Influence of Processing and Stabilizer Selection on Microstructure, Stability and Rheology of Emulsion-Based Semisolid Formulations
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Emulsion Preparation
2.3. Isolation of Diglycerides (DG) from Mono-and-Diglyceride (MDG)
2.4. Characterization
2.4.1. Microscopy Analysis
2.4.2. Physical Stability
2.4.3. Dynamic Scanning Calorimetry (DSC)
2.4.4. X-Ray Diffraction (XRD) and Small- and Wide-Angle X-Ray Scattering (SAXS)
2.4.5. Rheology Measurements
2.4.6. Contact Angle Measurement
3. Results
3.1. Crystallization Behavior of MDG in Mineral Oil
3.2. Microstructure of Emulsions Prepared with Different Emulsification Temperatures (Tes) and Stabilizers
3.3. Stability of Emulsions Prepared at Different Temperatures (Tes)
3.4. Rheological Properties
3.5. X-Ray Diffraction (XRD)
3.6. Contact Angle
4. Discussion
4.1. Microstructure and Physical Properties of Emulsion Samples
4.2. Effect of Emulsification Temperature on Emulsion Stability
4.2.1. Crystal Size Reduction
4.2.2. Crystal Morphology
4.2.3. Spatial Distribution of Stabilizing Crystals
4.2.4. Droplet Size Reduction
4.3. Effects of Type of Stabilizing Agent on Emulsion Stability
4.4. Increased Stability of MG-Stabilized Emulsions upon Storage
4.5. Implications for Topical Formulations and Limitations of the Current Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDG | Mono-and-diglyceride |
MG | Monoglyceride |
DG | Diglyceride |
PG | Propylene glycol |
API | Active pharmaceutical ingredient |
PEG | Polyethylene glycol |
DSC | Dynamic scanning calorimetry |
XRD | X-ray diffraction |
SAXS | Small-angle X-ray scattering |
PLM | Polarized light microscopy |
PS | Phase separation |
MLCD | Medium- and long-chain diacylglycerol |
References
- Leppert, W.; Malec–Milewska, M.; Zajaczkowska, R.; Wordliczek, J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules 2018, 23, 681. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, K.; Bani, K.S. Topical Drug Delivery Therapeutics, Drug Absorption and Penetration Enhancement Techniques. J. Drug Deliv. Ther. 2021, 11, 105–110. [Google Scholar] [CrossRef]
- Barnes, T.M.; Mijaljica, D.; Townley, J.P.; Spada, F.; Harrison, I.P. Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison. Pharmaceutics 2021, 13, 2012. [Google Scholar] [CrossRef]
- Schafer, N.; Balwierz, R.; Biernat, P.; Ochedzan-Siodlak, W.; Lipok, J. Natural Ingredients of Transdermal Drug Delivery Systems as Permeation Enhancers of Active Substances Through the Stratum Corneum. Mol. Pharm. 2023, 20, 3278–3297. [Google Scholar] [CrossRef]
- Jhawat, V.; Gulia, M.; Sharma, A.K. Chapter 15—Pseudoternary phase diagrams used in emulsion preparation. In Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences; Sharma, N., Ojha, H., Raghav, P.K., Goyal, R.k., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 455–481. [Google Scholar]
- Kitagawa, S.; Yutani, R.; Kodani, R.-I.; Teraoka, R. Differences in the rheological properties and mixing compatibility with heparinoid cream of brand name and generic steroidal ointments: The effects of their surfactants. Results Pharma Sci. 2016, 6, 7–14. [Google Scholar] [CrossRef]
- Lauterbach, A.; Ekelund, K. Rheological temperature sweeping in a quality by design approach for formulation development and optimization. Int. J. Pharm. 2019, 568, 118533. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Q.; Zhang, J.; Yan, W.; Mao, X. Food emulsions stabilized by proteins and emulsifiers: A review of the mechanistic explorations. Int. J. Biol. Macromol. 2024, 261, 129795. [Google Scholar] [CrossRef]
- Zembyla, M.; Murray, B.S.; Sarkar, A. Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: A review. Trends Food Sci. Technol. 2020, 104, 49–59. [Google Scholar] [CrossRef]
- Rousseau, D.; Hodge, S.M. Stabilization of water-in-oil emulsions with continuous phase crystals. Colloids Surf. A Physicochem. Eng. Asp. 2005, 260, 229–237. [Google Scholar] [CrossRef]
- Tenorio-Garcia, E.; Araiza-Calahorra, A.; Simone, E.; Sarkar, A. Recent advances in design and stability of double emulsions: Trends in Pickering stabilization. Food Hydrocoll. 2022, 128, 107601. [Google Scholar] [CrossRef]
- Ali, S.; Tiwari, A.; Yeoh, T.; Doshi, P.; Kelkar, N.; Shah, J.C.; Seth, J.R. Crystallization and Rheology of Mono- and Diglycerides and Their Role in Stabilization of Emulsion Droplets in Model Topical Ointments. Langmuir 2022, 38, 8502–8512. [Google Scholar] [CrossRef]
- Ghosh, S.; Tran, T.; Rousseau, D. Comparison of Pickering and Network Stabilization in Water-in-Oil Emulsions. Langmuir 2011, 27, 6589–6597. [Google Scholar] [CrossRef]
- Iyer, V.; Cayatte, C.; Guzman, B.; Schneider-Ohrum, K.; Matuszak, R.; Snell, A.; Rajani, G.M.; McCarthy, M.P.; Muralidhara, B. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants. Hum. Vaccines Immunother. 2015, 11, 1853–1864. [Google Scholar] [CrossRef]
- Kori, A.H.; Mahesar, S.A.; Sherazi, S.T.H.; Khatri, U.A.; Laghari, Z.H.; Panhwar, T. Effect of process parameters on emulsion stability and droplet size of pomegranate oil-in-water. Grasas Aceites 2021, 72, e410. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; Bao, X.; Wei, Z.; Shi, Y.; Liu, Q.; Gui, X.; Xing, Y. Investigation into the influence of droplet size on the stability of diesel emulsions based on multiple light scattering. J. Mol. Liq. 2023, 390, 123182. [Google Scholar] [CrossRef]
- Santos, J.; Trujillo-Cayado, L.A.; Carrillo, F.; López-Castejón, M.L.; Alfaro-Rodríguez, M.C. Relation between Droplet Size Distributions and Physical Stability for Zein Microfluidized Emulsions. Polymers 2022, 14, 2195. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Kejing, Y.; Zhang, S.; Yi, J.; Zhu, Z.; Decker, E.A.; McClements, D.J. Impact of tea polyphenols on the stability of oil-in-water emulsions coated by whey proteins. Food Chem. 2021, 343, 128448. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.P.; Miron, D.S.; Rădulescu, F.Ș.; Cardot, J.-M.; Maibach, H.I. In vitro release test (IVRT): Principles and applications. Int. J. Pharm. 2022, 626, 122159. [Google Scholar] [CrossRef]
- Xu, X.; Al-Ghabeish, M.; Rahman, Z.; Krishnaiah, Y.S.; Yerlikaya, F.; Yang, Y.; Manda, P.; Hunt, R.L.; Khan, M.A. Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments. Int. J. Pharm. 2015, 493, 412–425. [Google Scholar] [CrossRef]
- Raghavan, L.; Brown, M.; Michniak-Kohn, B.; Ng, S.; Sammeta, S. In Vitro Release Tests as a Critical Quality Attribute in Topical Product Development. In The Role of Microstructure in Topical Drug Product Development; AAPS Advances in the Pharmaceutical Sciences Series; Springer: Cham, Switzerland, 2019; pp. 47–87. [Google Scholar]
- Wan, T.; Xu, T.; Pan, J.; Qin, M.; Pan, W.; Zhang, G.; Wu, Z.; Wu, C.; Xu, Y. Microemulsion based gel for topical dermal delivery of pseudolaric acid B: In vitro and in vivo evaluation. Int. J. Pharm. 2015, 493, 111–120. [Google Scholar] [CrossRef]
- Yuan, M.; Niu, J.; Xiao, Q.; Ya, H.; Zhang, Y.; Fan, Y.; Li, L.; Li, X. Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin. Drug Deliv. 2022, 29, 1232–1242. [Google Scholar] [CrossRef]
- Chow, P.S.; Lim, R.T.; Cyriac, F.; Shah, J.C.; Badruddoza, A.Z.; Yeoh, T.; Yagnik, C.K.; Tee, X.Y.; Wong, A.B.; Chia, V.D.; et al. The Effect of Process Parameters on the Microstructure, Stability, and Sensorial Properties of an Emulsion Cream Formulation. Pharmaceutics 2024, 16, 773. [Google Scholar] [CrossRef]
- Chow, P.S.; Lim, R.T.; Cyriac, F.; Shah, J.C.; Badruddoza, A.Z.; Yeoh, T.; Yagnik, C.K.; Tee, X.Y.; Wong, A.B.; Chia, V.D.; et al. Influence of Manufacturing Process on the Microstructure, Stability, and Sensorial Properties of a Topical Ointment Formulation. Pharmaceutics 2023, 15, 2219. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Liu, C.; Cun, D.; Fang, L. The effect of rheological behavior and microstructure of the emulgels on the release and permeation profiles of Terpinen-4-ol. Eur. J. Pharm. Sci. 2015, 78, 140–150. [Google Scholar] [CrossRef]
- Wong, R.S.H.; Dodou, K. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide) Hydrogels for Transdermal Delivery. Polymers 2017, 9, 286. [Google Scholar] [CrossRef]
- Fanse, S.; Clark, A.; Bao, Q.; Abhang, A.; Maurus, K.; Zou, Y.; Wang, Y.; Zhang, S.; Burgess, D.J. In vitro-in vivo relationship and microstructural insights into long-acting levonorgestrel intrauterine systems. J. Control. Release 2025, 383, 113858. [Google Scholar] [CrossRef]
- Fanse, S.; Bao, Q.; Zou, Y.; Wang, Y.; Burgess, D.J. Impact of polymer crosslinking on release mechanisms from long-acting levonorgestrel intrauterine systems. Int. J. Pharm. 2022, 612, 121383. [Google Scholar] [CrossRef]
- Kang, J.-H.; Yoo, K.-H.; Park, H.-Y.; Hyun, S.-M.; Han, S.-D.; Kim, D.-W.; Park, C.-W. Preparation and In Vivo Evaluation of a Lidocaine Self-Nanoemulsifying Ointment with Glycerol Monostearate for Local Delivery. Pharmaceutics 2021, 13, 1468. [Google Scholar] [CrossRef] [PubMed]
- Kantekin-Erdogan, M.N.; Ketenoglu, O.; Tekin, A. Effect of monoglyceride content on emulsion stability and rheology of mayonnaise. J. Food Sci. Technol. 2019, 56, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, V.; Saraf, I.; Yeoh, T.; Ardelean, I.; Weber, H.; Sarkar, A.; Chen, R.; Vogel, T.; Modhave, D.; Laggner, P.; et al. Interplay of Aging and Lot-to-Lot Variability on the Physical and Chemical Properties of Excipients: A Case Study of Mono- and Diglycerides. Mol. Pharm. 2021, 18, 862–877. [Google Scholar] [CrossRef]
- Chen, C.H.; Terentjev, E.M. Aging and Metastability of Monoglycerides in Hydrophobic Solutions. Langmuir 2009, 25, 6717–6724. [Google Scholar] [CrossRef]
- Chen, C.H.; Terentjev, E.M. Effects of Water on Aggregation and Stability of Monoglycerides in Hydrophobic Solutions. Langmuir 2010, 26, 3095–3105. [Google Scholar] [CrossRef]
- Chen, C.H.; Van Damme, I.; Terentjev, E.M. Phase behavior of C18 monoglyceride in hydrophobic solutions. Soft Matter 2009, 5, 432–439. [Google Scholar] [CrossRef]
- Cholakova, D.; Tcholakova, S.; Denkov, N. Polymorphic Phase Transitions in Bulk Triglyceride Mixtures. Cryst. Growth Des. 2023, 23, 2075–2091. [Google Scholar] [CrossRef]
- Ghazani, S.M.; Marangoni, A.G. New Triclinic Polymorph of Tristearin. Cryst. Growth Des. 2023, 23, 1311–1317. [Google Scholar] [CrossRef]
- Rondou, K.; De Witte, F.; Dewettinck, K.; Van Bockstaele, F. Effect of Shear on Polymorphic Transitions in Monoglyceride Oleogels. Crystals 2025, 15, 495. [Google Scholar] [CrossRef]
- Charó-Alvarado, M.E.; Charó-Alonso, M.A.; de la Peña-Gil, A.; Toro-Vazquez, J.F. Phase Behavior of Monoglycerides in Vegetable and Mineral Oil. Food Biophys. 2023, 18, 556–569. [Google Scholar] [CrossRef]
- Larsson, K. Classification of glyeride crystal forms. Acta Chem. Scand. 1966, 20, 2255–2260. [Google Scholar] [CrossRef]
- Ramezani, M.; Salvia-Trujillo, L.; Martin-Belloso, O. Modulating edible-oleogels physical and functional characteristics by controlling their microstructure. Food Funct. 2024, 15, 663–675. [Google Scholar] [CrossRef]
- Ghosh, S.; Pradhan, M.; Patel, T.; Haj-shafiei, S.; Rousseau, D. Long-term stability of crystal-stabilized water-in-oil emulsions. J. Colloid Interface Sci. 2015, 460, 247–257. [Google Scholar] [CrossRef]
- Saffold, A.C.; Acevedo, N.C. The effect of mono-diglycerides on the mechanical properties, microstructure, and physical stability of an edible rice bran wax–gelatin biphasic gel system. J. Am. Oil Chem. Soc. 2022, 99, 1033–1043. [Google Scholar] [CrossRef]
- Saremnejad, F.; Mohebbi, M.; Koocheki, A. Practical application of nonaqueous foam in the preparation of a novel aerated reduced-fat sauce. Food Bioprod. Process. 2020, 119, 216–225. [Google Scholar] [CrossRef]
- Wang, Y.; Hartel, R.W.; Zhang, L. The stability of aerated emulsions: Effects of emulsifier synergy on partial coalescence and crystallization of milk fat. J. Food Eng. 2021, 291, 110257. [Google Scholar] [CrossRef]
- Scurti, F.; Reynolds, L. An undergraduate laboratory experiment on nucleation and growth via polarizing optical microscopy of semicrystalline polymers. Am. J. Phys. 2025, 93, 406–414. [Google Scholar] [CrossRef]
- Qiu, X.; Li, H.; Du, Y.; Chen, X.; Du, S.; Wang, Y.; Xue, F. Crystal Form Investigation and Morphology Control of Salbutamol Sulfate via Spherulitic Growth. Crystals 2025, 15, 651. [Google Scholar] [CrossRef]
- Kanomi, S.; Azuma, K.; Miyata, T.; Toda, A.; Jinnai, H. Orientation distribution and branching mechanism of lamellar crystals inside an isotactic polystyrene spherulite. Polymer 2025, 326, 128335. [Google Scholar] [CrossRef]
- Wang, C.; Fu, X.; Tang, C.-H.; Huang, Q.; Zhang, B. Octenylsuccinate starch spherulites as a stabilizer for Pickering emulsions. Food Chem. 2017, 227, 298–304. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Yeoh, T.; Shah, J.C.; Walsh, T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J. Pharm. Sci. 2023, 112, 1772–1793. [Google Scholar] [CrossRef]
- Bapat, S.; Segets, D. Sedimentation Dynamics of Colloidal Formulations through Direct Visualization: Implications for Fuel Cell Catalyst Inks. ACS Appl. Nano Mater. 2020, 3, 7384–7391. [Google Scholar] [CrossRef]
- Sodeifian, G.; Nikooamal, H.R.; Yousefi, A.A. Molecular dynamics study of epoxy/clay nanocomposites: Rheology and molecular confinement. J. Polym. Res. 2012, 19, 9897. [Google Scholar] [CrossRef]
- Holder, C.F.; Schaak, R.E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef]
- Lin, N.; Liu, X.Y. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles. Chem. Soc. Rev. 2015, 44, 7881–7915. [Google Scholar] [CrossRef]
- Ghosh, S.; Rousseau, D. Fat crystals and water-in-oil emulsion stability. Curr. Opin. Colloid Interface Sci. 2011, 16, 421–431. [Google Scholar] [CrossRef]
- Paunov, V.N.; Al-Shehri, H.; Horozov, T.S. Attachment of composite porous supra-particles to air-water and oil-water interfaces: Theory and experiment. Phys. Chem. Chem. Phys. 2016, 18, 26495–26508. [Google Scholar] [CrossRef] [PubMed]
- Lupi, F.R.; Greco, V.; Baldino, N.; de Cindio, B.; Fischer, P.; Gabriele, D. The effects of intermolecular interactions on the physical properties of organogels in edible oils. J. Colloid Interface Sci. 2016, 483, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Chen, X.; Peng, Y. The Formation and Stabilization of Oily Collector Emulsions—A Critical Review. Miner. Process. Extr. Metall. Rev. 2021, 42, 388–405. [Google Scholar] [CrossRef]
- L’Estimé, M.; Schindler, M.; Shahidzadeh, N.; Bonn, D. Droplet Size Distribution in Emulsions. Langmuir 2024, 40, 275–281. [Google Scholar] [CrossRef]
- Ouyang, J.; Meng, Y. Quantitative effect of droplet size and emulsion viscosity on the storage stability of asphalt emulsion. Constr. Build. Mater. 2022, 342, 127994. [Google Scholar] [CrossRef]
- Rousseau, D. Fat crystals and emulsion stability—A review. Food Res. Int. 2000, 33, 3–14. [Google Scholar] [CrossRef]
- Kim, I.; Worthen, A.J.; Johnston, K.P.; DiCarlo, D.A.; Huh, C. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. J. Nanopart. Res. 2016, 18, 82. [Google Scholar] [CrossRef]
- Metilli, L.; Lazidis, A.; Francis, M.; Marty-Terrade, S.; Ray, J.; Simone, E. The Effect of Crystallization Conditions on the Structural Properties of Oleofoams Made of Cocoa Butter Crystals and High Oleic Sunflower Oil. Cryst. Growth Des. 2021, 21, 1562–1575. [Google Scholar] [CrossRef]
- Tenorio-Garcia, E.; Araiza-Calahorra, A.; Rappolt, M.; Simone, E.; Sarkar, A. Pickering Water-in-Oil Emulsions Stabilized Solely by Fat Crystals. Adv. Mater. Interfaces 2023, 10, 2300190. [Google Scholar] [CrossRef]
- Gao, Y.; Mao, J.; Meng, Z. Tracing distribution and interface behavior of water droplets in W/O emulsions with fat crystals. Food Res. Int. 2023, 163, 112215. [Google Scholar] [CrossRef]
- Ghosh, S.; Rousseau, D. Triacylglycerol Interfacial Crystallization and Shear Structuring in Water-in-Oil Emulsions. Cryst. Growth Des. 2012, 12, 4944–4954. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, C.; Li, G.; Lee, W.J.; Tan, C.P.; Lai, O.M.; Wang, Y. Effect of diacylglycerol interfacial crystallization on the physical stability of water-in-oil emulsions. Food Chem. 2020, 327, 127014. [Google Scholar] [CrossRef] [PubMed]
- Hodge, S.M.; Rousseau, D. Flocculation and coalescence in water-in-oil emulsions stabilized by paraffin wax crystals. Food Res. Int. 2003, 36, 695–702. [Google Scholar] [CrossRef]
- Hodge, S.M.; Rousseau, D. Continuous-phase fat crystals strongly influence water-in-oil emulsion stability. J. Am. Oil Chem. Soc. 2005, 82, 159–164. [Google Scholar] [CrossRef]
- Shamberger, P.J.; O’Malley, M.J. Heterogeneous nucleation of thermal storage material LiNO3·3H2O from stable lattice-matched nucleation catalysts. Acta Mater. 2015, 84, 265–274. [Google Scholar] [CrossRef]
- Verma, V.; Zeglinski, J.; Hudson, S.; Davern, P.; Hodnett, B.K. Dependence of Heterogeneous Nucleation on Hydrogen Bonding Lifetime and Complementarity. Cryst. Growth Des. 2018, 18, 7158–7172. [Google Scholar] [CrossRef]
- Verma, V.; Mitchell, H.; Errington, E.; Guo, M.; Heng, J.Y.Y. Templated Crystallization of Glycine Homopeptides: Experimental and Computational Developments. Chem. Eng. Technol. 2023, 46, 1271–1278. [Google Scholar] [CrossRef]
- Prodromidis, P.; Katsanidis, E.; Biliaderis, C.G.; Moschakis, T. Effect of Tween 20, emulsification temperature and ultrasonication intensity on structured emulsions with monoglycerides. Food Hydrocoll. 2024, 151, 109772. [Google Scholar] [CrossRef]
- Sagiri, S.S.; Samateh, M.; John, G. Investigating the Emulsifying Mechanism of Stereoisomeric Sugar Fatty Acyl Molecular Gelators. Langmuir 2024, 40, 13763–13772. [Google Scholar] [CrossRef]
- Li, G.; Lee, W.J.; Liu, N.; Lu, X.; Tan, C.P.; Lai, O.M.; Qiu, C.; Wang, Y. Stabilization mechanism of water-in-oil emulsions by medium- and long-chain diacylglycerol: Post-crystallization vs. pre-crystallization. LWT 2021, 146, 111649. [Google Scholar] [CrossRef]
- Carrillo De Hert, S.; Rodgers, T.L. On the effect of dispersed phase viscosity and mean residence time on the droplet size distribution for high-shear mixers. Chem. Eng. Sci. 2017, 172, 423–433. [Google Scholar] [CrossRef]
- Håkansson, A. Rotor-Stator Mixers: From Batch to Continuous Mode of Operation—A Review. Processes 2018, 6, 32. [Google Scholar] [CrossRef]
- James, J.; Cooke, M.; Trinh, L.; Hou, R.; Martin, P.; Kowalski, A.; Rodgers, T.L. Scale-up of batch rotor–stator mixers. Part 1—Power constants. Chem. Eng. Res. Des. 2017, 124, 313–320. [Google Scholar] [CrossRef]
- Li, W.; Leong, T.S.H.; Ashokkumar, M.; Martin, G.J.O. A study of the effectiveness and energy efficiency of ultrasonic emulsification. Phys. Chem. Chem. Phys. 2018, 20, 86–96. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Controlling and predicting droplet size of nanoemulsions: Scaling relations with experimental validation. Soft Matter 2016, 12, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.F.; Masoumi, H.R.F.; Karjiban, R.A.; Stanslas, J.; Kirby, B.P.; Basri, M.; Basri, H.B. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability. Ultrason. Sonochem. 2016, 29, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Fujiu, K.B.; Kobayashi, I.; Neves, M.A.; Uemura, K.; Nakajima, M. Influence of temperature on production of water-in-oil emulsions by microchannel emulsification. Colloids Surf. A Physicochem. Eng. Asp. 2012, 411, 50–59. [Google Scholar] [CrossRef][Green Version]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll. 2008, 22, 1191–1202. [Google Scholar] [CrossRef]
- Yao, J.; Lin, F.; Kim, H.S.; Park, J. The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-Junction Microfluidic Droplet Generator. Micromachines 2019, 10, 808. [Google Scholar] [CrossRef]
- Wang, F.C.; Marangoni, A.G. Microstructural basis for water release from glycerol monostearate structured emulsions upon transformation from the α-gel to the coagel phase. Food Struct. 2016, 7, 1–5. [Google Scholar] [CrossRef]
- Batte, H.D.; Wright, A.J.; Rush, J.W.; Idziak, S.H.J.; Marangoni, A.G. Phase Behavior, Stability, and Mesomorphism of Monostearin–oil–water Gels. Food Biophys. 2007, 2, 29–37. [Google Scholar] [CrossRef]
- Ojijo, N.K.O.; Kesselman, E.; Shuster, V.; Eichler, S.; Eger, S.; Neeman, I.; Shimoni, E. Changes in microstructural, thermal, and rheological properties of olive oil/monoglyceride networks during storage. Food Res. Int. 2004, 37, 385–393. [Google Scholar] [CrossRef]
- Tavernier, I.; Doan, C.D.; Van de Walle, D.; Danthine, S.; Rimaux, T.; Dewettinck, K. Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RSC Adv. 2017, 7, 12113–12125. [Google Scholar] [CrossRef]
- Omar, Z.; Rashid, N.A.; Fauzi, S.H.M.; Shahrim, Z.; Marangoni, A.G. Fractal dimension in palm oil crystal networks during storage by image analysis and rheological measurements. LWT-Food Sci. Technol. 2015, 64, 483–489. [Google Scholar] [CrossRef]
Ingredient | Function | Composition (%) |
---|---|---|
Propylene glycol (PG) | Aqueous/solvent phase | 10 |
Mineral oil | Oil phase | 80 |
MDG or MG or DG | Emulsifying agent | 10 or 5 |
Emulsifying Agent | Emulsification Temperature (Te) (°C) | Composition | ||
---|---|---|---|---|
Mineral Oil | PG | Stabilizer | ||
MDG | 55 | 80 | 10 | 10 |
45 | 80 | 10 | 10 | |
35 | 80 | 10 | 10 | |
Distilled MG | 60 | 80 | 10 | 5 |
50 | 80 | 10 | 5 | |
40 | 80 | 10 | 5 | |
30 | 80 | 10 | 10 | |
DG | 45 | 80 | 10 | 10 |
35 | 80 | 10 | 10 |
MDG | MG | DG | |||||||
---|---|---|---|---|---|---|---|---|---|
Te (°C) | 35 | 45 | 55 | 30 | 40 | 50 | 60 | 35 | 45 |
Instability Index (Fresh) | 0.382 (0.003) | 0.444 (0.006) | 0.375 (0.002) | 0.285 (0.002) | 0.322 (0.006) | 0.354 (0.010) | 0.226 (0.003) | 0.319 (0.006) | 0.103 (0.008) |
Instability Index (1 month) | 0.400 (0.005) | 0.431 (0.003) | 0.360 (0.008) | 0.129 (0.003) | |||||
Visual Observation (1 month) | No PS b | No PS | No PS | PS at day 20 | PS at day 5 | PS at day 1 | No PS | PS at day 7 | PS at day 14 |
MDG | MG | DG | |||||||
---|---|---|---|---|---|---|---|---|---|
Te (°C) | 35 | 45 | 55 | 30 | 40 | 50 | 60 | 35 | 45 |
Crossover Stress (Fresh) (Pa) | 11.49 (0.24) | 2.79 (0.13) | 13.78 (0.28) | 1.45 (0.14) | 0.92 (0.02) | 0.58 (0.04) | 1.11 (0.02) | 1.10 (0.03) | 3.08 (0.17) |
Crossover Stress (1 month) (Pa) | 14.29 (2.46) | 3.53 (0.22) | 16.89 (0.48) | 16.85 (1.50) |
MDG | MG | |
---|---|---|
θ (°) | 146.3 (1.8) | 124.6 (1.5) |
Representative Image |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Tee, X.Y.; Poornachary, S.K.; Simone, E.; Chow, P.S. Influence of Processing and Stabilizer Selection on Microstructure, Stability and Rheology of Emulsion-Based Semisolid Formulations. Pharmaceutics 2025, 17, 1221. https://doi.org/10.3390/pharmaceutics17091221
Yang R, Tee XY, Poornachary SK, Simone E, Chow PS. Influence of Processing and Stabilizer Selection on Microstructure, Stability and Rheology of Emulsion-Based Semisolid Formulations. Pharmaceutics. 2025; 17(9):1221. https://doi.org/10.3390/pharmaceutics17091221
Chicago/Turabian StyleYang, Ruochen, Xin Yi Tee, Sendhil Kumar Poornachary, Elena Simone, and Pui Shan Chow. 2025. "Influence of Processing and Stabilizer Selection on Microstructure, Stability and Rheology of Emulsion-Based Semisolid Formulations" Pharmaceutics 17, no. 9: 1221. https://doi.org/10.3390/pharmaceutics17091221
APA StyleYang, R., Tee, X. Y., Poornachary, S. K., Simone, E., & Chow, P. S. (2025). Influence of Processing and Stabilizer Selection on Microstructure, Stability and Rheology of Emulsion-Based Semisolid Formulations. Pharmaceutics, 17(9), 1221. https://doi.org/10.3390/pharmaceutics17091221