement in the complex shear modulus and a concurrent decrease in the phase angle. When the temperature exceeded 60 °C, the phase angle exhibited a diminishing trend, indicative of a reduced viscosity as temperatures escalated. As the WER content increased, a decrease in the direct tensile strain rate was observed, accompanied by a substantial elevation in direct tensile strength. At various stress levels, the shear strain of WEREA decreases with increased content of WER, indicating that the incorporation of WER can enhance the hardness of emulsified asphalt and improve its deformation resistance. The results from MSCR tests indicate that WER could significantly improve the elasticity and hardness of emulsified asphalt, transitioning it from a viscoelastic material to an elastic material, thereby improving its deformation resistance, resistance to rutting, and high-temperature performance. The results of fatigue life are consistent with those of the amplitude sweep, both reflecting the improvement of resistance to deformation of emulsified asphalt by WER. This indicates that WER has a significant improving effect on the fatigue resistance of emulsified asphalt. Furthermore, the Marshall design tests further confirmed the advantages of WEREA in asphalt mixtures. The optimal preparation for the WEREA mixture was proposed as follows: double-sided compaction for 50 times each, aging at 60 °C for 48 h, optimal moisture content of 5.14%, cement content of 2.5%, and emulsion content of 8.4%. The optimal mix proportions identified through these tests yielded asphalt mixtures with significantly improved stability, reduced flow value, and enhanced rutting resistance compared to the hot-mix asphalt mixture (HMA) of AC-16. These findings suggest that WEREA has the potential to significantly enhance the durability and longevity of asphalt pavements. For future applications, it can be explored for use in producing cold recycled asphalt mixtures. In addition to designing the WEREA mixture according to AC-16 gradation, consideration can also be given to using a gradation with a smaller nominal maximum aggregate size for the application in the surface layer or ultra-thin wearing course. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

Back to TopTop