Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (462)

Search Parameters:
Keywords = emission cross-section

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7139 KiB  
Article
Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings
by Key Simfroso, Romnick Unabia, Anna Gibas, Michał Mazur, Paweł Sokołowski and Rolando Candidato
Coatings 2025, 15(8), 870; https://doi.org/10.3390/coatings15080870 - 24 Jul 2025
Viewed by 880
Abstract
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis [...] Read more.
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis revealed the existence of both anatase and rutile TiO2 phases, with a predominant rutile phase, also confirmed by Raman spectroscopy. There was an increase in the anatase crystals upon the addition of Fe ions. A longer spray distance further enhanced the anatase content and reduced the average TiO2 crystallite sizes present in the Fe-added coatings. SEM cross-sectional images displayed finely grained, densely packed deposits in the Fe-added coatings. UV-Vis spectroscopy showed visible-light absorption by the Fe-TiO2 coatings, with reduced band gap energies ranging from 2.846 ± 0.002 eV to 2.936 ± 0.003 eV. Photoluminescence analysis showed reduced emission intensity at 356 nm (3.48 eV) for the Fe-TiO2 coatings. These findings confirm solution precursor plasma spray to be an effective method for developing Fe-TiO2 coatings with potential application as visible-light-active photocatalysts. Full article
Show Figures

Figure 1

11 pages, 6478 KiB  
Article
Observation of Blue Particles Formed by Photosensitizing Reaction on Paper Fibres of Cyanotypes
by Sawako Sentoku, Mari Kurashina and Keiko Kida
Photochem 2025, 5(3), 18; https://doi.org/10.3390/photochem5030018 - 23 Jul 2025
Viewed by 201
Abstract
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically [...] Read more.
Cyanotypes, known as photographs and architectural plans made by photo-reproduction from the 19th and 20th centuries, are subjects for conservation. Wet cleaning for conservation treatment has been reported to be unsuitable for cyanotypes because Prussian blue on cyanotypes is thought to move physically with the application of water. The manner in which Prussian blue is fixed onto the paper substrate is important for determining the treatment method. This study is the first step toward clarifying this mechanism. The presence of Prussian blue in cyanotypes was first confirmed using X-ray diffraction analysis (XRD). Then, the location of Prussian blue in the fibre was confirmed using optical microscopy and micro-Raman spectroscopy analysis, by observing the blue colour and by detecting its cyanide bond. With field-emission scanning electron microscopy (FE-SEM), particles approximately 20–100 nm in size were observed on the surface of cyanotype paper fibres, and particles approximately 20–50 nm in size were observed from the cross-section of the paper fibres. The location where the particles were observed agreed with the location where the blue colour was observed and cyanide bond was detected. The fact that the sensitiser solution soaked into the paper fibres and formed Prussian blue within the paper fibres when exposed to light is thought to be important for the blue fixation of cyanotypes. Full article
Show Figures

Figure 1

17 pages, 2470 KiB  
Article
Correlation Between Packing Voids and Fatigue Performance in Sludge Gasification Slag-Cement-Stabilized Macadam
by Yunfei Tan, Xiaoqi Wang, Hao Zheng, Yingxu Liu, Juntao Ma and Shunbo Zhao
Sustainability 2025, 17(14), 6587; https://doi.org/10.3390/su17146587 - 18 Jul 2025
Viewed by 350
Abstract
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled [...] Read more.
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled mechanism between pore structure and fatigue behavior, especially in the context of solid-waste-based CMs. In this study, a cost-effective alkali-activated sludge gasification slag (ASS) was proposed as a sustainable CM substitute for ordinary Portland cement (OPC) in CSM. A dual evaluation approach combining cross-sectional image analysis and fatigue loading tests was employed to reveal the effect pathway of void structure optimization on fatigue resistance. The results showed that ASS exhibited excellent cementitious reactivity, forming highly polymerized C-A-S-H/C-S-H gels that contributed to a denser microstructure and superior mechanical performance. At a 6% binder dosage, the void ratio of ASS–CSM was reduced to 30%, 3% lower than that of OPC–CSM. The 28-day unconfined compressive strength and compressive resilient modulus reached 5.7 MPa and 1183 MPa, representing improvements of 35.7% and 4.1% compared to those of OPC. Under cyclic loading, the ASS system achieved higher energy absorption and more uniform stress distribution, effectively suppressing fatigue crack initiation and propagation. Moreover, the production cost and carbon emissions of ASS were 249.52 CNY/t and 174.51 kg CO2e/t—reductions of 10.9% and 76.2% relative to those of OPC, respectively. These findings demonstrate that ASS not only improves fatigue performance through pore structure refinement but also offers significant economic and environmental advantages, providing a theoretical foundation for the large-scale application of solid-waste-based binders in pavement engineering. Full article
Show Figures

Figure 1

12 pages, 2191 KiB  
Article
Whispering Gallery Modes in a Micro-Cavity Within a Single Sn-Doped CdS Nanowire Featuring a Regular Hexagonal Cross-Section
by Jiangang Yu, Ziwei Li, Ye Tian, Fengchao Li, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(7), 658; https://doi.org/10.3390/cryst15070658 - 18 Jul 2025
Viewed by 276
Abstract
CdS nanowires have garnered considerable attention lately for their promising potential in next-generation nanolaser devices, attributed to their relatively high stability and exceptional emission efficiency within the Ⅱ–Ⅵ semiconductor family. In this study, tin-doped CdS nanowires with varying dimensions were synthesized, and the [...] Read more.
CdS nanowires have garnered considerable attention lately for their promising potential in next-generation nanolaser devices, attributed to their relatively high stability and exceptional emission efficiency within the Ⅱ–Ⅵ semiconductor family. In this study, tin-doped CdS nanowires with varying dimensions were synthesized, and the underlying mechanisms responsible for the formation of micro-cavities within these nanowires were systematically explored through scanning electron microscopy (SEM) analysis and photoluminescence mapping. The results show that a very distinct hexagonal-shaped micro-cavity is observed on the cross-section of CdS nanowires, and the size of the micro-cavity is determined by the radius of the nanowire. Additionally, through the use of angle-resolved micro-fluorescence Fourier imaging technology, it is found that under high excitation density conditions, the micro-cavity mode is more prominent at higher collection angles, which is consistent with the mode of the wall-pass cavity micro-cavity. Finally, the formation of the full reflection spectrum of the micro-cavity mode is confirmed through the wavelength shift and intensity shift phenomena related to the excitation power. These results further deepen our understanding of the micro-cavity modes in tin-doped cadmium sulfide nanowires, which may be of great significance for the application of these nanowires in new optical devices. Full article
Show Figures

Figure 1

14 pages, 382 KiB  
Article
Beyond the Preston Curve: Analyzing Variations in Life Expectancy Around the World Using Multivariate Regression Circa 2000 and 2015
by Jack Homer
Systems 2025, 13(7), 577; https://doi.org/10.3390/systems13070577 - 14 Jul 2025
Viewed by 329
Abstract
Multiple studies, starting with Preston’s work in 1975, have suggested that gross domestic product per capita (GDPPC) is an important explanatory factor for understanding differentials in life expectancy at birth (LEB) in countries around the world. This proposition was tested in the present [...] Read more.
Multiple studies, starting with Preston’s work in 1975, have suggested that gross domestic product per capita (GDPPC) is an important explanatory factor for understanding differentials in life expectancy at birth (LEB) in countries around the world. This proposition was tested in the present study using two-period cross-sectional regression across a large number of both advanced and developing countries and 16 socioeconomic factors, including GDPPC. The best-performing regression equations in the periods around 2000 and 2015 included four to six of these factors (government effectiveness, safe sanitation, poverty and contraception, plus, in the circa-2000 period, the Gini index and CO2 emissions); perhaps surprisingly, these equations did not include GDPPC. The results were examined in greater detail for the world’s 15 most populous countries, helping to identify key drivers of LEB growth for each of these countries from circa 2000 to 2015. The fact that GDPPC drops out of the best equations calls into question the view that economic growth is the correct primary target for nations seeking to increase their average life expectancy. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

18 pages, 470 KiB  
Article
The Impact of Financial Development on Renewable Energy Consumption: Evidence from RECAI Countries
by Dilber Doğan, Yakup Söylemez, Şenol Doğan and Neslihan Akça
Sustainability 2025, 17(14), 6381; https://doi.org/10.3390/su17146381 - 11 Jul 2025
Viewed by 385
Abstract
Many environmental risks, such as global warming and depletion of natural resources, force governments to achieve economic growth and financial development without causing environmental degradation. The dependency of countries’ dependence on fossil fuels also causes energy supply security problems due to the associated [...] Read more.
Many environmental risks, such as global warming and depletion of natural resources, force governments to achieve economic growth and financial development without causing environmental degradation. The dependency of countries’ dependence on fossil fuels also causes energy supply security problems due to the associated risks at regional and global levels. These reasons lead countries to diversify and increase their renewable energy investments. In this context, this study focuses on the most attractive countries in terms of renewable energy investments and analyzes the relationships between renewable energy consumption (REC), carbon dioxide emissions (CO2), economic growth (EGRO), financial development (FD), and energy dependence (EDP) using the panel regression method. This research uses data from 38 countries between 1991 and 2021 within the scope of the “Renewable Energy Attractiveness Index” (RECAI) created by Ernst & Young. As a result of the heterogeneity and cross-sectional dependency tests, the data were analyzed using the Westerlund cointegration test, the Augmented Mean Group (AMG) estimator, and the Emirmahmutoglu and Kose causality test. The findings from this study show that FD and EGRO have a positive and significant effect on REC, whereas they have a negative and significant relationship with CO2 emissions. Findings from the causality test show that FD has an impact on both CO2 and EGRO. In addition, within the scope of this study, a causality was determined between EDP and REC, and a mutual relationship between energy demand and CO2 was revealed. In light of these findings, governments should increase their investments in renewable energy to ensure sustainable economic growth and energy supply security while minimizing environmental degradation. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

23 pages, 870 KiB  
Article
The Political Economy of CO2 Emissions: Investigating the Role of Associational and Organizational Freedoms in Environmental Quality
by Umut Uzar
Sustainability 2025, 17(14), 6265; https://doi.org/10.3390/su17146265 - 8 Jul 2025
Viewed by 369
Abstract
The historical peak in CO2 emissions has intensified global environmental concerns, urging the identification of key determinants. While economic drivers are well-documented, political dimensions—especially democracy and institutional quality—are increasingly emphasized. However, the role of freedom of association and organization (AOF), a core [...] Read more.
The historical peak in CO2 emissions has intensified global environmental concerns, urging the identification of key determinants. While economic drivers are well-documented, political dimensions—especially democracy and institutional quality—are increasingly emphasized. However, the role of freedom of association and organization (AOF), a core democratic element, remains largely unexamined in this context. This study fills this gap by analyzing the impact of AOF on CO2 emissions in the top 20 emitter countries from 2006 to 2022. The selection of these countries enables a focused assessment of the world’s primary polluters, ensuring high policy relevance. Using second-generation panel estimators, the Augmented Mean Group and the Common Correlated Effects Mean Group estimators, the analysis accounts for heterogeneity and cross-sectional dependence. Robustness is tested using the CS-ARDL method, confirming the stability of results. Empirical findings show that higher levels of AOF significantly reduce CO2 emissions. Income and energy consumption increase emissions, while the effect of trade openness is statistically insignificant. These results suggest that strengthening associational freedoms can offer a dual benefit: advancing democratic norms and achieving environmental goals. Full article
Show Figures

Figure 1

12 pages, 234 KiB  
Article
Risk Perception and Self-Monitoring of Particulate Matter 2.5 (PM 2.5) Associated with Anxiety Among General Population in Urban Thailand
by Titaporn Luangwilai, Jadsada Kunno, Basmon Manomaipiboon, Witchakorn Ruamtawee and Parichat Ong-Artborirak
Urban Sci. 2025, 9(7), 256; https://doi.org/10.3390/urbansci9070256 - 3 Jul 2025
Viewed by 404
Abstract
Exposure to fine particulate matter (PM2.5) has become an increasing public health concern, particularly in urban areas facing severe air pollution. In response, individuals are increasingly turning to real-time tracking systems and self-monitoring tools. This study aimed to examine the association between PM2.5 [...] Read more.
Exposure to fine particulate matter (PM2.5) has become an increasing public health concern, particularly in urban areas facing severe air pollution. In response, individuals are increasingly turning to real-time tracking systems and self-monitoring tools. This study aimed to examine the association between PM2.5 risk perception, self-monitoring behaviors, and anxiety levels in the general population of Thailand. A cross-sectional survey was conducted during the dry season using an online questionnaire, which included the 7-item Generalized Anxiety Disorder (GAD-7) scale. A total of 921 participants residing in Bangkok and Chiang Mai were included. Binary logistic regression analysis, adjusted for sex, age, marital status, monthly income, and years of residence, revealed a significant association between anxiety and perceived health risks of PM2.5 exposure (OR = 1.09; 95% CI: 1.06–1.13). Daily self-monitoring of air quality over the past two weeks was also significantly linked to higher anxiety levels compared to non-monitoring individuals: OR = 1.92 (95% CI: 1.11–3.33) for websites, OR = 1.65 (95% CI: 1.01–2.72) for mobile apps, OR = 1.72 (95% CI: 1.12–2.64) for air purifiers, and OR = 3.34 (95% CI: 1.77–6.31) for air quality detectors. Monitoring 4–6 days per week using apps and air detectors was similarly associated with increased anxiety (OR = 1.64 and 2.30, respectively). Heightened perception of PM2.5 health risks and frequent self-monitoring behaviors are associated with increased anxiety among urban residents in Thailand. Public health interventions should consider implementing targeted alert systems during high-pollution periods and prioritize strategies to reduce PM2.5 emissions to alleviate public anxiety. Full article
18 pages, 1322 KiB  
Article
A Study of Carbon Emission Quota for Construction Period of Dredging Projects: Case Studies in Guangzhou, Shenzhen, and Malé
by Siming Liang, Wei Chen, Lijuan Li and Feng Liu
Buildings 2025, 15(13), 2293; https://doi.org/10.3390/buildings15132293 - 29 Jun 2025
Viewed by 260
Abstract
This paper develops a model to calculate carbon emissions during the construction period of dredging projects. Carbon emission quotas for various types of dredgers and auxiliary vessels in different construction conditions and geotechnical soil types during the dredging project’s construction period are established, [...] Read more.
This paper develops a model to calculate carbon emissions during the construction period of dredging projects. Carbon emission quotas for various types of dredgers and auxiliary vessels in different construction conditions and geotechnical soil types during the dredging project’s construction period are established, as well as the power consumption quota for management activities. Taking the construction of the main project of the cross-river channel from Shenzhen to Zhongshan (S09)’s foundation trench excavation and channel dredging, the Thilafushi Island reclamation project in Malé, and the second phase of the southern section of the Guangzhou Port Area channel maintenance project (2022–2023) as case studies, the validity of the quotas is verified. During the construction period, under the same dredging soil quality and the same working condition level, the carbon emissions of different types of dredgers are different. Conversely, under different dredging soil qualities and different working condition levels, the carbon emissions for the same dredger or auxiliary vessel are different. The carbon emissions of each dredger or auxiliary vessel increase with the increase in the ship’s specifications. The carbon emissions of dredging projects are huge, with direct carbon emissions accounting for 97%, and indirect carbon emissions from equipment deployment and management activities accounting for 3%, among which the carbon emissions from electricity consumption in management activities account for only 0.3%. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

12 pages, 4460 KiB  
Article
Influence of Laser Energy Variation on the Composition and Properties of Gradient-Structured Cemented Carbide Layers Produced by LP-DED
by Yorihiro Yamashita, Kenta Kawabata, Hayato Mori, Eito Ose and Takahiro Kunimine
J. Manuf. Mater. Process. 2025, 9(7), 218; https://doi.org/10.3390/jmmp9070218 - 27 Jun 2025
Viewed by 321
Abstract
In this study, graded cemented carbide layers were fabricated using Laser Powder-Directed Energy Deposition (LP-DED) to investigate the effects of laser input energy and WC content on crack formation, compositional distribution, and hardness. Two-layer structures were formed, with the first layer containing either [...] Read more.
In this study, graded cemented carbide layers were fabricated using Laser Powder-Directed Energy Deposition (LP-DED) to investigate the effects of laser input energy and WC content on crack formation, compositional distribution, and hardness. Two-layer structures were formed, with the first layer containing either 30.5 wt.% or 42.9 wt.% WC and the second layer containing 63.7 wt.% WC. Crack formation was evaluated in situ using acoustic emission (AE) sensors, and elemental composition and Vickers hardness were measured across the cross-section of the deposited layers. The results showed that crack formation increased with higher laser power and higher WC content in the first layer. Elemental analysis revealed that higher laser input led to greater Co enrichment and reduced W content near the surface. Additionally, the formation of brittle structures was observed under high-energy conditions, contributing to increased hardness but decreased toughness. These findings indicate that both WC content and laser energy strongly influence the microstructural evolution and mechanical properties of graded cemented carbide layers. Optimizing the balance between WC content and laser parameters is essential for improving the crack resistance and performance of cemented carbide layers in additive manufacturing applications. Full article
Show Figures

Figure 1

29 pages, 1166 KiB  
Article
Renewable Energy and Carbon Intensity: Global Evidence from 184 Countries (2000–2020)
by Maxwell Kongkuah and Noha Alessa
Energies 2025, 18(13), 3236; https://doi.org/10.3390/en18133236 - 20 Jun 2025
Cited by 2 | Viewed by 413
Abstract
This study investigates how various renewable energy technologies influence national carbon intensity (CO2 emissions per unit of GDP) across 184 countries over the period 2000–2020. In the context of Sustainable Development Goals (SDG 7 and SDG 13) and the post-Paris-Agreement policy landscape, [...] Read more.
This study investigates how various renewable energy technologies influence national carbon intensity (CO2 emissions per unit of GDP) across 184 countries over the period 2000–2020. In the context of Sustainable Development Goals (SDG 7 and SDG 13) and the post-Paris-Agreement policy landscape, it addresses the gap in understanding technology-specific decarbonization effects and the role of governance. A dynamic panel framework employing the Dynamic Common Correlated Effects (DCCE) estimator accounts for cross-sectional dependence and temporal persistence, while disaggregating total renewables into hydropower, wind, solar, and geothermal generation. Environmental regulation is incorporated as a moderating variable using the World Bank’s Regulatory Quality index. Empirical results demonstrate that higher renewable generation is associated with statistically significant reductions in carbon intensity, with hydropower showing the most consistent negative effect across all income groups. Solar and geothermal technologies yield substantial carbon-reducing impacts in lower-middle-income settings once supportive policies are in place. Wind exhibits heterogeneous outcomes: positive or insignificant effects in some high- and upper-middle-income panels prior to 2015, shifting toward neutral or negative after more stringent regulation. Interaction terms reveal that stronger regulatory environments amplify renewable-driven decarbonization, particularly for intermittent sources such as wind and solar. Key contributions include (1) a comprehensive global assessment of four disaggregated renewable technologies; (2) integration of regulatory quality into decarbonization pathways, illustrating post-2015 policy moderations; and (3) methodological advancement through a large-sample DCCE approach that captures unobserved common shocks and heterogeneous country dynamics. These findings inform targeted policy measures—such as prioritizing hydropower where feasible, strengthening regulatory frameworks, and tailoring technology strategies—to accelerate low-carbon energy transitions worldwide. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 1842 KiB  
Article
Application of Unmanned Aerial Vehicle Observation for Estimating City-Scale Anthropogenic CO2 Emissions: A Case Study in Chengdu, Southwestern China
by Xingyu Xiang, Kuang Xiao, Xing Wang, Xi Wang, Xin Zheng, Xiaodie Kong, Li Zhou, Guangming Shi and Fumo Yang
Atmosphere 2025, 16(6), 713; https://doi.org/10.3390/atmos16060713 - 12 Jun 2025
Viewed by 900
Abstract
The accurate quantification of urban anthropogenic CO2 emissions is of paramount importance for comprehending regional carbon fluxes and supporting climate change mitigation strategies. This study explores the applicability of a cost-effective unmanned aerial vehicle (UAV)-based mass balance method for independent urban-scale emission [...] Read more.
The accurate quantification of urban anthropogenic CO2 emissions is of paramount importance for comprehending regional carbon fluxes and supporting climate change mitigation strategies. This study explores the applicability of a cost-effective unmanned aerial vehicle (UAV)-based mass balance method for independent urban-scale emission assessments. An integrated air–ground–satellite observation framework was established by combining UAV-based vertical CO2 profiles, ground-based observations, and ERA5 reanalysis data, and applied to quantify CO2 emissions in Chengdu, a major city in southwestern China. The UAV-derived CO2 concentration profiles were coupled with meteorological parameters to compute cross-sectional fluxes, yielding an annual emission estimate of 48.4 MtCO2, which aligns well with census-based estimations. The primary uncertainty, approximately 23.61%, stems from meteorological parameter variations, highlighting the need for improved data resolution and extended observation periods. This study demonstrates that UAV-based mass balance observations can serve as an independent and verifiable approach for urban emission estimation. Beyond supplementing existing inventories, it provides a robust reference for cross-validation, contributing to the development of more accurate and adaptive emission monitoring systems for urban climate governance. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 2776 KiB  
Article
Furan Dissociation Induced by Collisions with H3+ and C+ Ions
by Tomasz J. Wasowicz
Molecules 2025, 30(12), 2559; https://doi.org/10.3390/molecules30122559 - 12 Jun 2025
Viewed by 410
Abstract
Ion interactions with molecular structures give insights into physicochemical processes in the cosmos, radiation damage, plasma, combustion, and biomass conversion reactions. At the atomic scale, these interactions lead to excitation, ionization, and dissociation of the molecular components of structures found across all these [...] Read more.
Ion interactions with molecular structures give insights into physicochemical processes in the cosmos, radiation damage, plasma, combustion, and biomass conversion reactions. At the atomic scale, these interactions lead to excitation, ionization, and dissociation of the molecular components of structures found across all these environments. Furan, cyclic aromatic ether (C4H4O), serves as a gas-phase deoxyribose analog and is crucial for understanding key pathways in renewable biomass conversion, as its derivatives are versatile molecules from lignocellulosic biomass degradation. Therefore, collisions of H3+ and C+ ions with gas-phase furan molecules were investigated in the 50–1000 eV energy range, exploiting collision-induced emission spectroscopy. High-resolution fragmentation spectra measured at 1000 eV for both cations reveal similar structures, with C+ collisions resulting in more significant furan fragmentation. Relative cross-sections for product formation were measured for H3+ + C4H4O collisions. Possible collisional processes and fragmentation pathways in furan are discussed. These results are compared with those for tetrahydrofuran and pyridine to illustrate how the type and charge of the projectile influence neutral fragmentation in heterocyclic molecules. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

17 pages, 280 KiB  
Article
Decarbonizing Agriculture: The Impact of Trade and Renewable Energy on CO2 Emissions
by Nil Sirel Öztürk
Economies 2025, 13(6), 162; https://doi.org/10.3390/economies13060162 - 6 Jun 2025
Viewed by 521
Abstract
This study investigates the environmental effects of agricultural trade, renewable energy use, and economic growth in a panel of 14 selected countries for the period 2000–2021. Per capita CO2 emissions are modeled as the dependent variable using a second-generation panel data method, [...] Read more.
This study investigates the environmental effects of agricultural trade, renewable energy use, and economic growth in a panel of 14 selected countries for the period 2000–2021. Per capita CO2 emissions are modeled as the dependent variable using a second-generation panel data method, the Augmented Mean Group (AMG) estimator, which accounts for cross-sectional dependence and slope heterogeneity. The analysis reveals that the share of renewable energy in total energy consumption significantly reduces carbon emissions, emphasizing the role of green energy policies in environmental improvement. In contrast, economic growth is found to increase emissions, indicating the validity of only the initial phase of the Environmental Kuznets Curve (EKC) hypothesis. Additionally, agricultural imports—and in certain cases, exports—exert upward pressure on emissions, likely due to logistics and production-related externalities embedded in the trade process. Group-specific results highlight distinct dynamics across countries: while renewable energy adoption plays a stronger role in emission mitigation in developing economies, trade composition and production technology drive environmental outcomes in developed ones. The findings underscore the need to redesign trade and energy strategies with explicit consideration of environmental externalities to align with long-term sustainability objectives. Full article
(This article belongs to the Section Economic Development)
14 pages, 5850 KiB  
Article
Reconstruction of Tokamak Plasma Emissivity Distribution by Approximation with Basis Functions
by Tomasz Czarski, Maryna Chernyshova, Katarzyna Mikszuta-Michalik and Karol Malinowski
Sensors 2025, 25(10), 3162; https://doi.org/10.3390/s25103162 - 17 May 2025
Viewed by 478
Abstract
The present study focuses on the development of a diagnostic system for measuring radiated power and core soft X-ray intensity emissions with the goal of detecting a broad spectrum of photon energies emitted from the central plasma region of the DEMO tokamak. The [...] Read more.
The present study focuses on the development of a diagnostic system for measuring radiated power and core soft X-ray intensity emissions with the goal of detecting a broad spectrum of photon energies emitted from the central plasma region of the DEMO tokamak. The principal objective of the diagnostic apparatus is to deliver a comprehensive characterization of the radiation emitted by the plasma, with a particular focus on estimating the radiated power from the core region. This measurement is essential for determining and monitoring the power crossing the separatrix, which is a critical parameter controlling overall plasma performance. Since diagnostics rely on line-integrated measurements, the application of tomographic reconstruction techniques is necessary to extract spatially resolved information on core plasma radiation. This contribution presents the development of numerical algorithms addressing the problem of radiation tomography reconstruction. A robust and computationally efficient method is proposed for reconstructing the spatial distribution of plasma radiated power, with a view toward enabling real-time applications. The reconstruction methodology is based on a linear model formulated using a set of predefined basis functions, which define the radiation distribution within a specified plasma cross-section. In the initial stages of emissivity reconstruction in tokamak plasmas, it is typically assumed that the radiation distribution is dependent on magnetic flux surfaces. As a baseline approach, the plasma radiative properties are considered invariant along these surfaces and can thus be represented as one-dimensional profiles parameterized by the poloidal magnetic flux. Within this framework, the reconstruction method employs an approximation model utilizing three sets of basis functions: (i) polynomial splines, as well as Gaussian functions with (ii) sigma parameters and (iii) position parameters. The performance of the proposed method was evaluated using two synthetic radiated power emission phantoms, developed for the DEMO plasma scenario. The results indicate that the method is effective under the specified conditions. Full article
(This article belongs to the Special Issue Tomographic and Multi-Dimensional Sensors)
Show Figures

Figure 1

Back to TopTop