Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TBP–SA Complexes
2.2.1. Effect of Different pH on TBP–SA Complex Preparation
2.2.2. Effect of SA Concentration on TBP–SA Complex Preparation
2.3. Determination of Particle Size and Zeta Potential of TBP–SA Complexes
2.4. Determination of Emulsifying Properties of TBP–SA Complex
2.5. Determination of Surface Hydrophobicity of TBP–SA Complexes
2.6. Determination of Differential Scanning Calorimetry (DSC) for TBP–SA Complex
2.7. Determination of Fourier Transform Infrared Spectroscopy (FTIR) for TBP–SA Complex
2.8. Scanning Electron Microscopy (SEM) Observation of TBP–SA
2.9. Preparation of TBP–SA Complex-Stabilized Pickering Emulsion
2.10. Determination of Emulsion Droplet Size Distribution and Zeta Potential
2.11. Morphological Characterization and Microstructure Analysis of Emulsions
2.12. Confocal Laser Scanning Microscopy (CLSM) Analysis
2.13. Emulsion Stability Test
2.13.1. Storage Stability and Creaming Index (CI) Analysis
2.13.2. Centrifugation Stability
2.13.3. Evaluation of Thermal Stability
2.13.4. Evaluation of Salt Ion Concentration Stability
2.13.5. Evaluation of pH Stability
2.14. Data Analysis and Statistics
3. Results and Discussion
3.1. Optimization of TBP–SA Complex Preparation Conditions
3.1.1. Effect of pH on Particle Size and Zeta Potential of TBP–SA Complex
3.1.2. Effect of SA Concentration on Particle Size and Zeta Potential of TBP–SA Complex
3.2. Analysis of the Emulsification Properties of TBP–SA Complex
3.3. Analysis of Surface Hydrophobicity
3.4. DSC Analysis of TBP–SA Complex
3.5. FTIR Analysis of TBP–SA Complex
3.6. SEM Results of TBP–SA Complex
3.7. Construction of Pickering Emulsions
3.8. Physical Stability of Pickering Emulsions
3.8.1. Storage Stability
3.8.2. Centrifugal Stability
3.9. Environmental Response Stability of Pickering Emulsions
3.9.1. Thermal Stability
3.9.2. Salt Ion Concentration Stability
3.9.3. pH Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.; Liu, Z.; Liu, H.; Xu, D.; Hu, L.; Chitrakar, B.; Mo, H.; Hongbo, L. Pickering emulsion gel stabilized by Auricularia auricula protein. J. Food Eng. 2024, 367, 111884. [Google Scholar] [CrossRef]
- Cui, J.; Hossain, M.; Wang, Z.; Chang, C. Enzymatically produced nanocellulose as emulsifier for Pickering emulsion. Food Hydrocoll. 2023, 144, 108997. [Google Scholar] [CrossRef]
- de Gennaro, G.; Difonzo, G.; Quiles, A.; Hernando, I.; Caponio, F. Design Optimization of emulsions based on fine fraction of durum wheat oil cake: Structural and rheological properties. Food Hydrocoll. 2024, 154, 110107. [Google Scholar] [CrossRef]
- Hu, Y.; Cao, Y.; Nguyen, F.M.; Frank, B.D.; Kalinowski, M.J.; Li, M.; Rajani, S.; Marelli, B. Antibody-Targeted Phytohormone Delivery Using Foliar Sprayed Silk Fibroin Pickering Emulsions. Adv. Funct. Mater. 2024, 34, 2402618. [Google Scholar] [CrossRef]
- Chen, Y.; Guan, W.; Zhang, Y.; Yan, C.; Li, B.; Wei, Y.; Pan, J.; Yan, Y. One-Pot Synthesis of the Biofuel 5-Ethoxymethylfurfural from Carbohydrates Using a Bifunctional Catalyst Prepared through a Pickering HIPE Template and Pore-Filled Strategy. Energy Fuels 2020, 34, 14264–14274. [Google Scholar] [CrossRef]
- Schröder, A.; Sprakel, J.; Boerkamp, W.; Schroën, K.; Berton-Carabin, C.C. Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles? Food Res. Int. 2019, 120, 352–363. [Google Scholar] [CrossRef]
- Zou, L.; Wu, D.; Ren, G.; Hu, Y.; Peng, L.; Zhao, J.; Garcia-Perez, P.; Carpena, M.; Prieto, M.A.; Cao, H.; et al. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Crit. Rev. Food Sci. Nutr. 2023, 63, 657–673. [Google Scholar] [CrossRef]
- Li, D.; Zhu, L.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H. Different interactions between Tartary buckwheat protein and Tartary buckwheat phenols during extraction: Alterations in the conformation and antioxidant activity of protein. Food Chem. 2023, 418, 135711. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Yan, B.-B.; Xiao, Y.; Zhou, Y.-M.; Liu, T.-Y. Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes. Food Chem. Toxicol. 2018, 119, 296–301. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, R.; Li, Y.M.; Liang, N.; Zhao, Y.; Zhu, H.; He, Z.; Liu, J.; Hao, W.; Jiao, R.; et al. Cholesterol-Lowering Activity of Tartary Buckwheat Protein. J. Agric. Food Chem. 2017, 65, 1900–1906. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Zhao, Q.; Wang, Y.; Li, C.; Zou, L.; Hu, Y. Effects of Tartary Buckwheat Protein on Gut Microbiome and Plasma Metabolite in Rats with High-Fat Diet. Foods 2021, 10, 2457. [Google Scholar] [CrossRef] [PubMed]
- Tomotake, H.; Shimaoka, I.; Kayashita, J.; Nakajoh, M.; Kato, N. Physicochemical and functional properties of buckwheat protein product. J. Agric. Food Chem. 2002, 50, 2125–2129. [Google Scholar] [CrossRef]
- Jones, O.; Decker, E.A.; McClements, D.J. Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocoll. 2010, 24, 239–248. [Google Scholar] [CrossRef]
- Diao, Y.; Zhang, Y.; Zhang, W.; Xu, W.; Hu, Z.; Yi, Y.; Wang, Y. Acid-thermal-induced formation of rice bran protein nano-particles: Foaming properties and physicochemical characteristics. Int. J. Food Sci. Technol. 2022, 57, 3624–3633. [Google Scholar] [CrossRef]
- Tang, C.-H.; Wang, X.-Y. Physicochemical and structural characterisation of globulin and albumin from common buckwheat (Fagopyrum esculentum Moench) seeds. Food Chem. 2010, 121, 119–126. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, Q.; Shen, X. Quinoa protein/polysaccharide electrostatic complex stabilized vegan high internal phase emulsions for 3D printing: Role of complex state and gelling-type polysaccharides. Food Chem. 2023, 43, 137447. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, W.; Ji, S.; Xia, Q. Soy protein isolate-xanthan gum complexes to stabilize Pickering emulsions for quercetin delivery. Food Chem. 2024, 461, 140794. [Google Scholar] [CrossRef] [PubMed]
- Nigmatullin, R.; Johns, M.A.; Eichhorn, S.J. Hydrophobized cellulose nanocrystals enhance xanthan and locust bean gum network properties in gels and emulsions. Carbohydr. Polym. 2020, 250, 116953. [Google Scholar] [CrossRef]
- Wang, L.-J.; Yin, S.-W.; Wu, L.-Y.; Qi, J.-R.; Guo, J.; Yang, X.-Q. Fabrication and characterization of Pickering emulsions and oil gels stabilized by highly charged zein/chitosan complex particles (ZCCPs). Food Chem. 2016, 213, 462–469. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Z.; Guo, A.; Mackie, A.; Zhang, L.; Liao, W.; Mao, L.; Yuan, F.; Gao, Y. Zein Colloidal Particles and Cellulose Nanocrystals Synergistic Stabilization of Pickering Emulsions for Delivery of beta-Carotene. J. Agric. Food Chem. 2021, 69, 12278–12294. [Google Scholar] [CrossRef]
- Sun, J.; Yang, X.; Diao, J.; Wang, Y.; Wang, C. Exploration of Pea Protein Isolate–Sodium Alginate Complexes as a Novel Strategy to Substitute Sugar in Plant Cream: Synergistic Interactions Between the Two at the Interface. Foods 2025, 14, 991. [Google Scholar] [CrossRef]
- Liu, X.; Qin, X.; Wang, Y.; Zhong, J. Physicochemical properties and formation mechanism of whey protein isolate-sodium alginate complexes: Experimental and computational study. Food Hydrocoll. 2022, 131, 107786. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Liu, S.; Yang, H.; Lu, F.; Zhu, M. Quinoa Protein/Sodium Alginate Complex-Stabilized Pickering Emulsion for Sustained Release of Curcumin and Enhanced Anticancer Activity Against HeLa Cells. Foods 2025, 14, 2705. [Google Scholar] [CrossRef]
- Zhan, Y.; Wei, H.; Jiang, Y.; Zeng, M.; Chen, Y.; Sun, Q.; Hu, K. Egg white protein-sodium alginate nanoparticle stabilized algal oil Pickering emulsion loaded with lutein: Stability, bioaccessibility, and synergistic anti-inflammation. Int. J. Biol. Macromol. 2025, 317 Pt 1, 144809. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, H.-L.; Pan, L.-H.; Li, Q.-M.; Luo, J.-P.; Zha, X.-Q. The nanomicelles consisting of lotus root amylopectin and quinoa protein: Construction and encapsulation for quercetin. Food Chem. 2022, 387, 132924. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Fan, S.; Ruan, Y.; Wu, D.; Yang, T.; Hu, Y.; Li, W.; Zou, L. Tartary Buckwheat Starch Modified with Octenyl Succinic Anhydride for Stabilization of Pickering Nanoemulsions. Foods 2023, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, Y.; Zhao, M.; Ren, J.; Yang, B. Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chem. 2011, 127, 1438–1443. [Google Scholar] [CrossRef]
- Zhang, Y.; Puolanne, E.; Ertbjerg, P. Mimicking myofibrillar protein denaturation in frozen-thawed meat: Effect of pH at high ionic strength. Food Chem. 2021, 338, 128017. [Google Scholar] [CrossRef]
- Gül, O.; Gül, L.B.; Parlak, M.E.; Sarıcaoğlu, F.T.; Atalar, I.; Törnük, F. Effects of high hydrostatic pressure treatment on structural, techno-functional and rheological properties of sesame protein isolate. Food Hydrocoll. 2025, 168, 111549. [Google Scholar] [CrossRef]
- Chen, W.; Ju, X.; Aluko, R.E.; Zou, Y.; Wang, Z.; Liu, M.; He, R. Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin. Food Hydrocoll. 2020, 108, 106042. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Li, J.; Wang, Y.; Yang, X. Enzyme-assisted development of biofunctional polyphenol-enriched buckwheat protein: Physicochemical properties, in vitro digestibility, and antioxidant activity. J. Sci. Food Agric. 2019, 99, 3176–3185. [Google Scholar] [CrossRef]
- Cao, J.; Tong, X.; Wang, M.; Tian, T.; Yang, S.; Sun, M.; Lyu, B.; Cao, X.; Wang, H.; Jiang, L. Soy Protein Isolate/Sodium Alginate Microparticles under Different pH Conditions: Formation Mechanism and Physicochemical Properties. Foods 2022, 11, 790. [Google Scholar] [CrossRef]
- Li, L.; Tao, L.; Geng, M.; Tian, Y. Regulating association strength between SPI and pectin via sodium alginate: Ternary composite construction and potential-use assessment. Food Hydrocoll. 2025, 166, 111349. [Google Scholar] [CrossRef]
- Zhou, Y.; Yue, W.; Luo, Y.; Luo, Q.; Liu, S.; Chen, H.; Qin, W.; Zhang, Q. Preparation and stability characterization of soybean protein isolate/sodium alginate complexes-based nanoemulsions using high-pressure homogenization. LWT 2022, 154, 112607. [Google Scholar] [CrossRef]
- Kuang, Y.; Xiao, Q.; Yang, Y.; Liu, M.; Wang, X.; Deng, P.; Wu, K.; Liu, Y.; Peng, B.; Jiang, F.; et al. Investigation and Characterization of Pickering Emulsion Stabilized by Alkali-Treated Zein (AZ)/Sodium Alginate (SA) Composite Particles. Materials 2023, 16, 3164. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, Y.; Liu, H.; Chen, Q.; Liu, Q.; Kong, B. Soy protein isolate-sodium alginate colloidal particles for improving the stability of high internal phase Pickering emulsions: Effects of mass ratios. Food Chem. X 2024, 21, 101094. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yan, J.; Li, W.; Wang, Y.; McClements, D.J.; Liu, X.; Liu, F. Enhanced printability of food-grade edible inks: Emulsions formulated with modified pea protein and sodium alginate. Food Hydrocoll. 2024, 152, 109946. [Google Scholar] [CrossRef]
- Wei, Y.; Cai, Z.; Wu, M.; Guo, Y.; Tao, R.; Li, R.; Wang, P.; Ma, A.; Zhang, H. Comparative studies on the stabilization of pea protein dispersions by using various polysaccharides. Food Hydrocoll. 2020, 98, 105233. [Google Scholar] [CrossRef]
- Bhinder, S.; Kaur, A.; Singh, B.; Yadav, M.P.; Singh, N. Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Res. Int. 2020, 130, 108946. [Google Scholar] [CrossRef]
- Ma, L.; Long, W.; Liu, Y. The fabrication of gastrointestinal pH-responsive sodium alginate surface-modified protein vehicles to improve limonin digestive stability, bioaccessibility and trans-intestinal mucus barrier capacity. Food Hydrocoll. 2025, 160, 110719. [Google Scholar] [CrossRef]
- Niu, J.; You, T.; Wang, X.; Ya, H.; Liang, S.; Zhao, R.; Ma, Y. Study on stability and in vitro digestion property of Lutein Pickering emulsions encapsulated with whey protein isolate /sodium alginate/tea polyphenols. J. Food Meas. Charact. 2024, 18, 9736–9751. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Y.; Yang, Y.; Zhao, J.; Zhang, Y.; Li, L.; Wang, Q.; Ming, J. Interaction between wheat gliadin and quercetin under different pH conditions analyzed by multi-spectroscopy methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117937. [Google Scholar] [CrossRef]
- Ruan, Y.-Y.; Fan, S.-S.; Jing, K.-N.; Song, Y.; Ding, Z.-Y.; Wu, D.-T.; Hu, Y.-C.; Zou, L.; Li, W. Structural and functional modifications of quinoa protein via hyaluronic acid-induced Maillard reaction. Int. J. Biol. Macromol. 2025, 298, 139940. [Google Scholar] [CrossRef]
- Diao, X.; Wang, Y.; Jia, R.; Chen, X.; Liu, G.; Liu, D.; Guan, H. Influences of ultrasonic treatment on the physicochemical properties and microstructure of diacylglycerol-loaded emulsion stabilized with soybean protein isolate and sodium alginate. Ultrason. Sonochem. 2024, 108, 106981. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Z.; Su, J.; Ma, Y.; Zhang, S.; Shao, Z.; Ge, X.; Cheng, X.; Zhou, Z. Preparation of sodium alginate and chitosan modified curcumin liposomes and study on the formation of protein corona. Int. J. Biol. Macromol. 2025, 293, 139392. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, S.; Zhang, X.; Liang, B.; Li, X.; Li, Y.; Sun, C. Double-crosslinked pea protein isolation-sodium alginate composite microgels embedding Lactobacillus plantarum: Effect of calcium chloride concentration. LWT 2025, 222, 117670. [Google Scholar] [CrossRef]
- Li, D.; Zhu, L.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H. Comparative study of dietary phenols with Tartary buckwheat protein (2S/13S): Impact on structure, binding sites and functionality of protein. J. Sci. Food Agric. 2024, 104, 698–706. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Chen, Y.; Zheng, F.; Ban, H.; Liu, J.; Cai, D.; Xiu, L. Study on the stability of sodium alginate modified zein/adzuki bean seed coat polyphenol composite nanoparticles and the loading of curcumin in emulsion. LWT 2025, 226, 117978. [Google Scholar] [CrossRef]
- Tan, Y.; Chan, S.; Wu, B.; Wang, H.; Lou, Z. Fabrication of pH-responsive whey protein/sodium alginate composite hydrogel beads for theaflavins. J. Food Eng. 2025, 387, 112324. [Google Scholar] [CrossRef]
- Li, D.; Zhu, L.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H. Tartary buckwheat protein-phenol conjugate prepared by alkaline-based environment: Identification of covalent binding sites of phenols and alterations in protein structural and functional characteristics. Int. J. Biol. Macromol. 2024, 257 Pt 2, 127504. [Google Scholar] [CrossRef]
- Annappa, H.; Tamatam, A.; Nallamuthu, I.; Ranganathan, K. Formulation of pH-responsive nanoparticles using zein/sodium alginate polymers for enhanced bioavailability of the vitamin D3. Int. J. Biol. Macromol. 2025, 313, 144140. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Y.; Wang, W.; Qiao, J.; Guo, S.; Zhao, C.; Zhou, J.; Xue, Y.; Xing, B.; Guo, S.; et al. Effects of glycation treatment on the structural, physicochemical, and in vitro digestible properties of tartary buckwheat protein. LWT 2024, 205, 116493. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Y.; Qiao, J.; Liang, Y.; Zhou, J.; Guo, S.; Zhao, C.; Xing, B.; Qin, P.; Zhang, L.; et al. Effect of high moisture extrusion on the structure and physicochemical properties of Tartary buckwheat protein and its in vitro digestion. Food Res. Int. 2024, 180, 114065. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Rodriguez, G.; Tenorio-Garcia, E.; Ettelaie, R.; Lishchuk, S.V.; Harbottle, D.; Murray, B.S.; Sarkar, A. Demulsification of Pickering emulsions: Advances in understanding mechanisms to applications. Soft Matter 2024, 20, 7344–7356. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Li, T.; Zhou, L.; Chen, L.; Lyu, Q.; Liu, G.; Wang, X.; Chen, X. Potato starch/naringenin complexes for high-stability Pickering emulsions: Structure, properties, and emulsion stabilization mechanism. Int. J. Biol. Macromol. 2024, 264 Pt 2, 130597. [Google Scholar] [CrossRef]
- Zeng, T.; Wu, Z.-L.; Zhu, J.-Y.; Yin, S.-W.; Tang, C.-H.; Wu, L.-Y.; Yang, X.-Q. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Food Chem. 2017, 231, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhou, L.; Yang, F.; Yao, J.; Ma, Y.; Liu, J. Construction of high internal phase Pickering emulsions stabilized by bamboo fungus protein gels with the effect of pH. Food Chem. 2022, 369, 130954. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Ahmad, M.; Ying, R.; Wang, Y.; Tan, C. Fabrication of pickering high internal phase emulsions stabilized by pecan protein/xanthan gum for enhanced stability and bioaccessibility of quercetin. Food Chem. 2021, 357, 129732. [Google Scholar] [CrossRef]
- An, Z.; Liu, Z.; Mo, H.; Hu, L.; Li, H.; Xu, D.; Chitrakar, B. Preparation of Pickering emulsion gel stabilized by tea residue protein/xanthan gum particles and its application in 3D printing. J. Food Eng. 2023, 343, 111378. [Google Scholar] [CrossRef]
- Cao, M.; Liu, C.; Shi, J.; Ni, F.; Qi, J.; Shen, Q.; Huang, M.; Ren, G.; Tian, S.; Lin, Q.; et al. Fabrication and characterization of oil-in-water pickering emulsions stabilized by ZEIN-HTCC nanoparticles as a composite layer. Food Res. Int. 2021, 148, 110606. [Google Scholar] [CrossRef]
- Xu, W.; Jia, Y.; Li, J.; Sun, H.; Cai, L.; Wu, G.; Kang, M.; Zang, J.; Luo, D. Pickering emulsion with high freeze-thaw stability stabilized by xanthan gum/lysozyme nanoparticles and konjac glucomannan. Int. J. Biol. Macromol. 2024, 261 Pt 2, 129740. [Google Scholar] [CrossRef]
- Zhu, Q.; Qiu, Y.; Zhang, L.; Lu, W.; Pan, Y.; Liu, X.; Li, Z.; Yang, H. Encapsulation of lycopene in Pickering emulsion stabilized by complexes of whey protein isolate fibrils and sodium alginate: Physicochemical property, structural characterization and in vitro digestion property. Food Res. Int. 2024, 191, 114675. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Hu, X.; Wu, J.; Chen, R.; Dai, T.; Liu, Y.; Luo, S.; Liu, C. Soluble starch/whey protein isolate complex-stabilized high internal phase emulsion: Interaction and stability. Food Hydrocoll. 2021, 111, 106377. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, J.; Zhong, W.; Huang, C.; Zhi, Z.; Pang, J.; Wu, C. Preparation and Characterization of Fish Oil Pickering Emulsions Stabilized by Resveratrol-Loaded Gliadin/Chitin Nanocrystal Composite Nanoparticles. J. Agric. Food Chem. 2024, 72, 9436–9444. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Shen, X.; Zhou, G.; Xu, X.; Cao, Y.; Li, W.; Hu, Y.; Zhao, J.; Wu, D.; Huang, Z.; et al. Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles. Foods 2025, 14, 3429. https://doi.org/10.3390/foods14193429
Song Y, Shen X, Zhou G, Xu X, Cao Y, Li W, Hu Y, Zhao J, Wu D, Huang Z, et al. Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles. Foods. 2025; 14(19):3429. https://doi.org/10.3390/foods14193429
Chicago/Turabian StyleSong, Yu, Xueli Shen, Gangyue Zhou, Xia Xu, Yanan Cao, Wei Li, Yichen Hu, Jianglin Zhao, Dingtao Wu, Zunxi Huang, and et al. 2025. "Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles" Foods 14, no. 19: 3429. https://doi.org/10.3390/foods14193429
APA StyleSong, Y., Shen, X., Zhou, G., Xu, X., Cao, Y., Li, W., Hu, Y., Zhao, J., Wu, D., Huang, Z., & Zou, L. (2025). Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles. Foods, 14(19), 3429. https://doi.org/10.3390/foods14193429