Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,448)

Search Parameters:
Keywords = emission reduction cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1937 KiB  
Article
Intelligent Rebar Optimization Framework for Urban Transit Infrastructure: A Case Study of a Diaphragm Wall in a Singapore Mass Rapid Transit Station
by Daniel Darma Widjaja and Sunkuk Kim
Smart Cities 2025, 8(4), 130; https://doi.org/10.3390/smartcities8040130 (registering DOI) - 7 Aug 2025
Abstract
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and [...] Read more.
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and waste, factors that contribute significantly to carbon emissions. This study presents an AI-assisted rebar optimization framework to improve constructability and reduce waste in MRT-related diaphragm wall construction. The framework integrates the BIM concept with a custom greedy hybrid Python-based metaheuristic algorithm based on the WOA, enabling optimization through special-length rebar allocation and strategic coupler placement. Unlike conventional approaches reliant on stock-length rebars and lap splicing, this approach incorporates constructability constraints and reinforcement continuity into the optimization process. Applied to a high-density MRT project in Singapore, it demonstrated reductions of 19.76% in rebar usage, 84.57% in cutting waste, 17.4% in carbon emissions, and 14.57% in construction cost. By aligning digital intelligence with practical construction requirements, the proposed framework supports smart city goals through resource-efficient practices, construction innovation, and urban infrastructure decarbonization. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
19 pages, 1835 KiB  
Article
Methods for Enhancing Energy and Resource Efficiency in Sunflower Oil Production: A Case Study from Bulgaria
by Penka Zlateva, Angel Terziev, Nikolay Kolev, Martin Ivanov, Mariana Murzova and Momchil Vasilev
Eng 2025, 6(8), 195; https://doi.org/10.3390/eng6080195 - 6 Aug 2025
Abstract
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of [...] Read more.
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of vegetable fats, ranking second to butter in daily consumption. The aim of this study is to evaluate and propose methods to improve energy and resource efficiency in sunflower oil production in Bulgaria. The analysis is based on data from an energy audit conducted in 2023 at an industrial sunflower oil production facility. Reconstruction and modernization initiatives, which included the installation of high-performance, energy-efficient equipment, led to a 34% increase in energy efficiency. The findings highlight the importance of adjusting the technological parameters such as temperature, pressure, grinding level, and pressing time to reduce energy use and operational costs. Additionally, resource efficiency is improved through more effective raw material utilization and waste reduction. These strategies not only enhance the economic and environmental performance of sunflower oil production but also support sustainable development and competitiveness within the industry. The improvement reduces hexane use by approximately 2%, resulting in energy savings of 12–15 kWh/t of processed seeds and a reduction in CO2 emissions by 3–4 kg/t, thereby improving the environmental profile of sunflower oil production. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

15 pages, 425 KiB  
Article
Game-Optimization Modeling of Shadow Carbon Pricing and Low-Carbon Transition in the Power Sector
by Guangzeng Sun, Bo Yuan, Han Zhang, Peng Xia, Cong Wu and Yichun Gong
Energies 2025, 18(15), 4173; https://doi.org/10.3390/en18154173 - 6 Aug 2025
Abstract
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. [...] Read more.
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. The upper-level model, guided by the government, focuses on minimizing total costs, including emission reduction costs, technological investments, and operational costs, by dynamically adjusting emission targets and shadow carbon prices. The lower-level model employs evolutionary game theory to simulate the adaptive behaviors and strategic interactions among power producers, regulatory authorities, and technology suppliers. Three representative uncertainty scenarios, disruptive technological breakthroughs, major policy interventions, and international geopolitical shifts, are incorporated to evaluate system robustness. Simulation results indicate that an optimistic scenario is characterized by rapid technological advancement and strong policy incentives. Conversely, under a pessimistic scenario with sluggish technology development and weak regulatory frameworks, there are substantially higher transition costs. This research uniquely contributes by explicitly modeling dynamic feedback between policy and stakeholder behavior under multiple uncertainties, highlighting the critical roles of innovation-driven strategies and proactive policy interventions in shaping effective, resilient, and cost-efficient carbon pricing and low-carbon transition pathways in the power sector. Full article
Show Figures

Figure 1

19 pages, 1242 KiB  
Article
Integration of Renewable Energy Sources to Achieve Sustainability and Resilience of Mines in Remote Areas
by Josip Kronja and Ivo Galić
Mining 2025, 5(3), 51; https://doi.org/10.3390/mining5030051 - 6 Aug 2025
Abstract
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources [...] Read more.
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources (5) and battery–electric mining equipment. Using the “Studena Vrila” underground bauxite mine as a case study, a comprehensive techno-economic and environmental analysis was conducted across three development models. These models explore incremental scenarios of solar and wind energy adoption combined with electrification of mobile machinery. The methodology includes calculating levelized cost of energy (LCOE), return on investment (ROI), and greenhouse gas (GHG) reductions under each scenario. Results demonstrate that a full transition to RES and electric machinery can reduce diesel consumption by 100%, achieve annual savings of EUR 149,814, and cut GHG emissions by over 1.7 million kg CO2-eq. While initial capital costs are high, all models yield a positive Net Present Value (NPV), confirming long-term economic viability. This research provides a replicable framework for decarbonizing mining operations in off-grid and infrastructure-limited regions. Full article
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

18 pages, 2672 KiB  
Article
Development Process of TGDI SI Engine Combustion Simulation Model Using Ethanol–Gasoline Blends as Fuel
by Bence Zsoldos, András L. Nagy and Máté Zöldy
Appl. Sci. 2025, 15(15), 8677; https://doi.org/10.3390/app15158677 - 5 Aug 2025
Abstract
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its [...] Read more.
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its compatibility with gasoline, higher octane rating, and lower exhaust emissions compared to conventional gasoline. Additionally, ethanol can be derived from agricultural waste, further enhancing its sustainability. This study examines the impact of two ethanol–gasoline blends (E10, E20) on emissions and performance in a turbocharged gasoline direct injection (TGDI) spark-ignition (SI) engine. The investigation is conducted using three-dimensional computational fluid dynamics (3D CFD) simulations to minimize development time and costs. This paper details the model development process and presents the initial results. The boundary conditions for the simulations are derived from one-dimensional (1D) simulations, which have been validated against experimental data. Subsequently, the simulated performance and emissions results are compared with experimental measurements. The E10 simulations correlated well with experimental measurements, with the largest deviation in cylinder pressure being an RMSE of 1.42. In terms of emissions, HC was underpredicted, while CO was overpredicted compared to the experimental data. For E20, the IMEP was slightly higher at some operating points; however, the deviations were negligible. Regarding emissions, HC and CO emissions were higher with E20, whereas NOx and CO2 emissions were lower. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 3110 KiB  
Article
Integrated Environmental–Economic Assessment of Small-Scale Natural Gas Sweetening Processes
by Qing Wen, Xin Chen, Xingrui Peng, Yanhua Qiu, Kunyi Wu, Yu Lin, Ping Liang and Di Xu
Processes 2025, 13(8), 2473; https://doi.org/10.3390/pr13082473 - 5 Aug 2025
Viewed by 65
Abstract
Effective in situ H2S removal is essential for the utilization of small, remote natural gas wells, where centralized treatment is often unfeasible. This study presents an integrated environmental–economic assessment of two such processes, LO-CAT® and triazine-based absorption, using a scenario-based [...] Read more.
Effective in situ H2S removal is essential for the utilization of small, remote natural gas wells, where centralized treatment is often unfeasible. This study presents an integrated environmental–economic assessment of two such processes, LO-CAT® and triazine-based absorption, using a scenario-based framework. Environmental impacts were assessed via the Waste Reduction Algorithm (WAR), considering both Potential Environmental Impact (PEI) generation and output across eight categories, while economic performance was analyzed based on equipment, chemical, energy, environmental treatment, and labor costs. Results show that the triazine-based process offers superior environmental performance due to lower toxic emissions, whereas LO-CAT® demonstrates better economic viability at higher gas flow rates and H2S concentrations. An integrated assessment combining monetized environmental impacts with economic costs reveals that the triazine-based process becomes competitive only if environmental impacts are priced above specific thresholds. This study contributes a practical evaluation framework and scenario-based dataset that support sustainable process selection for decentralized sour gas treatment applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

29 pages, 5242 KiB  
Article
Low Carbon Economic Dispatch of Power System Based on Multi-Region Distributed Multi-Gradient Whale Optimization Algorithm
by Linfei Yin, Yongzi Ye, Xiaoping Xiong, Jiajia Chai, Hanzhong Cui and Haoyuan Li
Energies 2025, 18(15), 4143; https://doi.org/10.3390/en18154143 - 5 Aug 2025
Viewed by 73
Abstract
The rapid development of the modern power system puts forward high requirements for economic dispatch, and the defects of the traditional centralized economic dispatch method with low security and poor optimization effect have been difficult to adapt to the development of power system. [...] Read more.
The rapid development of the modern power system puts forward high requirements for economic dispatch, and the defects of the traditional centralized economic dispatch method with low security and poor optimization effect have been difficult to adapt to the development of power system. Therefore, finding an economic dispatch method that reduces electricity generation costs and CO2 emissions is important. This study establishes a multi-region distributed optimization model and combines the multi-region distributed optimization model with a multi-gradient optimization algorithm to propose a multi-region distributed multi-gradient whale optimization algorithm (MRDMGWOA). In this study, MRDMGWOA is simulated on the IEEE 39 system and 118 system, and its performance is compared with other heuristic algorithms. The results show that: (1) in the IEEE 39 system, MRDMGWOA reduces the power generation cost and CO2 emission by 17% and 22%, respectively, and reduces the computation time by 16.14 s compared with the centralized optimization; (2) in the IEEE 118 system, the two metrics are further optimized, with a 20% and 17% reduction in the cost and emission, respectively, and an improvement in the computational efficiency by 45.46 s; (3) in the spacing, hypervolume, and Euclidian metrics evaluation, MRDMGWOA outperforms other algorithms; (4) compared with the existing DMOGWO and DMOMFO, the computation time of MRDMGWOA is reduced by 177.49 s and 124.15 s, respectively, and the scheduling scheme obtained by MRDMGWOA is more optimal than DMOGWO and DMOMFO. Full article
Show Figures

Figure 1

26 pages, 3478 KiB  
Article
Rethinking Routes: The Case for Regional Ports in a Decarbonizing World
by Dong-Ping Song
Logistics 2025, 9(3), 103; https://doi.org/10.3390/logistics9030103 - 4 Aug 2025
Viewed by 167
Abstract
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in [...] Read more.
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in a decarbonizing world. Methods: A scenario-based analysis is used to evaluate total costs and CO2 emissions across the entire container shipping supply chain, incorporating deep-sea shipping, port operations, feeder services, and inland rail/road transport. The Port of Liverpool serves as the primary case study for rerouting Asia–Europe services from major ports. Results: Analysis indicates Liverpool’s competitiveness improves with shipping lines’ slow steaming, growth in hinterland shipment volume, reductions in the emission factors of alternative low-carbon fuels, and an increased modal shift to rail matching that of competitor ports (e.g., Southampton). A dual-port strategy, rerouting services to call at both Liverpool and Southampton, shows potential for both economic and environmental benefits. Conclusions: The study concludes that rerouting deep-sea services to regional ports can offer cost and emission advantages under specific operational and market conditions. Findings on factors and conditions influencing competitiveness and the dual-port strategy provide insights for shippers, ports, shipping lines, logistics agents, and policymakers navigating maritime decarbonization. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Viewed by 145
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 223
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 - 1 Aug 2025
Viewed by 216
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

20 pages, 2735 KiB  
Article
Techno-Economic Assessment of Electrification and Hydrogen Pathways for Optimal Solar Integration in the Glass Industry
by Lorenzo Miserocchi and Alessandro Franco
Solar 2025, 5(3), 35; https://doi.org/10.3390/solar5030035 - 1 Aug 2025
Viewed by 116
Abstract
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel [...] Read more.
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel container glass furnace with a specific energy consumption of 4.35 GJ/t. A mixed-integer linear programming formulation is developed to evaluate specific melting costs, carbon emissions, and renewable energy self-consumption and self-production rates across three scenarios: direct solar coupling, battery storage, and a hydrogen-based infrastructure. Battery storage achieves the greatest reductions in specific melting costs and emissions, whereas hydrogen integration minimizes electricity export to the grid. By incorporating capital investment considerations, the study quantifies the cost premiums and capacity requirements under varying decarbonization targets. A combination of 30 MW of solar plant and 9 MW of electric boosting enables the realization of around 30% carbon reduction while increasing total costs by 25%. Deeper decarbonization targets require more advanced systems, with batteries emerging as a cost-effective solution. These findings offer critical insights into the economic and environmental trade-offs, as well as the technical constraints associated with renewable energy adoption in the glass industry, providing a foundation for strategic energy and decarbonization planning. Full article
Show Figures

Figure 1

Back to TopTop