Innovations in Nanomedicine for Disease Management

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Nanomedicine and Nanobiology".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 734

Special Issue Editors


E-Mail Website
Guest Editor
Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy
Interests: extravescicles; natural extracts; in-vitro and in-vivo assays

E-Mail
Guest Editor
Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino, 80131 Naples, Italy
Interests: nanomaterial synthesis and characterization; tissue regeneration; cell toxicology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanomedicine represents a revolutionary frontier in disease management, leveraging the unique properties of nanoparticles to transform diagnostics, therapeutics and drug delivery systems. This Special Issue delves into cutting-edge advancements in nanotechnology that offer precise, targeted and efficient solutions for a broad spectrum of medical challenges. "Innovations in Nanomedicine for Disease Management" explores the applications of nanomedicine in early disease detection, personalized medicine and minimally invasive treatments. It covers breakthroughs in smart drug delivery systems, optimizing therapeutic outcomes while minimizing side effects. Additionally, this Special Issue highlights the integration of nanotechnology with emerging fields such as gene therapy, immunotherapy, and regenerative medicine,  aiming to underscore the transformative potential of nanomedicine in enhancing patient care and revolutionizing contemporary healthcare practices. Researchers and practitioners are invited to contribute to these groundbreaking studies that pave the way for the next generation of disease management technologies.

Dr. Anna Valentino
Dr. Raffaele Conte
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomedicine
  • nanoparticles
  • smart drug delivery
  • personalized medicine
  • minimally invasive treatments
  • gene therapy
  • regenerative medicine

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2759 KB  
Article
CHIVAX 2.1-Loaded Chitosan Nanoparticles as Intranasal Vaccine Candidates for COVID-19: Development and Murine Safety Assessment
by Lineth Juliana Vega-Rojas, Monserrat Palomino, Iván Corona-Guerrero, Miguel Ángel Ramos-López, María Antonieta Carbajo-Mata, Diana Vázquez-Olguín, Juan Campos-Guillen, Aldo Amaro-Reyes, Zaida Urbán-Morlán, José Alberto Rodríguez-Morales, Juan Mosqueda and Héctor Pool
Biomedicines 2025, 13(10), 2453; https://doi.org/10.3390/biomedicines13102453 - 9 Oct 2025
Viewed by 383
Abstract
Background/Objectives: Innovative intranasal delivery systems have emerged as a strategy to overcome the limitations of conventional COVID-19 vaccines, including suboptimal mucosal immunity, limited antigen retention, and vaccine hesitancy. This study aimed to evaluate physicochemical properties and murine safety of a novel COVID-19 intranasal [...] Read more.
Background/Objectives: Innovative intranasal delivery systems have emerged as a strategy to overcome the limitations of conventional COVID-19 vaccines, including suboptimal mucosal immunity, limited antigen retention, and vaccine hesitancy. This study aimed to evaluate physicochemical properties and murine safety of a novel COVID-19 intranasal vaccine candidate based on CHIVAX 2.1 (CVX)-loaded chitosan nanoparticles (CNPs). Methods: The CVX recombinant protein was encapsulated into CNPs using the ionic gelation method. The nanoparticles were characterized by their physicochemical properties (mean size, zeta potential, morphology, and encapsulation efficiency) and spectroscopic profiles. Mucin adsorption and in vitro release profiles in simulated nasal fluid were also assessed. In vivo compatibility was evaluated through histopathological analysis of tissues in male C-57BL/6J mice following intranasal administration. Results: CNPs exhibited controlled size distribution (38.5–542.5 nm) and high encapsulation efficiency (65.4–92.2%). Zeta potential values supported colloidal stability. TEM analysis confirmed spherical morphology and successful CVX encapsulation, and immunogenic integrity was also demonstrated. Mucin adsorption analysis demonstrated effective nasal retention, particularly in particles ≈90 nm. In vitro release studies revealed a biphasic protein profile, where ≈80% of the recombinant protein was released within 2 h. Importantly, histopathological analyses and weight monitoring of intranasally immunized mice revealed no signs of adverse effects related to toxicity. Conclusions: The ionic gelation encapsulation process preserved the physical and immunological integrity of CVX antigen. Furthermore, the intranasal administration of the CVX-loaded CNPs demonstrated a favorable safety profile in vivo. These findings support the potential of the CVX intranasal vaccine formulation for further immunogenicity studies, with no apparent biosafety concerns. Full article
(This article belongs to the Special Issue Innovations in Nanomedicine for Disease Management)
Show Figures

Figure 1

Back to TopTop