Dynamic Modulus Regression Models for Cold Recycled Asphalt Mixtures
Abstract
:1. Introduction and Background
2. Materials and Methods
2.1. Materials
2.2. Method
2.3. Statistical Analysis
3. Results and Discussions
Further Residuals Assessment
4. Effects of CRAM Composition on |E*| Data
5. Summary and Conclusions
- For the specimens evaluated in this study, the Generalized Sigmoidal model and CAM-modified model have been shown to best fit the CRAM’s |E*| test results. Even when the residual analysis has pointed to the selection of another model as the most adequate, both models were still a reliable option for modeling the results without compromising the quality of the regression data. After the analysis of 35 specimens, the Generalized Sigmoidal model was considered the most adequate fit in 51.4% of cases, followed by the Modified CAM model in 31.4% of the cases.
- The Generalized Sigmoidal model and the CAM-modified model were selected as the best models regardless of the aggregate gradations, binder type/content, air void content, RAP content, triaxial resilient modulus (TxRM) values range, active filler type, and curing time. These factors seem to not affect the model selection.
- The residuals graphical analysis of the Generalized Sigmoidal and CAM-modified modeled specimens’ data was satisfactory since it presented a random variation around zero. Therefore, these are acceptable models for fitting CRAM’s |E*| test values.
- The specimen’s compaction method presented a substantial influence on the mechanical behavior of the mixtures. The |E*| test data showed a stiffness increase when high-energy impact methods were used, such as the modified Proctor. This was probably caused by the greater interlocking of the aggregate skeleton, and consequent air void content reduction.
- The |E*| test did not seem to provide a satisfactory evaluation of CRAM specimens when only different mixture compositions were assessed for specimens with the same compaction and curing methods. The absence of confining stresses during the |E*| tests may be the reason for that [7].
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkins, A.E.; Lane, B.; Kazmierowski, T. Sustainable Pavements: Environmental, Economic, and Social Benefits of In Situ Pavement Recycling. Transp. Res. Rec. 2008, 2084, 100–103. [Google Scholar] [CrossRef]
- Halles, F.A.; Thenoux, G.Z. Degree of Influence of Active Fillers on Properties of Recycled Mixes with Foamed Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2009, 2095, 127–135. [Google Scholar] [CrossRef]
- Jenkins, K. Cracking Behaviour of Bitumen Stabilised Materials (BSMs): Is There Such a Thing? In Proceedings of the 7th RILEM International Conference on Cracking in Pavements, Delft, The Netherlands, 20–22 June 2012; Scarpas, A., Kringos, N., Al-Qadi, I., Loizos, A., Eds.; RILEM Book Series; Springer: Dordrecht, The Netherlands; pp. 1007–1015.
- Jenkins, K.J.; Collings, D.C. Mix design of bitumen-stabilised materials—South Africa and abroad. Road Mater. Pavement Des. 2017, 18, 331–349. [Google Scholar] [CrossRef]
- Kuchiishi, A.K.; Antão, C.C.S.; Vasconcelos, K.; Bernucci, L.L.B. Influence of viscoelastic properties of cold recycled asphalt mixtures on pavement response by means of temperature instrumentation. Road Mater. Pavement Des. 2019, 20, S710–S724. [Google Scholar] [CrossRef]
- Dias, C.R.C.; Núñez, W.P.; Brito, L.A.T.; Johnston, M.G.; Ceratti, J.A.P.; Wagner, L.L.; Fedrigo, W. Bitumen stabilized materials as pavement overlay: Laboratory and field study. Constr. Build. Mater. 2023, 369, 130562. [Google Scholar] [CrossRef]
- Meneses, J.P.C.; Vasconcelos, K.; Ho, L.L.; Bernucci, L.L.B. Triaxial resilient modulus regression models for cold recycled asphalt mixtures. Road Mater. Pavement Des. 2023, 25 (Suppl. S1), 166–180. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, H.D.; Heitzman, M. Dynamic Modulus and Repeated Load Tests of Cold In-Place Recycling Mixtures Using Foamed Asphalt. J. Mater. Civ. Eng. 2009, 21, 279–285. [Google Scholar] [CrossRef]
- Lin, J.; Hong, J.; Xiao, Y. Dynamic characteristics of 100% cold recycled asphalt mixture using asphalt emulsion and cement. J. Clean. Prod. 2017, 156, 337–344. [Google Scholar] [CrossRef]
- Graziani, A.; Mignini, C.; Bocci, E.; Bocci, M. Complex Modulus Testing and Rheological Modeling of Cold-Recycled Mixtures. J. Test. Eval. 2020, 48, 120–133. [Google Scholar] [CrossRef]
- Cheng, Z.; Kong, F.; Gao, X. Evaluating dynamic modulus of cold in-place recycling mixture with foamed bitumen using field core samples. Constr. Build. Mater. 2024, 448, 138227. [Google Scholar] [CrossRef]
- Betti, G.; Airey, G.; Jenkins, K.; Marradi, A.; Tebaldi, G. Active fillers’ effect on in situ performances of foam bitumen recycled mixtures. Road Mater. Pavement Des. 2017, 18, 281–296. [Google Scholar] [CrossRef]
- Xiao, F.; Yao, S.; Wang, J.; Li, X.; Amirkhanian, S. A literature review on cold recycling technology of asphalt pavement. Constr. Build. Mater. 2018, 180, 579–604. [Google Scholar] [CrossRef]
- Raschia, S.; Mignini, C.; Graziani, A.; Carter, A.; Perraton, D. Effect of gradation on volumetric and mechanical properties of cold recycled mixtures (CRM). Road Mater. Pavement Des. 2019, 20, S740–S754. [Google Scholar] [CrossRef]
- Meneses, J.P.C.; Vasconcelos, K.; Bernucci, L.L.B. Stiffness assessment of cold recycled asphalt mixtures—Aspects related to filler type, stress state, viscoelasticity, and suction, Constr. Build. Mater. 2022, 318, 126003. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Zhang, J.; Xiong, K.; Huang, G.; Hu, Q. Performance evolution mechanism and affecting factors of emulsified asphalt cold recycled mixture performance: A state-of art review. Constr. Build. Mater. 2024, 411, 134545. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, H.; Li, Q.; Wang, Z.; Jin, D. Influence of different aged RAPs on the long-term performance of emulsified asphalt cold recycled mixture. Constr. Build. Mater. 2025, 458, 139680. [Google Scholar] [CrossRef]
- T342-11; Standard Method of Test for Determining Dynamic Modulus of Hot Mix Asphalt (HMA). American Association of State Highway and Transportation Officials—AASHTO: Washington, DC, USA, 2011.
- Vestena, P.M.; Schuster, S.L.; de Almeida, P.O.B., Jr.; Faccin, C.; Specht, L.P.; da Silva Pereira, D. Dynamic modulus master curve construction of asphalt mixtures: Error analysis in different models and field scenarios. Constr. Build. Mater. 2021, 301, 124343. [Google Scholar] [CrossRef]
- Pellinen, T.; Witczak, M.W.; Bonaqusit, R. Master curve construction using sigmoidal fitting function with non-linear least squares optimization technique. In Proceedings of the 15th ASCE Engineering Mechanics Division Conference, American Society of Civil Engineers, New York, NY, USA, 2–5 June 2002; pp. 82–101. [Google Scholar]
- Seo, Y.; El-Haggan, O.; King, M.; Lee, S.J.; Kim, Y.R. Air Void Models for the Dynamic Modulus, Fatigue Cracking, and Rutting of Asphalt Concrete. J. Mater. Civ. Eng. 2007, 19, 874–883. [Google Scholar] [CrossRef]
- Rowe, G.M.; Baumgardner, G.; Sharrock, M.J. A generalized logistic function to describe the master curve stiffness properties of binder mastics and mixtures. In Proceedings of the 45th Petersen Asphalt Research Conference, Laramie, WY, USA, 14–16 July 2008. [Google Scholar]
- R84-17; Standard Practice for Developing Dynamic Modulus Master Curves for Asphalt Mixtures Using the Asphalt Mixture Performance Tester (AMPT). American Association of State Highway and Transportation Officials—AASHTO: Washington, DC, USA, 2017.
- Christensen, D.W. Analysis of creep data from indirect tension test on asphalt concrete. J. Assoc. Asph. Paving Technol. 1998, 67, 458–492. [Google Scholar]
- Zeng, M.; Bahia, H.U.; Zhai, H.; Anderson, M.R.; Turner, P. Rheological modeling of modified asphalt binders and mixtures (with discussion). J. Assoc. Asph. Paving Technol. 2001, 70, 403–441. [Google Scholar]
- Falchetto, A.C.; Moon, K.H.; Wang, D.; Par, H. A modified rheological model for the dynamic modulus of asphalt mixtures. Can. J. Civ. Eng. 2021, 48, 328–340. [Google Scholar] [CrossRef]
- Sayegh, G. Variation des Modules de Quelques Bitumes purs et Bétons Bitumineux. Ph.D. Dissertation, Faculté des Sciences de l’université de Paris, Paris, France, 1965. (In French). [Google Scholar]
- Havriliak, S.; Negami, S. A Complex Plane Analysis of α-Dispersions in some Polymer Systems. J. Polym. Sci. Part C 1966, 14, 99–117. [Google Scholar] [CrossRef]
- Olard, F.; Di Benedetto, H. General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes, Road Mater. Pavement Des. 2003, 4, 185–224. [Google Scholar] [CrossRef]
- Adam, Y.E. Asphalt Concrete Characterization Using the complex Modulus Technique. Master’s Thesis, Ottawa-Carleton Institute for Civil Engineering, Carleton University, Ottawa, ON, Canada, 2005. [Google Scholar]
- Biswas, K.G.; Pellinen, T.K. Practical Methodology of Determining the In Situ Dynamic (Complex) Moduli for Engineering Analysis. J. Mater. Civ. Eng. 2007, 19, 508–514. [Google Scholar] [CrossRef]
- Ping, W.V.; Xiao, Y. A Comparative Study of Laboratory Measured and Predicted Dynamic Modulus for Characterizing Florida Asphalt Mixtures. In Proceedings of the Airfield and Highway Pavements: Efficient Pavements Supporting Transportation’s Future, Bellevue, DC, USA, 15–18 October 2008. [Google Scholar]
- Kuna, K.; Gottumukkala, B. Viscoelastic characterization of cold recycled bituminous mixtures. Constr. Build. Mater. 2019, 199, 298–306. [Google Scholar] [CrossRef]
- Behera, A.; Charmot, S.; Asif, A.; Krishnan, J.M. Influence of Confinement Pressure on the Mechanical Response of Emulsified Cold-Recycled Mixtures. J. Mater. Civ. Eng. 2021, 33, 04021297. [Google Scholar] [CrossRef]
- Kuchiishi, A.K.; Vasconcelos, K.; Bernucci, L.L.B. Effect of mixture composition on the mechanical behavior of cold recycled asphalt mixtures. Int. J. Pavement Eng. 2021, 22, 984–994. [Google Scholar] [CrossRef]
- Meneses, J.P.C.; Vasconcelos, K.; Bernucci, L.L.B.; Hajj, E. Compaction methods of Cold Recycled Asphalt Mixtures and their effects on pavement analysis. Road Mater. Pavement Des. 2021, 22, S154–S179. [Google Scholar] [CrossRef]
- Wirtgen GmbH. Cold Recycling—Wirtgen Cold Recycling Technology; Wirtgen GmbH: Windhagen, Germany, 2012. [Google Scholar]
- Moloto, P.K. Accelerated Curing Protocol for Bitumen Stabilized Materials. Master’s Thesis, Stellenbosch University, Western Cape, South Africa, 2010. [Google Scholar]
- Kuchiishi, A.K. Mechanical Behavior of Cold Recycled Asphalt Mixtures. Master’s Thesis, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- Spiess, A.N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef]
- Rawlings, J.O.; Pantula, S.G.; Dickey, D.A. Applied Regression Analysis: A Research Tool; Springer: New York, NY, USA, 1998. [Google Scholar]
- Akaike, H.A. New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Statist. 1978, 6, 461–464. [Google Scholar] [CrossRef]
MATHEMATICAL MODELS | ||
---|---|---|
Author | Regression Model | Parameters |
Pellinen et al., 2002 [20] | Sigmoidal | |
Seo et al., 2007 (*) [21] | ||
Rowe et al., 2008 [22] | Richard’s model or generalized sigmoidal | |
AASHTO 2017 [23] | AASHTO R84-17—Hirsch model | |
PHYSICALLY SIGNIFICANT PARAMETERS MODELS | ||
Christensen 1998 [24] | Christensen–Anderson–Marasteanu (CAM) | |
Zeng et al., 2001 [25] | Modified CAM | |
Falchetto et al., 2021 [26] | SCM | |
MECHANICAL ANALOG MODELS | ||
Sayegh 1965 [27] | Huet–Sayegh | |
Havriliak, Negami 1966 [28] | Havriliak–Negami (HN) | |
Olard, Di Benedetto 2003 [29] | 2S2P1D model |
Specimen ID | Mineral Skeleton | Air Void Content (%) | Curing | Compaction | Replicates |
---|---|---|---|---|---|
G1-2E1C_C1 | 85% RAP + 15% crushed stone | 15.8 | 7 days—40 °C | Gyratory until locking point | 13 |
G1-2E1H_C1 | 3 | ||||
G1-2E00_C1 | 2 | ||||
G1-2E2C_C1 | 3 | ||||
G1-2E2H_C1 | 3 | ||||
G2-2.2F1H_C1 | 89.9% RAP + 10.1% crushed stone | - | 7 days—40 °C | Vibratory ** | 3 |
G3-3F2C_C2 | 69.4% RAP + 30.6% crushed stone | - | 28 days—40 °C | Vibratory ** | 2 |
G3-3F2C_C3 | 40 °C—until 60% OMC * | Modified Proctor | 2 | ||
G4-3E2C_C4 | 100% RAP | - | 3 days—60 °C | Modified Proctor | 2 |
G4-3E2C_C2 | 28 days—40 °C | Vibratory ** | 2 | ||
Total | 35 |
Specimen | RSSR Values of the Fitted Models | |||||
---|---|---|---|---|---|---|
Sigmoidal (Equation (3)) | Seo et al. Sigmoidal (Equation (4)) | General. Sigmoidal (Equation (5)) | CAM (Equation (6)) | Modified CAM (Equation (7)) | SCM (Equation (8)) | |
G1-2E00_C1_01 | 994.05 | 994.95 | 985.62 | 996.88 | 997.81 | 991.94 |
G1-2E00_C1_02 | 183.43 | 184.41 | 182.62 | 181.76 | 174.73 | 184.67 |
G1-2E1H_C1_01 | 182.37 | 180.76 | 178.63 | 177.04 | 159.33 | 177.70 |
G1-2E1H_C1_02 | 157.73 | 160.42 | 143.14 | 140.64 | 143.82 | 148.04 |
G1-2E1H_C1_03 | 212.03 | 212.99 | 207.39 | 206.15 | 205.64 | 208.65 |
G1-2E1C_C1_01 | 980.89 | 973.30 | 964.89 | 972.95 | 977.62 | 965.74 |
G1-2E1C_C1_02 | 566.31 | 565.44 | 564.09 | 567.61 | 568.86 | 570.04 |
G1-2E1C_C1_03 | 340.94 | 336.64 | 332.85 | 334.06 | 336.50 | 334.72 |
G1-2E1C_C1_04 | 730.06 | 727.96 | 725.36 | 726.80 | 728.79 | 724.69 |
G1-2E1C_C1_05 | 626.57 | 625.32 | 623.36 | 654.91 | 660.69 | 646.11 |
G1-2E1C_C1_06 | 438.27 | 438.04 | 437.65 | 437.14 | 444.29 | 441.39 |
G1-2E1C_C1_07 | 660.10 | 660.27 | 658.73 | 658.96 | 660.25 | 658.83 |
G1-2E1C_C1_08 | 269.78 | 269.34 | 269.41 | 268.63 | 268.19 | 269.34 |
G1-2E1C_C1_09 | 336.87 | 337.53 | 331.21 | 331.61 | 334.61 | 332.60 |
G1-2E1C_C1_10 | 196.68 | 197.48 | 190.98 | 193.39 | 192.89 | 192.27 |
G1-2E1C_C1_11 | 109.48 | 109.94 | 111.18 | 109.95 | 103.03 | 112.35 |
G1-2E1C_C1_12 | 147.06 | 148.29 | 151.55 | 149.82 | 141.68 | 153.56 |
G1-2E1C_C1_13 | 76.07 | 95.17 | 85.68 | 83.85 | 68.73 | 103.66 |
G1-2E2H_C1_01 | 129.46 | 129.93 | 126.18 | 126.87 | 128.40 | 126.70 |
G1-2E2H_C1_02 | 205.95 | 206.03 | 206.40 | 206.27 | 204.49 | 206.60 |
G1-2E2H_C1_03 | 145.18 | 145.51 | 143.18 | 144.20 | 144.21 | 143.63 |
G1-2E2C_C1_01 | 194.14 | 194.17 | 198.50 | 195.95 | 187.54 | 198.54 |
G1-2E2C_C1_02 | 258.27 | 258.40 | 259.32 | 258.69 | 255.31 | 258.80 |
G1-2E2C_C1_03 | 189.51 | 190.03 | 187.30 | 188.67 | 187.11 | 188.28 |
G2-2.2F1H_C1_01 | 97.05 | 97.04 | 94.22 | 180.90 | 191.42 | 157.54 |
G2-2.2F1H_C1_02 | 149.89 | 150.00 | 148.44 | 154.03 | 161.87 | 150.21 |
G2-2.2F1H_C1_03 | 201.63 | 201.63 | 201.40 | 220.29 | 230.50 | 213.23 |
G3-3F2C_C2_01 | 178.72 | 178.89 | 179.14 | 178.60 | 178.42 | 178.25 |
G3-3F2C_C2_02 | 257.61 | 257.94 | 255.01 | 258.74 | 261.49 | 257.54 |
G3-3F2C_C3_01 | 555.68 | 555.69 | 555.03 | 555.03 | 555.33 | 553.92 |
G3-3F2C_C3_02 | 274.80 | 271.75 | 268.68 | 283.57 | 279.18 | 278.19 |
G4-3E2C_C4_01 | 395.75 | 395.75 | 396.73 | 445.43 | 455.87 | 424.04 |
G4-3E2C_C4_02 | 427.62 | 424.27 | 424.36 | 487.82 | 496.80 | 461.54 |
G4-3E2C_C2_01 | 321.06 | 317.82 | 317.71 | 327.74 | 330.88 | 324.37 |
G4-3E2C_C2_02 | 213.59 | 224.50 | 213.51 | 213.90 | 214.38 | 222.20 |
Reduced Frequency (Hz) | Observed |E*| (MPa) | G1-2E1C_C1_13—Estimated |E*| (MPa) | (5) |Residual| (MPa) | (7) |Residual| (MPa) | |E*| |(5)–(7)| (MPa) | |
---|---|---|---|---|---|---|
General. Sigmoidal (5) | Modified CAM (7) | |||||
0.002 | 440.02 | 406.91 | 426.92 | 33.11 | 13.11 | 20.01 |
0.012 | 583.36 | 577.86 | 578.44 | 5.50 | 4.92 | 0.58 |
0.023 | 656.32 | 668.86 | 664.57 | 12.54 | 8.25 | 4.29 |
0.100 | 895.24 | 900.02 | 892.34 | 4.77 | 2.91 | 7.68 |
0.116 | 914.74 | 926.65 | 919.09 | 11.91 | 4.35 | 7.56 |
0.232 | 1044.93 | 1059.26 | 1053.12 | 14.33 | 8.20 | 6.14 |
0.500 | 1208.71 | 1222.06 | 1218.71 | 13.35 | 10.00 | 3.35 |
0.580 | 1259.44 | 1255.43 | 1252.70 | 4.01 | 6.74 | 2.73 |
1.000 | 1355.64 | 1383.39 | 1383.01 | 27.75 | 27.37 | 0.38 |
5.000 | 1824.97 | 1808.47 | 1813.42 | 16.50 | 11.55 | 4.95 |
10.000 | 2037.97 | 2011.18 | 2016.67 | 26.79 | 21.30 | 5.49 |
10.578 | 2057.55 | 2028.06 | 2033.53 | 29.49 | 24.01 | 5.48 |
25.000 | 2315.11 | 2293.85 | 2298.00 | 21.26 | 17.12 | 4.14 |
52.889 | 2533.63 | 2534.54 | 2536.08 | 0.91 | 2.45 | 1.54 |
105.778 | 2717.80 | 2762.03 | 2760.53 | 44.23 | 42.73 | 1.50 |
528.888 | 3280.75 | 3292.97 | 3286.90 | 12.22 | 6.16 | 6.06 |
1057.776 | 3510.65 | 3515.98 | 3511.73 | 5.33 | 1.08 | 4.25 |
2644.441 | 3815.51 | 3798.90 | 3803.56 | 16.60 | 11.95 | 4.65 |
∑|residuals| | 300.60 | 224.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meneses, J.; Vasconcelos, K.; Kuchiishi, K.; Bernucci, L. Dynamic Modulus Regression Models for Cold Recycled Asphalt Mixtures. Infrastructures 2025, 10, 143. https://doi.org/10.3390/infrastructures10060143
Meneses J, Vasconcelos K, Kuchiishi K, Bernucci L. Dynamic Modulus Regression Models for Cold Recycled Asphalt Mixtures. Infrastructures. 2025; 10(6):143. https://doi.org/10.3390/infrastructures10060143
Chicago/Turabian StyleMeneses, João, Kamilla Vasconcelos, Kazuo Kuchiishi, and Liedi Bernucci. 2025. "Dynamic Modulus Regression Models for Cold Recycled Asphalt Mixtures" Infrastructures 10, no. 6: 143. https://doi.org/10.3390/infrastructures10060143
APA StyleMeneses, J., Vasconcelos, K., Kuchiishi, K., & Bernucci, L. (2025). Dynamic Modulus Regression Models for Cold Recycled Asphalt Mixtures. Infrastructures, 10(6), 143. https://doi.org/10.3390/infrastructures10060143