Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (931)

Search Parameters:
Keywords = emulsion phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5578 KB  
Article
A Zwitterionic Copolymer at High Temperature and High Salinity for Oilfield Fracturing Fluids
by Bo Jing, Yuejun Zhu, Wensen Zhao, Weidong Jiang, Shilun Zhang, Bo Huang and Guangyan Du
Polymers 2025, 17(20), 2733; https://doi.org/10.3390/polym17202733 (registering DOI) - 12 Oct 2025
Abstract
With the increasing exploration and development of deep shale gas resources, water-based fracturing fluids face multiple challenges, including high-temperature resistance, salt tolerance, and efficient proppant transport. In this study, a zwitterionic polymer (polyAMASV) is synthesized via aqueous two-phase dispersion polymerization, using acrylamide (AM), [...] Read more.
With the increasing exploration and development of deep shale gas resources, water-based fracturing fluids face multiple challenges, including high-temperature resistance, salt tolerance, and efficient proppant transport. In this study, a zwitterionic polymer (polyAMASV) is synthesized via aqueous two-phase dispersion polymerization, using acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acrylic acid (AA), stearyl methacrylate (SMA), and 4-vinylpyridine propylsulfobetaine (4-VPPS) as monomers. The introduction of hydrophobic alkyl chains effectively adjusts the viscoelasticity of the emulsion, while the incorporation of zwitterionic units provides salt tolerance through their intrinsic anti-polyelectrolyte effect. As a result, the solutions of such copolymers exhibit stable apparent viscosity in both NaCl and CaCl2 solutions and under high temperatures. Meanwhile, polyAMASV outperforms conventional samples across various saline environments, reducing proppant settling rates by approximately 20%. Moreover, the solutions exhibit rapid gel-breaking and low residue characteristics, ensuring effective reservoir protection. These results highlight the promising potential of polyAMASV for deep shale gas fracturing applications. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

19 pages, 11841 KB  
Article
Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles
by Yu Song, Xueli Shen, Gangyue Zhou, Xia Xu, Yanan Cao, Wei Li, Yichen Hu, Jianglin Zhao, Dingtao Wu, Zunxi Huang and Liang Zou
Foods 2025, 14(19), 3429; https://doi.org/10.3390/foods14193429 - 5 Oct 2025
Viewed by 423
Abstract
In this study, the insufficient ability of tartary buckwheat protein (TBP) to stabilize Pickering emulsions was addressed by preparing TBP–sodium alginate (SA) composite particles via cross-linking and systematic optimization of the preparation parameters. The results showed that at a pH of 9.0 with [...] Read more.
In this study, the insufficient ability of tartary buckwheat protein (TBP) to stabilize Pickering emulsions was addressed by preparing TBP–sodium alginate (SA) composite particles via cross-linking and systematic optimization of the preparation parameters. The results showed that at a pH of 9.0 with 1.0% (w/v) TBP and 0.2% (w/v) SA, the zeta potential of the prepared TBP–SA composite particles was significantly more negative, and the particle size was significantly larger, than those of TBP, while emulsifying activity index and emulsifying stability index increased to 53.76 m2/g and 78.78%, respectively. Scanning electron microscopy confirmed the formation of a dense network structure; differential scanning calorimetry revealed a thermal denaturation temperature of 83 °C. Fourier transform infrared spectroscopy and surface hydrophobicity results indicated that the complex was formed primarily through hydrogen bonding and hydrophobic interactions between TBP and SA, which induced conformational changes in the protein. The Pickering emulsion prepared with 5% (w/v) TBP–SA composite particles and 60% (φ) oil phase was stable during 4-month storage, at a high temperature of 75 °C, high salt conditions of 600 mM, and pH of 3.0–9.0. The stabilization mechanisms may involve: (1) strong electrostatic repulsion provided by the highly negative zeta potential; (2) steric hindrance and mechanical strength imparted by the dense interfacial network; and (3) restriction of droplet mobility due to SA-induced gelation. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Graphical abstract

12 pages, 3168 KB  
Article
Fabrication of Yeast-Immobilized Porous Scaffolds Using a Water-in-Water Emulsion-Templating Strategy
by Chuya Zhao, Yuanyuan Sun, Haihua Zhou, Chuanbang Xu, Yun Zhu, Daifeng Chen and Shengmiao Zhang
Catalysts 2025, 15(10), 925; https://doi.org/10.3390/catal15100925 - 28 Sep 2025
Viewed by 640
Abstract
This study introduces an efficient, all-aqueous emulsion-templating strategy for fabricating highly tunable yeast immobilization carriers with superior biocatalytic performance. Utilizing cellulose nanocrystals (CNCs) to stabilize dextran/polyethylene glycol (Dex/PEG) water-in-water emulsions, an architecture-controlled void is obtained by crosslinking the PEG-rich phase with variable concentrations [...] Read more.
This study introduces an efficient, all-aqueous emulsion-templating strategy for fabricating highly tunable yeast immobilization carriers with superior biocatalytic performance. Utilizing cellulose nanocrystals (CNCs) to stabilize dextran/polyethylene glycol (Dex/PEG) water-in-water emulsions, an architecture-controlled void is obtained by crosslinking the PEG-rich phase with variable concentrations of polyethylene glycol diacrylate (PEGDA) (10–25 wt%). This approach successfully yielded macroporous networks, enabling precise tuning of void diameters from 10.4 to 6.6 μm and interconnected pores from 2.2 to 1.4 μm. The optimally designed carrier, synthesized with 15 wt% PEGDA, featured 9.6 μm voids and robust mechanical strength (0.82 MPa), and facilitated highly efficient yeast encapsulation (~100%). The immobilized yeast demonstrated exceptional fermentation activity, remarkable storage stability (maintaining > 95% productivity after 4 weeks), and high reusability (85% activity retention after seven cycles). These enhancements are attributed to the material’s excellent water retention capacity and the provision of a stable microenvironment. This green and straightforward method represents a significant advance in industrial cell immobilization, offering unparalleled operational stability, protection, and design flexibility. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

18 pages, 1396 KB  
Article
High-Pressure Homogenized Seaweed Cellulose Nanofibrils-Based Emulsion Gel: An Innovative Platform for Fucoxanthin Encapsulation and Stability Improvement
by Mingrui Wang, Ying Tuo, Yixiao Li, Qianhui Xiao, Yue Liu, Long Wu, Hui Zhou, Yidi Cai, Yuqing Zhang and Xiang Li
Foods 2025, 14(19), 3338; https://doi.org/10.3390/foods14193338 - 26 Sep 2025
Viewed by 338
Abstract
Poor solubility and bioavailability have limited the application of fucoxanthin and functional food processing. In order to encapsulate fucoxanthin in delivery systems, cellulose nanofibril-stabilized emulsion gels (CNFs) derived from industrial brown seaweed residue were developed to enhance fucoxanthin delivery. Cellulose nanofibrils (CNFs) were [...] Read more.
Poor solubility and bioavailability have limited the application of fucoxanthin and functional food processing. In order to encapsulate fucoxanthin in delivery systems, cellulose nanofibril-stabilized emulsion gels (CNFs) derived from industrial brown seaweed residue were developed to enhance fucoxanthin delivery. Cellulose nanofibrils (CNFs) were isolated using high-pressure homogenization at 105 MPa through 5, 10, and 15 cycles (denoted as C5, C10, and C15) and yielding reduced crystallinity down to 52.91 ± 2.13% (C15). The minimum particle size of the present CNFs is approximately 37 nm (C15). Moreover, single-factor and orthogonal experiments optimized the stability of the present emulsion. A 17.5 mg/mL CNFs 50% oil phase with coconut oil, 0.5 mg/mL fucoxanthin, and homogenization for 60 s were identified to be the optimal conditions for such emulsion gel. The present emulsions demonstrated a high storage stability at 4 °C versus 25 °C, which maintained minimal phase separation over 8 days. The release kinetics showed significant dependencies with fucoxanthin release increasing to 9.22 ± 0.62% at pH 8.0, 9.52 ± 0.58% under 1000 mM NaCl, and 8.25 ± 0.62% at 100 °C. In addition, the CNFs effectively preserved the antioxidant activity of the fucoxanthin under different pH values, salinities, and temperatures. The results establish seaweed-derived CNFs as effective stabilizers for fucoxanthin encapsulation, enhancing stability while preserving functionality against food-processing stresses. To our knowledge, no prior research has been reported on a fucoxanthin delivery system utilizing an emulsion gel stabilized by cellulose nanofibrils (CNFs). Such emulsions might provide a sustainable strategy for valorizing seaweed waste and advance functional food applications of marine bioactives. Full article
Show Figures

Graphical abstract

20 pages, 3324 KB  
Article
Microencapsulation of Camellia oleifera Seed Oil Emulsion By-Products: Structural Characterization and Lipidomics Analysis
by Xue Wu, Yunhe Chang, Mingfa Song, Juncai Hou and Hongxia Feng
Foods 2025, 14(19), 3314; https://doi.org/10.3390/foods14193314 - 24 Sep 2025
Viewed by 377
Abstract
To unlock the potential value of the emulsified by-product from the aqueous enzymatic extraction (AEE) of Camellia oleifera seed oil, this study introduced an innovative approach for its food industrial application. We applied spray-drying microencapsulation technology to convert the emulsion-phase (EP) by-product into [...] Read more.
To unlock the potential value of the emulsified by-product from the aqueous enzymatic extraction (AEE) of Camellia oleifera seed oil, this study introduced an innovative approach for its food industrial application. We applied spray-drying microencapsulation technology to convert the emulsion-phase (EP) by-product into value-added microcapsules (EPM). The properties of EPM were systematically compared with those of microcapsules derived from the oil phase (OPM). The encapsulation efficiencies of EPM and OPM were 83.94% and 86.53%, respectively. Scanning electron microscopy revealed the formation of irregular spheroids with smooth surfaces and intact structures, with EPM exhibiting superior particle uniformity (D50 = 1.11 μm) compared to OPM (D50 = 2.30 μm). Fourier-transform infrared spectroscopy confirmed the successful encapsulation of EP. Differential scanning calorimetry indicated good thermal stability of the microcapsules, and the oxidative stability of EPM (24.75 h) was 9.2 times higher than that of the unencapsulated EP and 13.15 h longer than that of OPM. Lipidomic analysis using LC-MS/MS identified 477 lipid species across five subclasses—glycerolipids, glycerophospholipids, fatty acids, prenol lipids, and sphingolipids—revealing distinct lipid profiles between EPM and OPM. This microencapsulation strategy offers a sustainable approach to valorize aqueous enzymatic extraction by-products, with promising applications in functional foods and nutraceuticals, thereby enhancing the economic and environmental sustainability of Camellia oleifera seed oil processing. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 11691 KB  
Article
Sustainable Integrated Approach to Waste Treatment in Automotive Industry: Solidification/Stabilization, Valorization, and Techno-Economic Assessment
by Marija Štulović, Dragana Radovanović, Zoran Anđić, Nela Vujović, Jelena Ivanović, Sanja Jevtić and Željko Kamberović
Sustainability 2025, 17(19), 8553; https://doi.org/10.3390/su17198553 - 23 Sep 2025
Viewed by 481
Abstract
An integrated approach to waste management is based on efficient and safe methods for waste prevention, recycling, and safe waste treatment. In accordance with these principles, in this study, non-hazardous aluminosilicate waste (dust and sand) was used in the solidification/stabilization (S/S) treatment of [...] Read more.
An integrated approach to waste management is based on efficient and safe methods for waste prevention, recycling, and safe waste treatment. In accordance with these principles, in this study, non-hazardous aluminosilicate waste (dust and sand) was used in the solidification/stabilization (S/S) treatment of hazardous waste (coating, emulsion, and sludge) from the automotive industry. Also, the oily component of the waste was valorized and investigated for energy recovery through co-incineration. The two S/S processes were proposed and their sustainability was assessed by utilizing all types of waste generated in the same plant, obtaining stabilized material suitable for safe disposal and oil phases for further valorization, and by techno-economic analysis. The efficiency of the S/S processes was evaluated by measuring unconfined compressive strength, hydraulic conductivity, density, and the EN 12457-4 standard leaching test of S/S products, along with XRD, SEM-EDS, and TG-DTG analyses. The possibility of using the oil phase was assessed based on its calorific value. The techno-economic assessment compared the investments, operating costs, and potential savings of both treatment scenarios. The results show that an integrated approach enables safe waste immobilization and resource recovery, contributing to environmental protection and economic benefits. Full article
Show Figures

Figure 1

19 pages, 1317 KB  
Article
Emulsion Systems Stabilized with Nonionic Emulsifier and Cross-Linked Polyacrylic Acid: A Promising Strategy to Enhance the Activity of Immobilized CALB
by Joanna Siódmiak, Jacek Dulęba, Dominik Mieszkowski, Piotr Bilski and Tomasz Siódmiak
Catalysts 2025, 15(10), 916; https://doi.org/10.3390/catal15100916 - 23 Sep 2025
Viewed by 476
Abstract
The application of lipases in biphasic oil–water emulsions offers an efficient and sustainable alternative to conventional chemical synthesis. However, the natural immiscibility of these phases is a substantial limitation. To address this issue, we proposed a dual-stabilized emulsion system combining a nonionic emulsifier [...] Read more.
The application of lipases in biphasic oil–water emulsions offers an efficient and sustainable alternative to conventional chemical synthesis. However, the natural immiscibility of these phases is a substantial limitation. To address this issue, we proposed a dual-stabilized emulsion system combining a nonionic emulsifier (Kolliphor® CS 20) and cross-linked polyacrylic acid (Carbopol® Ultrez 10), exceeding conventional single-stabilized systems. The activity of Candida antarctica lipase B (CALB), both in its free form and immobilized onto an IB-D152 support, was investigated in the prepared emulsion system. The olive oil emulsion stabilized with 10.0% Kolliphor® CS 20 and 0.1% Carbopol® Ultrez 10 significantly enhanced the lipolytic activity of immobilized CALB (156.27 ± 3.91 U/g of support), compared to the activity obtained in the emulsion stabilized only with 10.0% Kolliphor® CS 20 (71.11 ± 3.86 U/g of support). On the other hand, the activity of immobilized CALB in the emulsion containing 5.0% Kolliphor® CS 20 and 0.1% Carbopol® Ultrez 10 (62.22 ± 3.85 U/g of support) was lower than in the corresponding system without Carbopol® Ultrez 10 (72.03 ± 4.63 U/g of support), stabilized with only 5.0% Kolliphor® CS 20. Furthermore, immobilization onto IB-D152 led to lipase hyperactivation, with activity approximately eight-fold higher than that of free CALB. This dual emulsion stabilization strategy not only improves emulsion stability but also enhances lipase activity, offering new opportunities for scalable, high-performance biocatalysis using emulsions in industrial applications. Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
Show Figures

Figure 1

19 pages, 3228 KB  
Article
Towards Designing Green-Inspired Nano- and Microemulsions Alongside Novel Solvatochromic Probes as an Effective Tool in Delivery Issues
by Aleksandra Szarwaryn, Wojciech Bartkowiak, Tomasz K. Olszewski and Urszula Bazylińska
Int. J. Mol. Sci. 2025, 26(18), 9259; https://doi.org/10.3390/ijms26189259 - 22 Sep 2025
Viewed by 369
Abstract
The extensive use of submicron emulsion systems, particularly those stabilized by nonionic surfactants, with their proven effectiveness and safety profile, provides a reassuring foundation for our research. Consequently, we designed and engineered new submicron emulsion formulations stabilized with a biocompatible surfactant polyoxyethylated cocoamine, [...] Read more.
The extensive use of submicron emulsion systems, particularly those stabilized by nonionic surfactants, with their proven effectiveness and safety profile, provides a reassuring foundation for our research. Consequently, we designed and engineered new submicron emulsion formulations stabilized with a biocompatible surfactant polyoxyethylated cocoamine, whose nonionic character is due to a high degree of polyoxyethylation. We chose oleic acid as the oil phase, a fatty acid known for its beneficial properties. This led to novel biocompatible nanoemulsions with high stability and cosurfactant-free microemulsions. The dynamic light scattering studies confirmed that both formulations have a nanometric size and low polydispersity index values. Moreover, transmission electron microscopy verified the nanodroplets’ morphological homogeneity and spherical shape. The resulting nanoplatforms can be applied to carry bioactive agents in the pharmaceutical and cosmetic fields. For this reason, we solubilized newly synthesized 5-dimethylamino-5′-nitro-2,2′-bithiophene as a model hydrophobic cargo for delivering poorly water-soluble compounds. This dye was chosen due to its strong solvatochromic behavior and suitability for micropolarity analysis via UV–Vis spectroscopy. We also present a simple method for rapid micropolarity screening to assess the type of nanodispersion via solvatochromic shift as an alternative procedure for evaluating of the oils used to fabricate nanoformulations for pharmaceutical and cosmetic purposes. Full article
(This article belongs to the Special Issue Surfactants: Design, Synthesis and Application)
Show Figures

Graphical abstract

30 pages, 11101 KB  
Article
Influence of Processing and Stabilizer Selection on Microstructure, Stability and Rheology of Emulsion-Based Semisolid Formulations
by Ruochen Yang, Xin Yi Tee, Sendhil Kumar Poornachary, Elena Simone and Pui Shan Chow
Pharmaceutics 2025, 17(9), 1221; https://doi.org/10.3390/pharmaceutics17091221 - 20 Sep 2025
Viewed by 412
Abstract
Background/Objectives: Emulsion-based semisolid formulations are important delivery systems for many applications, including pharmaceuticals, cosmetics and food. The manufacturing process for such formulations typically involves a series of heating, cooling, mixing and emulsification steps. Stabilizing agents are usually included in such formulations, as [...] Read more.
Background/Objectives: Emulsion-based semisolid formulations are important delivery systems for many applications, including pharmaceuticals, cosmetics and food. The manufacturing process for such formulations typically involves a series of heating, cooling, mixing and emulsification steps. Stabilizing agents are usually included in such formulations, as emulsions are intrinsically unstable and are prone to various destabilization mechanisms. Precise control of each processing parameter and the selection of an appropriate stabilizing agent are essential for delivering products with long-term stability and the desired properties. In this study, the effects of emulsification temperature and the selection of the stabilizing agent on key product attributes were investigated to enable improved design and optimization of both the formulation and manufacturing process. Methods: Model emulsion systems containing propylene glycol (PG) as the dispersed phase and mineral oil as the continuous phase were prepared at different emulsification temperatures to cover both pre-crystallization and post-crystallization regimes. Three stabilizing agents, namely mono-and-diglyceride (MDG), neat monoglyceride (MG) and neat diglyceride (DG), were studied. Their crystallization behavior was first examined to determine crystallization temperatures and crystal morphologies. The resulting emulsion samples were then characterized in terms of their microstructure, physical stability and rheological properties. Results: The emulsions prepared under post-crystallization conditions exhibited better physical stability, higher rheological parameters (crossover stress and viscosity) and a more rigid microstructure compared to those formed under pre-crystallization conditions, regardless of the stabilizer used. Rheological properties were found to corelate well with physical stability. In the pre-crystallization regime, poor stability could partially be mitigated by lowering the emulsification temperature. MG was generally more effective than DG in stabilizing the emulsions and led to higher rheological properties, despite both crystallizing into the same polymorph within the system. This difference in performance was attributed to variations in the crystal morphology and spatial distribution within the emulsion. Notably, the MG-stabilized emulsions also displayed a self-hardening effect during storage. Conclusions: The selection of the appropriate stabilizing agents and processing conditions tailored to the specific system is critical for the successful manufacture of emulsion-based semisolid products with an optimized performance. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

15 pages, 3038 KB  
Article
Removal of Diatrizoic Acid from Water via Liquid Surfactant Membrane with Aliquat 336 as Extractant: Operational Insights and Natural Water Matrices
by Manel Lecheheb and Oualid Hamdaoui
Processes 2025, 13(9), 3000; https://doi.org/10.3390/pr13093000 - 19 Sep 2025
Viewed by 306
Abstract
Hospitals often use diatrizioic acid (DTZA), an iodinated radiocontrast agent, which is poorly biodegradable and persistent in aqueous media. Therefore, the objective of this work is to remove DTZA from water using an advanced separation process, namely liquid surfactant membrane (LSM) or emulsion [...] Read more.
Hospitals often use diatrizioic acid (DTZA), an iodinated radiocontrast agent, which is poorly biodegradable and persistent in aqueous media. Therefore, the objective of this work is to remove DTZA from water using an advanced separation process, namely liquid surfactant membrane (LSM) or emulsion liquid membrane. The LSM system is composed of Aliquat 336 as extractant, Span 80 as emulsifier, kerosene as diluent, and KCl as internal stripping phase. The impacts of experimental parameters impacting the extraction of DTZA from water by LSM, namely surfactant concentration, initial pH of the contaminated solution, extractant dosage, nature of base in the contaminated solution, concentration of the internal stripping phase, nature of stripping solution, emulsion/external solution volume ratio, internal solution/organic phase volume ratio, mixing rate, nature of diluent, emulsification time, emulsification rate, and initial DTZA concentration, were investigated. A highly stable emulsion with a good degree of removal of 90.8% of DTZA in water was obtained for an emulsifier dosage of 3% (w/w), an extractant dosage of 1.0% (w/w), a pH of the contaminated solution of 10 using NH4OH, a concentration of the inner phase of 0.3 N KCl, an internal solution/organic phase volume ratio of 1/1, an emulsion/external solution volume ratio of 20/250, a mixing speed of 250 rpm, an emulsification time of 4 min, and an emulsification speed of 20,000 rpm. Additionally, the extraction of DTZA from various natural water matrices (natural mineral water, tap water and seawater) was examined. The developed LSM method offers a fascinating enhanced separation method for the elimination of DTZA in waters with low chloride ion concentrations. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

15 pages, 4406 KB  
Review
Synthesis of Janus Particles by Seeded Emulsion Polymerization
by Yingying Wu, Yingchun Long, Guolin Zhang, Qiuhua Wu and Fuxin Liang
Molecules 2025, 30(18), 3691; https://doi.org/10.3390/molecules30183691 - 10 Sep 2025
Viewed by 665
Abstract
Janus particles (JPs), as a special material with anisotropic chemical or physical partitioning, show great potential for application in the fields of material science, biomedicine, energy, and environment. How to achieve fine structural control and large-scale synthesis of JPs is the key point [...] Read more.
Janus particles (JPs), as a special material with anisotropic chemical or physical partitioning, show great potential for application in the fields of material science, biomedicine, energy, and environment. How to achieve fine structural control and large-scale synthesis of JPs is the key point and difficulty for JPs. Seeded emulsion polymerization, as a simple and efficient method, plays an important role in the controlled fabrication of JPs. Here, we provide a comprehensive review of the research progress in the preparation of JPs via seeded emulsion polymerization. We systematically summarize the process mechanisms and key parameters influencing the formation of Janus structures, with particular emphasis on the effects of seed characteristics, polymerization conditions, and component selection on particle morphology and anisotropy. Full article
Show Figures

Figure 1

11 pages, 10408 KB  
Communication
Leaving Glauber’s Salt Island: The Road to Stabilisation
by Poppy O’Neill, Anastasia Stamatiou and Ludger Fischer
Colloids Interfaces 2025, 9(5), 60; https://doi.org/10.3390/colloids9050060 - 9 Sep 2025
Viewed by 483
Abstract
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by [...] Read more.
Glauber’s salt is a promising phase change material for thermal energy storage due to its high latent heat capacity of 234 J/g and melting point of 34 °C, making it well-suited for low-temperature heating applications. However, its practical use has been limited by phase separation and associated loss of performance during repeated thermal cycling. This study aimed to address this limitation through a novel stabilisation approach. The material was encapsulated within an emulsion matrix designed to physically constrain the salt and inhibit separation during melting and to form a phase change dispersion. The phase change dispersion was subjected to 100 controlled heating–cooling cycles whilst monitoring the latent heat capacity and phase transition plateaus. The phase change dispersion retained its thermal properties throughout testing, showing no measurable degradation in storage capacity nor shift in phase transition temperature. These results demonstrate that this encapsulation mechanism can effectively maintain the functional performance of Glauber’s salt under repeated thermal cycling. This approach may form the basis for more durable salt hydrate-based storage media and has potential relevance for applications in building heating, waste heat recovery and renewable energy integration. By improving stability, this method helps unlock the long-term operational viability of phase change materials. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Figure 1

22 pages, 1043 KB  
Article
Strategies for Reducing Fat in Mayonnaise and Their Effects on Physicochemical Properties
by Cecilia Abirached, María Noel Acuña, Tatiana Carreras and Ignacio Vieitez
Foods 2025, 14(17), 3133; https://doi.org/10.3390/foods14173133 - 8 Sep 2025
Viewed by 1188
Abstract
Mayonnaise is a widely consumed food emulsion. Traditional mayonnaise contains approximately 70–80% lipids, making it a high-fat, calorie-dense food. This study aimed to develop a reduced-fat mayonnaise with physicochemical properties comparable to commercial low-fat formulations but with a lower oil content (<30%). Three [...] Read more.
Mayonnaise is a widely consumed food emulsion. Traditional mayonnaise contains approximately 70–80% lipids, making it a high-fat, calorie-dense food. This study aimed to develop a reduced-fat mayonnaise with physicochemical properties comparable to commercial low-fat formulations but with a lower oil content (<30%). Three formulations were prepared using canola oil and high-oleic sunflower oil at different concentrations (10%, 15%, and 30%), with and without the addition of synthetic antioxidants (BHA and BHT). Guar gum was used to control the viscosity of the continuous phase, adjusting its concentration between 0.75% and 1.55%. The formulations were compared with a commercial low-fat sample (MH) in terms of flow and rheological properties, color, phase separation stability, particle size, microscopy, and oxidative stability. The formulations exhibited flow behavior and Konini’s viscosity similar to MH. The 15% oil formulation (MHO-15%) had a particle size comparable to MH. Both MH and the experimental formulations exhibited a weak gel structure. To achieve the characteristic yellow color, β-carotene should be added to MHO-15%. Formulations containing canola oil and those without antioxidants showed higher susceptibility to oxidation, leading to the selection of high-oleic oil with added antioxidants. Based on these findings, a potential reduced-fat mayonnaise-type sauce could be formulated by decreasing lipid content from 30% to 15%. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

18 pages, 5466 KB  
Article
Fabrication of Zein Nanoparticle-Functionalized Wheat Gluten Amyloid Fibril/Methyl Cellulose Hybrid Membranes with Efficient Performance for Water-in-Oil Emulsion Separation
by You-Ren Lai, Jun-Ying Lin, Jou-Ting Hsu, Ta-Hsien Lin, Su-Chun How and Steven S.-S. Wang
Polymers 2025, 17(17), 2409; https://doi.org/10.3390/polym17172409 - 4 Sep 2025
Viewed by 763
Abstract
Considering the high stability of water-in-oil (W/O) emulsions, contamination from emulsified pollutants poses a long-term risk to the environment. In this study, hybrid membranes composed of wheat gluten amyloid fibrils (WGAFs) and zein nanoparticles (ZNPs) were prepared and used as a separator to [...] Read more.
Considering the high stability of water-in-oil (W/O) emulsions, contamination from emulsified pollutants poses a long-term risk to the environment. In this study, hybrid membranes composed of wheat gluten amyloid fibrils (WGAFs) and zein nanoparticles (ZNPs) were prepared and used as a separator to remove emulsified W/O droplets from the oily phase. ZNPs and WGAFs were synthesized through antisolvent method and fibrillation process. Next, a ZNP-functionalized wheat gluten AF/methyl cellulose (ZNP-WGAF/MC) hybrid membrane was fabricated, and its properties were investigated via various analytical techniques. Lastly, the separation efficiency of the ZNP-WGAF/MC hybrid membrane for various W/O emulsions was assessed using microscopy and light scattering. The formation of ZNPs or WGAFs was first verified via spectroscopic and microscopic methods. Our results indicated that the ZNP-WGAF/MC hybrid membranes were synthesized via chemical crosslinking coupled with the casting method. Furthermore, the incorporation of either WGAFs or ZNPs was found to improve the thermal stability and surface hydrophobicity of membranes. Finally, the separation efficiency of the ZNP-WGAF/MC hybrid membranes for various W/O emulsions was determined to be ~87–99%. This research demonstrates the potential of harnessing three-dimensional membranes composed of plant protein-based fibrils and nanoparticles to separate emulsified W/O mixtures. Full article
(This article belongs to the Special Issue Functional Polymer Membranes for Advanced Separation Technologies)
Show Figures

Graphical abstract

27 pages, 655 KB  
Review
Designing Emulsion Gels for 3D Food Printing: Structure, Stability, and Functional Applications
by Bruna Silva de Farias, Lisiane Baldez da Cunha, Anelise Christ Ribeiro, Débora Pez Jaeschke, Janaína Oliveira Gonçalves, Sibele Santos Fernandes, Tito Roberto Sant’Anna Cadaval and Luiz Antonio de Almeida Pinto
Surfaces 2025, 8(3), 64; https://doi.org/10.3390/surfaces8030064 - 1 Sep 2025
Cited by 1 | Viewed by 962
Abstract
The integration of emulsion gels in 3D food printing has emerged as a promising strategy to enhance both the structural fidelity and functional performance of printed foods. Emulsion gels, composed of proteins, polysaccharides, lipids, and their complexes, can provide tunable rheological and mechanical [...] Read more.
The integration of emulsion gels in 3D food printing has emerged as a promising strategy to enhance both the structural fidelity and functional performance of printed foods. Emulsion gels, composed of proteins, polysaccharides, lipids, and their complexes, can provide tunable rheological and mechanical properties suitable for extrusion and shape retention. This review explores the formulation strategies, including phase behavior (O/W, W/O, and double emulsions); stabilization methods; and post-printing treatments, such as enzymatic, ionic, and thermal crosslinking. Advanced techniques, including ultrasound and high-pressure homogenization, are highlighted for improving gel network formation and retention of active compounds. Functional applications are addressed, with a focus on meat analogs, bioactive delivery systems, and personalized nutrition. Furthermore, the role of the oil content, interfacial engineering, and protein–polysaccharide interactions in improving print precision and post-processing performance is emphasized. Despite notable advances, challenges remain in scalability, regulatory compliance, and optimization of print parameters. The integration of artificial intelligence can also provide promising advances for smart design, predictive modeling, and automation of the 3D food printing workflow. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

Back to TopTop