Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,088)

Search Parameters:
Keywords = emerging properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 1845 KB  
Review
Laser-Based Fabrication of Hydrogel Scaffolds for Medicine: From Principles to Clinical Applications
by Dan Stefan Manoliu, Cristian Zagar, Irina Negut and Anita Ioana Visan
Gels 2025, 11(10), 811; https://doi.org/10.3390/gels11100811 (registering DOI) - 9 Oct 2025
Abstract
Hydrogel scaffolds have emerged as pivotal materials in regenerative medicine due to their biocompatibility, tunable mechanical properties, and ability to mimic the extracellular matrix. However, conventional fabrication techniques often lack the precision required to create complex architectures, limiting their effectiveness in tissue engineering. [...] Read more.
Hydrogel scaffolds have emerged as pivotal materials in regenerative medicine due to their biocompatibility, tunable mechanical properties, and ability to mimic the extracellular matrix. However, conventional fabrication techniques often lack the precision required to create complex architectures, limiting their effectiveness in tissue engineering. This review explores advanced laser-based fabrication methods, such as two-photon polymerization, laser-induced forward transfer, selective laser sintering/melting, and laser direct writing, which offer unparalleled resolution and control over scaffold geometry. These techniques enable the production of intricate 3D structures tailored to specific clinical needs, from vascular networks to patient-specific implants. We analyze the principles, advantages, and limitations of each method, highlighting their biomedical applications and the challenges of scalability, material compatibility, and cost. By bridging the gap between laboratory research and clinical implementation, laser-based technologies hold significant promise for advancing personalized medicine and tissue regeneration. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (3rd Edition))
30 pages, 1053 KB  
Review
Oxidative Stress, Mitochondrial Quality Control, Autophagy, and Sirtuins in Heart Failure
by Jan Krekora, Marcin Derwich, Jarosław Drożdż, Elzbieta Pawlowska and Janusz Blasiak
Int. J. Mol. Sci. 2025, 26(19), 9826; https://doi.org/10.3390/ijms26199826 (registering DOI) - 9 Oct 2025
Abstract
Heart failure (HF) has become an emerging problem, especially in regions where life expectancy is increasing. Despite its prevalence, the mechanisms behind HF development are not well understood, which is reflected in the lack of curative therapies. Mitochondria, autophagy, and sirtuins form a [...] Read more.
Heart failure (HF) has become an emerging problem, especially in regions where life expectancy is increasing. Despite its prevalence, the mechanisms behind HF development are not well understood, which is reflected in the lack of curative therapies. Mitochondria, autophagy, and sirtuins form a crucial triad involved in HF pathogenesis, interconnected by oxidative stress. Identifying a common pathway involving these three components could be valuable in developing new treatment strategies. Since HF is the end result of several cardiovascular diseases, this review highlights the main HF precursors and explores the roles of mitochondrial quality control (mtQC), autophagy, and sirtuins in HF development. Dysfunctional mitochondria may play a key role by enhancing oxidative stress and influencing autophagy and sirtuins, both of which possess antioxidant properties. The dual nature of autophagy—its pro-life and pro-death roles—may contribute to different outcomes in HF related to oxidative stress. As mtQC, autophagy, and sirtuins may interact, we present data on their mutual dependencies in HF. However, the specificity of these interactions remains unclear and needs further investigation, which could help identify new therapeutic targets. In conclusion, the interplay between mtQC, autophagy, and sirtuins may be crucial in HF pathogenesis and could be leveraged in developing HF treatments. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
18 pages, 2759 KB  
Article
CHIVAX 2.1-Loaded Chitosan Nanoparticles as Intranasal Vaccine Candidates for COVID-19: Development and Murine Safety Assessment
by Lineth Juliana Vega-Rojas, Monserrat Palomino, Iván Corona-Guerrero, Miguel Ángel Ramos-López, María Antonieta Carbajo-Mata, Diana Vázquez-Olguín, Juan Campos-Guillen, Aldo Amaro-Reyes, Zaida Urbán-Morlán, José Alberto Rodríguez-Morales, Juan Mosqueda and Héctor Pool
Biomedicines 2025, 13(10), 2453; https://doi.org/10.3390/biomedicines13102453 - 9 Oct 2025
Abstract
Background/Objectives: Innovative intranasal delivery systems have emerged as a strategy to overcome the limitations of conventional COVID-19 vaccines, including suboptimal mucosal immunity, limited antigen retention, and vaccine hesitancy. This study aimed to evaluate physicochemical properties and murine safety of a novel COVID-19 intranasal [...] Read more.
Background/Objectives: Innovative intranasal delivery systems have emerged as a strategy to overcome the limitations of conventional COVID-19 vaccines, including suboptimal mucosal immunity, limited antigen retention, and vaccine hesitancy. This study aimed to evaluate physicochemical properties and murine safety of a novel COVID-19 intranasal vaccine candidate based on CHIVAX 2.1 (CVX)-loaded chitosan nanoparticles (CNPs). Methods: The CVX recombinant protein was encapsulated into CNPs using the ionic gelation method. The nanoparticles were characterized by their physicochemical properties (mean size, zeta potential, morphology, and encapsulation efficiency) and spectroscopic profiles. Mucin adsorption and in vitro release profiles in simulated nasal fluid were also assessed. In vivo compatibility was evaluated through histopathological analysis of tissues in male C-57BL/6J mice following intranasal administration. Results: CNPs exhibited controlled size distribution (38.5–542.5 nm) and high encapsulation efficiency (65.4–92.2%). Zeta potential values supported colloidal stability. TEM analysis confirmed spherical morphology and successful CVX encapsulation, and immunogenic integrity was also demonstrated. Mucin adsorption analysis demonstrated effective nasal retention, particularly in particles ≈90 nm. In vitro release studies revealed a biphasic protein profile, where ≈80% of the recombinant protein was released within 2 h. Importantly, histopathological analyses and weight monitoring of intranasally immunized mice revealed no signs of adverse effects related to toxicity. Conclusions: The ionic gelation encapsulation process preserved the physical and immunological integrity of CVX antigen. Furthermore, the intranasal administration of the CVX-loaded CNPs demonstrated a favorable safety profile in vivo. These findings support the potential of the CVX intranasal vaccine formulation for further immunogenicity studies, with no apparent biosafety concerns. Full article
(This article belongs to the Special Issue Innovations in Nanomedicine for Disease Management)
Show Figures

Figure 1

24 pages, 5465 KB  
Review
The Application of Carbon-Based Materials in Cathodes for High-Performance K-Se Batteries: A Review
by Jingyang Wang, Yanfang Liang, Dongqi Gu, Can Li, Zening Sui, Xibo Tang, Xiaobin Sun and Yong Liu
Coatings 2025, 15(10), 1183; https://doi.org/10.3390/coatings15101183 - 9 Oct 2025
Abstract
Potassium–selenium (K-Se) batteries have emerged as a promising energy storage system in view of their high theoretical energy density and low cost. However, their practical application is restricted due to challenges such as polyselenide shuttling, low redox activity, and significant cathode volume expansion [...] Read more.
Potassium–selenium (K-Se) batteries have emerged as a promising energy storage system in view of their high theoretical energy density and low cost. However, their practical application is restricted due to challenges such as polyselenide shuttling, low redox activity, and significant cathode volume expansion during cycling, leading to inferior Coulombic efficiency and a short cycling lifespan. Carbon-based materials, with their superior electronic conductivity, adjustable pore structures, and robust chemical stability, have been extensively studied and employed as cathode materials in K-Se batteries, demonstrating remarkable potential in addressing the above-mentioned issues. Considering the rapidly growing research interest in this topic in recent years, herein, we comprehensively summarize recent advances in the application of carbon-based materials as cathodes in K-Se batteries. First, we introduce the properties, key challenges, and optimization strategies of K-Se batteries, including encapsulating Se within carbon materials, engineering chemisorptive hosts, and electrocatalyzing redox reactions. Furthermore, we discuss the relationship between fabrication strategies, micro/nanostructures, and electrochemical performances. Finally, we propose future prospects for the rational design and application of carbon-based cathodes in K-Se batteries and other alkaline metal–chalcogen batteries. Full article
Show Figures

Figure 1

30 pages, 2315 KB  
Review
Progress in NiO Based Materials for Electrochemical Sensing Applications
by Praveen Kumar, Mohammad Aslam, Saood Ali, Khaled Hamdy, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(10), 678; https://doi.org/10.3390/bios15100678 - 9 Oct 2025
Abstract
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental [...] Read more.
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental pollutants, and biomolecules. Advances in nanotechnology have enabled the development of NiO-based nanostructures such as nanoparticles, nanowires, and nanoflakes, which offer enhanced surface area and improved electron transfer. Integration with conductive materials like graphene, carbon nanotubes, and metal–organic frameworks (MOFs) further enhance sensor performance through synergistic effects. Innovations in synthesis techniques, including hydrothermal, sol–gel, and green approaches, have expanded the applicability of NiO in next-generation sensing platforms. This review summarizes recent progress in the structural engineering, composite formation, and electrochemical mechanisms of NiO-based materials for advanced electrochemical sensing applications. Full article
Show Figures

Figure 1

13 pages, 2477 KB  
Article
Field-Gated Anion Transport in Nanoparticle Superlattices Controlled by Charge Density and Ion Geometry: Insights from Molecular Dynamics Simulations
by Yuexin Su, Jianxiang Huang, Zaixing Yang, Yangwei Jiang and Ruhong Zhou
Biomolecules 2025, 15(10), 1427; https://doi.org/10.3390/biom15101427 - 8 Oct 2025
Abstract
Nanoparticle superlattices—periodic assemblies of uniformly spaced nanocrystals—bridge the nanoscale precision of individual particles with emergent collective properties akin to those of bulk materials. Recent advances demonstrate that multivalent ions and charged polymers can guide the co-assembly of nanoparticles, imparting electrostatic gating and enabling [...] Read more.
Nanoparticle superlattices—periodic assemblies of uniformly spaced nanocrystals—bridge the nanoscale precision of individual particles with emergent collective properties akin to those of bulk materials. Recent advances demonstrate that multivalent ions and charged polymers can guide the co-assembly of nanoparticles, imparting electrostatic gating and enabling semiconductor-like behavior. However, the specific roles of anion geometry, valency, and charge density in mediating ion transport remain unclear. Here, we employ coarse-grained molecular dynamics simulations to investigate how applied electric fields (0–0.40 V/nm) modulate ionic conductivity and spatial distribution in trimethylammonium-functionalized gold nanoparticle superlattices assembled with four phosphate anions of distinct geometries and charges. Our results reveal that linear anions outperform ring-shaped analogues in conductivity due to higher charge densities and weaker interfacial binding. Notably, charge density exerts a greater influence on ion mobility than size alone. Under strong fields, anions accumulate at nanoparticle interfaces, where interfacial adsorption and steric constraints suppress transport. In contrast, local migration is governed by geometrical confinement and field strength. Analyses of transition probability and residence time further indicate that the rigidity and delocalized charge of cyclic anions act as mobility barriers. These findings provide mechanistic insights into the structure–function relationship governing ion transport in superlattices, offering guidance for designing next-generation ion conductors, electrochemical sensors, and energy storage materials through anion engineering. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

16 pages, 3298 KB  
Article
A Comparative Study of Stainless Steel and PEEK TiO2 Composite: Effects on Cell Behavior and Bacterial Adhesion in Pediatric Crowns
by Helena Pereira, Flávio Rodrigues, Ana Arieira, Filipe Silva and João Pinto
Appl. Sci. 2025, 15(19), 10809; https://doi.org/10.3390/app151910809 - 8 Oct 2025
Abstract
Dental materials are well-established, with stainless steel 316L (SS) still being a common choice for components such as pediatric crowns and abutments. However, SS has some drawbacks, particularly in terms of mechanical properties and, more importantly, aesthetics, due to its metallic gray color. [...] Read more.
Dental materials are well-established, with stainless steel 316L (SS) still being a common choice for components such as pediatric crowns and abutments. However, SS has some drawbacks, particularly in terms of mechanical properties and, more importantly, aesthetics, due to its metallic gray color. In this sense, PEEK (polyetheretherketone) has emerged as a promising material for dental applications, combining good mechanical properties with improved aesthetic features. This study compared the cytocompatibility of PEEK TiO2 composite and SS using human fetal osteoblasts (hFOB) and human gingival fibroblasts (HGF). Cytocompatibility was evaluated over 1–7 days through metabolic activity and alkaline phosphatase (ALP) assays. Additionally, bacterial adhesion was assessed using Staphylococcus aureus and Pseudomonas aeruginosa in both monoculture and co-culture. The results showed that both materials were non-cytotoxic and supported cell growth. Notably, after 7 days of culture, PEEK TiO2 surfaces promoted approximately 7% higher ALP activity than stainless steel, demonstrating a significantly enhanced osteogenic response (p < 0.01). Moreover, at day 7, PEEK TiO2 promoted ~25% higher metabolic activity in HGF cells compared to SS. Regarding the bacterial adhesion, it was consistently low in PEEK TiO2 for both S. aureus and P. aeruginosa, with a marked reduction (~50%) observed for P. aeruginosa under co-culture conditions. PEEK TiO2 demonstrated enhanced biological performance and lower bacterial adhesion compared with SS, highlighting its potential as a biocompatible and aesthetically promising option for dental applications, including pediatric crowns. Full article
(This article belongs to the Special Issue Advanced Dental Materials and Its Applications)
Show Figures

Figure 1

28 pages, 8209 KB  
Article
Photocatalytic Enhancement of Anatase Supported on Mesoporous Modified Silica for the Removal of Carbamazepine
by Guillermo Cruz-Quesada, Beatriz Rosales-Reina, Inmaculada Velo-Gala, María del Pilar Fernández-Poyatos, Miguel A. Álvarez, Cristian García-Ruiz, María Victoria López-Ramón and Julián J. Garrido
Nanomaterials 2025, 15(19), 1533; https://doi.org/10.3390/nano15191533 - 8 Oct 2025
Abstract
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 [...] Read more.
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 presents two main drawbacks: its limited absorption of the visible spectrum; and its relatively low specific surface area and pore volume. Regarding the latter, several works in the literature have addressed the issue by developing new synthesis approaches in which anatase is dispersed and supported on the surface of porous materials. In the present work, two series of materials have been prepared where anatase has been supported on mesoporous silica (MSTiR%) in situ through a hydrothermal synthesis approach, where, in addition to using tetraethoxysilane (TEOS) as a silicon precursor, three organotriethoxysilanes [RTEOS, where R = methyl (M), propyl (P) or phenyl (Ph)] were used at a RTEOS:TEOS molar percentage of 10 and 30%. The materials were thoroughly characterized by several techniques to determine their morphological, textural, chemical, and UV-vis light absorption properties and then the most promising materials were used as photocatalysts in the photodegradation of the emerging contaminant and antiepileptic carbamazepine (CBZ) under UV irradiation. The materials synthesized using 10% molar percentage of RTEOS (MSTiR10) were able to almost completely degrade (~95%), 1 mg L−1 of CBZ after 1 h of irradiation using a 275 nm LED and 0.5 g L−1 of catalyst dose. Therefore, this new synthesis approach has proven useful to develop photoactive TiO2 composites with enhanced textural properties. Full article
Show Figures

Figure 1

18 pages, 2078 KB  
Review
The Role of Tribocatalysis in Friction and Wear: A Review
by Diana Berman and Ali Erdemir
Lubricants 2025, 13(10), 442; https://doi.org/10.3390/lubricants13100442 - 8 Oct 2025
Abstract
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid [...] Read more.
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid and liquid lubricants or surface engineering techniques like physical and chemical vapor deposition. However, increasingly harsh operating conditions of more advanced mechanical systems (including wind turbines, space mechanisms, electric vehicle drivetrains, etc.) render such traditional methods less effective or impractical over the long term. Looking ahead, an emerging and complementary solution could be tribocatalysis, a process that spontaneously triggers the formation of nanocarbon-based tribofilms in situ and on demand at lubricated interfaces, significantly reducing friction and wear even without the use of high-performance additives. These films often comprise a wide range of amorphous or disordered carbons, crystalline graphite, graphene, nano-onions, nanotubes, and other carbon nanostructures known for their outstanding friction and wear properties under the most demanding tribological conditions. This review highlights recent advances in understanding the underlying mechanisms involved in forming these carbon-based tribofilms, along with their potential applications in real-world mechanical systems. These examples underscore the scientific significance and industrial potential of tribocatalysis in further enhancing the efficiency, reliability, and environmental sustainability of future mechanical systems. Full article
(This article belongs to the Special Issue Tribo-Catalysis)
Show Figures

Graphical abstract

28 pages, 8425 KB  
Article
Data Reduction Methodology for Dynamic Characteristic Extraction in Photoplethysmogram
by Nina Sviridova and Sora Okazaki
Sensors 2025, 25(19), 6232; https://doi.org/10.3390/s25196232 - 8 Oct 2025
Abstract
Photoplethysmogram (PPG) signals are increasingly utilized in wearable and mobile healthcare applications due to their non-invasive nature and ease of use in measuring physiological parameters, such as heart rate, blood pressure, and oxygen saturation. Recent advancements have highlighted green-light photoplethysmogram (gPPG) as offering [...] Read more.
Photoplethysmogram (PPG) signals are increasingly utilized in wearable and mobile healthcare applications due to their non-invasive nature and ease of use in measuring physiological parameters, such as heart rate, blood pressure, and oxygen saturation. Recent advancements have highlighted green-light photoplethysmogram (gPPG) as offering superior signal quality and accuracy compared to traditional red-light photoplethysmogram (rPPG). Given the deterministic chaotic nature of PPG signals’ dynamics, nonlinear time series analysis has emerged as a powerful method for extracting health-related information not captured by conventional linear techniques. However, optimal data conditions, including appropriate sampling frequency and minimum required time series length for effective nonlinear analysis, remain insufficiently investigated. This study examines the impact of downsampling frequencies and reducing time series lengths on the accuracy of estimating dynamical characteristics from gPPG and rPPG signals. Results demonstrate that a sampling frequency of 200 Hz provides an optimal balance, maintaining robust correlations in dynamical indices while reducing computational load. Furthermore, analysis of varying time series lengths revealed that the dynamical properties stabilize sufficiently at around 170 s, achieving an error of less than 5%. A comparative analysis between gPPG and rPPG revealed no significant statistical differences, confirming their similar effectiveness in estimating dynamical properties under controlled conditions. These results enhance the reliability and applicability of PPG-based health monitoring technologies. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

22 pages, 3540 KB  
Article
Design, Structural Stability, Membrane Binding, and Antibacterial Activity of Novel Antimicrobial Peptides Derived from Wuchuanin-A1
by Rizki A. Putri, Ahmad Habibie, Prajnaparamita Dhar, Krzysztof Kuczera, Respati Tri Swasono, Muhammad Saifur Rohman, Tri Joko Raharjo and Teruna J. Siahaan
Life 2025, 15(10), 1568; https://doi.org/10.3390/life15101568 - 8 Oct 2025
Abstract
Antibiotic resistance is a major health problem globally, highlighting the need for alternative antimicrobials that may potentially reduce the emergence of resistance compared to conventional antibiotics. Antimicrobial peptides (AMPs) are promising candidates because of their broad-spectrum activity. In this study, we designed three [...] Read more.
Antibiotic resistance is a major health problem globally, highlighting the need for alternative antimicrobials that may potentially reduce the emergence of resistance compared to conventional antibiotics. Antimicrobial peptides (AMPs) are promising candidates because of their broad-spectrum activity. In this study, we designed three derivatives (i.e., Analog-1, -2, and -3) of the native peptide, Wuchuanin-A1, for improving their antibacterial activity against Staphylococcus aureus and Escherichia coli. The hypothesis is that the antibacterial activity of these peptides can be improved by increasing their amphipathicity (evaluated using hydrophobic moment analysis), α-helical stability, and membrane binding properties. In this case, the residues of native peptide were mutated to form an amphipathic peptide, referred to here as Analog-1. Then, the N- and C-termini of Analog-1 were capped with acetyl and amide groups, respectively, to produce Analog-2. Finally, the Asp and Arg residues in Analog-2 were mutated to Glu and Lys residues, respectively, in Analog-3. Circular dichroism (CD) spectra in trifluoroethanol (TFE) or methanol (MeOH) showed that Analog-3 has the highest α-helical stability, followed by Analog-2 and Analog-1. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations studies indicated that Analog-2 and -3 have a stable continuous α-helical structure. Both Analog-2 and -3 can form dimer or oligomer at higher concentrations. All three analogs can bind to model membranes of Gram-positive and Gram-negative bacteria, with Analog-3 as the best membrane binding affinity through Langmuir monolayer analysis. Both Analog-2 and -3 have better antibacterial activities against S. aureus and E. coli compared to Analog-1 and the native peptide, with minimum inhibitory concentration (MIC) values 3.91 µg/mL against S. aureus and 62.5 µg/mL against E. coli, which are 2–32-fold lower than those of Analog-1. In addition, Analog-2 and -3 have better activity against S. aureus than E. coli bacteria. We proposed that the increase in antibacterial activity of Analog-2 and -3 was due to the α-helical stability, amphipathic structure, and membrane binding properties. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

18 pages, 9390 KB  
Article
Effects of TaN Cap Layer on the Tribological and Antibacterial Properties of TaN-(Ag,Cu) Nanocomposite Thin Films
by Jang Hsing Hsieh, Anwesha Dey, Chuan Li and You Jen Cho
Coatings 2025, 15(10), 1175; https://doi.org/10.3390/coatings15101175 - 8 Oct 2025
Abstract
Reactive co-sputtering was applied to deposit TaN-(Ag,Cu) nanocomposite films on Si and tool steels. Prior to post-deposition annealing, the films were deposited with TaN cap (diffusion barrier) layers in various thicknesses in order to slow down the nucleation and growth of emerging Ag [...] Read more.
Reactive co-sputtering was applied to deposit TaN-(Ag,Cu) nanocomposite films on Si and tool steels. Prior to post-deposition annealing, the films were deposited with TaN cap (diffusion barrier) layers in various thicknesses in order to slow down the nucleation and growth of emerging Ag and Cu particles. The thickness of the cap layers was set at 5, 10, 20, or 50 nm. The films were then annealed using Rapid Thermal Annealing (RTA) at 400 °C to induce the nucleation and growth of Ag and Cu nanoparticles. These films’ surface morphologies and structures were examined. The samples were tested for their anti-wear and antibacterial behaviors against Gram-positive S. aureus and Gram-negative E. coli, with a variation in cap layer thickness. It is found that, through the application of TaN cap layers, the out-diffusion of Ag and Cu atoms may be slowed down. The surface concentrations of Ag and Cu might decrease from 35 at.% and 17 at.% to 18 at.% and 6 at.%, respectively, when the cap layer thickness increases to 50 nm (after being annealed for 12 min). The diffusion mechanism is proposed to explain the formation of nanoparticles on the surface through boundary diffusion. Antibacterial behaviors against both bacteria, as well as tribological properties, could still be effective but become less significant with an increase in the cap layer thickness. The antibacterial efficiency after 3 h testing decreased from 99% to 5% and 8% against E. coli and S. aureus, respectively. At 12 h, all the samples reached >99% antibacterial efficiency, despite the variation in cap thickness. For sliding wear, the wear rate was doubled when the cap thickness increased to 50 nm (when the normal load was 1 N). On the other hand, the difference was minor when the normal load was changed to 5 N. The sliding lifetime of the samples was studied using a tribometer. The total lifetime may increase with an increase in the cap thickness. The wear is found to be due to the oxidation of Ag and Cu nanoparticles, which results in the loss of low coefficient behaviors. Full article
(This article belongs to the Special Issue Advanced Thin Film Fabrication by Sputtering)
Show Figures

Figure 1

12 pages, 477 KB  
Review
Hemoglobin-Based Oxygen Carriers: Selected Advances and Challenges in the Design of Safe Oxygen Therapeutics (A Focused Review)
by Waldemar Grzegorzewski, Anna Czerniecka-Kubicka, Katarzyna Gołda, Alicja Niedźwiedzka, Hanna Wollocko, Michał S. Majewski and Joanna Wojtkiewicz
Int. J. Mol. Sci. 2025, 26(19), 9775; https://doi.org/10.3390/ijms26199775 - 8 Oct 2025
Abstract
Blood transfusion is a routine yet resource-intensive medical procedure. Increasing global demand, limited donor availability, and logistical and ethical constraints have driven the search for adequate blood substitutes. Hemoglobin-based oxygen carriers (HBOCs) represent a promising class of therapeutics designed to mimic the oxygen [...] Read more.
Blood transfusion is a routine yet resource-intensive medical procedure. Increasing global demand, limited donor availability, and logistical and ethical constraints have driven the search for adequate blood substitutes. Hemoglobin-based oxygen carriers (HBOCs) represent a promising class of therapeutics designed to mimic the oxygen transport function of red blood cells while overcoming the challenges of storage, compatibility, and infection risk. Despite decades of research, no HBOC has yet met all criteria for widespread clinical use. This review summarizes recent advances in the design and development of hemoglobin derivatives, with a focus on their biochemical properties, safety profiles, and oxygen delivery capabilities. We also discuss current limitations and translational barriers. The successful implementation of HBOCs could significantly improve transfusion strategies, especially in emergency medicine, military applications, and resource-limited settings. Continued innovation is essential to bring safe and effective oxygen therapeutics into routine clinical practice. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

37 pages, 1878 KB  
Review
Protein Corona as a Result of Interaction of Protein Molecules with Inorganic Nanoparticles
by Ruslan M. Sarimov, Elena A. Molkova, Alexander V. Simakin, Alexey S. Dorokhov and Sergey V. Gudkov
Int. J. Mol. Sci. 2025, 26(19), 9771; https://doi.org/10.3390/ijms26199771 - 7 Oct 2025
Abstract
Currently, there is a growing interest in biomedical research in the use of inorganic nanoparticles for targeted drug delivery, as biosensors, and in theranostic applications. This review examines the interaction of inorganic nanoparticles with protein molecules depending on the chemical nature, size, and [...] Read more.
Currently, there is a growing interest in biomedical research in the use of inorganic nanoparticles for targeted drug delivery, as biosensors, and in theranostic applications. This review examines the interaction of inorganic nanoparticles with protein molecules depending on the chemical nature, size, and surface charge of the nanoparticles. The effect of protein and nanoparticle concentration, as well as their incubation time, is analyzed. The work focuses on the influence of parameters such as pH, ionic strength, and temperature on the interaction of nanoparticles with protein molecules. The following dependencies were studied in detail: the thickness of the protein corona as a function of nanoparticle size; the size of nanoparticles after interaction with protein as a function of protein and nanoparticle concentration; the distribution of zeta potentials in colloids of nanoparticles, proteins, and their mixtures. It has been shown that proteins and nanoparticles can influence each other’s physicochemical properties. This can lead to the emergence of new biological properties in the system. Therefore, the adsorption of proteins onto nanoparticle surfaces can induce conformational changes. The probability of changing the protein structure increases when a covalent bond is formed between the nanoparticle and the protein molecule. Studies demonstrate that protein structure remains more stable with spherical nanoparticles than with rod-shaped or other high-curvature nanostructures. The results presented in the review demonstrate the possibility of adapting physiological responses to nanomaterials by changing the chemical composition of the surface of nanoparticles and their size and charge. Full article
(This article belongs to the Special Issue Nanoparticles in Molecular Pharmaceutics)
Show Figures

Figure 1

27 pages, 4295 KB  
Review
Polymer Template Selection for 1D Metal Oxide Gas Sensors: A Review
by Khanyisile Sheryl Nkuna, Teboho Clement Mokhena, Rudolph Erasmus and Katekani Shingange
Processes 2025, 13(10), 3180; https://doi.org/10.3390/pr13103180 - 7 Oct 2025
Abstract
The increasing demand for reliable, sensitive, and cost-effective gas sensors drives ongoing research in this field. Ideal gas sensors must demonstrate high sensitivity and selectivity, stability, rapid response and recovery times, energy efficiency, and affordability. One-dimensional (1D) metal oxide semiconductors (MOSs) are prominent [...] Read more.
The increasing demand for reliable, sensitive, and cost-effective gas sensors drives ongoing research in this field. Ideal gas sensors must demonstrate high sensitivity and selectivity, stability, rapid response and recovery times, energy efficiency, and affordability. One-dimensional (1D) metal oxide semiconductors (MOSs) are prominent candidates due to their excellent sensing properties and straightforward fabrication processes. The sensing efficacy of 1D MOSs is heavily dependent on their surface area and porosity, which influence gas interaction and detection efficiency. Polymeric templates serve as effective tools for enhancing these properties by enabling the creation of uniform, porous nanostructures with high surface area, thereby improving gas adsorption, sensitivity, and dynamic response characteristics. This review systematically examines the role of polymeric templates in the construction of 1D MOSs for gas sensing applications. It discusses critical factors influencing polymer template selection and how this choice affects key microstructural parameters, such as grain size, pore distribution, and defect density, essential to sensor performance. The recent literature highlights the mechanisms through which polymer templates facilitate the fine-tuning of nanostructures. Future research directions include exploring novel polymer architectures, developing scalable synthesis methods, and integrating these sensors with emerging technologies. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Figure 1

Back to TopTop