Effects of TaN Cap Layer on the Tribological and Antibacterial Properties of TaN-(Ag,Cu) Nanocomposite Thin Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Film Deposition
2.2. Characterization
3. Results and Discussion
3.1. Structural Analysis
3.2. Elemental Analysis
3.3. Tribological Testing
3.4. Antibacterial Behaviors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajput, S.S.; Gangopadhyay, S.; Cavaleiro, A.; AL-Rjoub, A.; Kumar, C.S.; Fernandes, F. Influence of Ag Additions on the Structure, Mechanical Properties and Oxidation Behaviour of CrAlNAg Coatings Deposited by Sputtering. Surf. Coat. Technol. 2021, 426, 127767. [Google Scholar] [CrossRef]
- Ji, F.; Li, X.; Zhang, S.; Pang, M. Influence of Cu Content Variation on the Tribological Properties of Ni60CuMo with Sandwich-Structured Composite Coatings by Laser Cladding. Micromachines 2024, 15, 1429. [Google Scholar] [CrossRef]
- Zheng, C.; Huang, K.; Mi, T.; Li, M.; Yi, X. Laser Cladding Ni60 @ WC/Cu Encapsulated Rough MoS2 Self-Lubricating Wear Resistant Composite Coating and Ultrasound-Assisted Optimization. Ceram. Int. 2024, 50, 36555–36569. [Google Scholar] [CrossRef]
- Cavaleiro, D.; Carvalho, S.; Cavaleiro, A.; Fernandes, F. TiSiN(Ag) Films Deposited by HiPIMS Working in DOMS Mode: Effect of Ag Content on Structure, Mechanical Properties and Thermal Stability. Appl. Surf. Sci. 2019, 478, 426–434. [Google Scholar] [CrossRef]
- Chauhan, B.; Nadakuduru, V.N.; Mundotiya, B.M. Effect of Ag Content on the Friction and Wear Properties of Electrodeposited Self-Lubricating Ni–Ag Coating. Tribol. Mater. Surf. Interfaces 2024, 18, 124–132. [Google Scholar] [CrossRef]
- Ozdemir, H.C.; Yagci, M.B.; Bedir, E.; Yilmaz, R.; Canadinc, D. Optimizing Mechanical Properties and Ag Ion Release Rate of Silver Coatings Deposited on Ti-Based High Entropy Alloys. Surf. Coat. Technol. 2023, 455, 129221. [Google Scholar] [CrossRef]
- Yang, C.M.; Liu, X.B.; Liu, Y.F.; Zhu, Z.X.; Meng, Y.; Zhou, H.B.; Zhang, S.H. Effect of Cu-Doping on Tribological Properties of Laser-Cladded FeCoCrNiCux High-Entropy Alloy Coatings. Tribol. Int. 2023, 188, 108868. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Liu, P.C.; Li, C.; Cheng, M.K.; Chang, S.Y. Mechanical Properties of TaN-Cu Nanocomposite Thin Films. Surf. Coat. Technol. 2008, 202, 5530–5534. [Google Scholar] [CrossRef]
- Tseng, C.C.; Hsieh, J.H.; Jang, S.C.; Chang, Y.Y.; Wu, W. Microstructural Analysis and Mechanical Properties of TaN-Ag Nanocomposite Thin Films. Thin Solid. Films 2009, 517, 4970–4974. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Yeh, T.H.; Li, C.; Chiu, C.H.; Huang, C.T. Antibacterial properties of TaN–(Ag,Cu) nanocomposite thin films. Vacuum 2013, 87, 160–163. [Google Scholar] [CrossRef]
- Ratner, D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Laurila, T.; Zeng, K.; Kivilahti, J.K.; Molarius, J.; Riekkinen, T.; Suni, I. Tantalum Carbide and Nitride Diffusion Barriers for Cu Metallisation. Microelectron. Eng. 2002, 60, 71–80. [Google Scholar] [CrossRef]
- Mejía, V.H.D.; Perea, D.; Bejarano, G.G. Development and Characterization of TiAlN (Ag, Cu) Nanocomposite Coatings Deposited by DC Magnetron Sputtering for Tribological Applications. Surf. Coat. Technol. 2020, 381, 125095. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Yeh, T.H.; Li, C.; Chang, S.Y.; Chiu, C.H.; Huang, C.T. Mechanical Properties and Antibacterial Behaviors of TaN-(Ag,Cu) Nanocomposite Thin Films after Annealing. Surf. Coat. Technol. 2013, 228, S116–S119. [Google Scholar] [CrossRef]
- Mulligan, C.P.; Blanchet, T.A.; Gall, D. Control of Lubricant Transport by a CrN Diffusion Barrier Layer during High-Temperature Sliding of a CrN-Ag Composite Coating. Surf. Coat. Technol. 2010, 205, 1350–1355. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Muratore, C.; Aouadi, S.M. Hard Coatings with High Temperature Adaptive Lubrication and Contact Thermal Management: Review. Surf. Coat. Technol. 2014, 257, 247–265. [Google Scholar] [CrossRef]
- Luo, D.; Zhou, Q.; Ye, W.; Ren, Y.; Greiner, C.; He, Y.; Wang, H. Design and Characterization of Self-Lubricating Refractory High Entropy Alloy-Based Multilayered Films. ACS Appl. Mater. Interfaces 2021, 13, 55712–55725. [Google Scholar] [CrossRef]
- Yang, Z.G.; Xu, H.M.; Shuai, T.Y.; Zhan, Q.N.; Zhang, Z.J.; Huang, K.; Dai, C.; Li, G.R. Recent Progress in the Synthesis of Transition Metal Nitride Catalysts and Their Applications in Electrocatalysis. Nanoscale 2023, 15, 11777–11800. [Google Scholar] [CrossRef]
- Tsetseris, L.; Logothetidis, S.; Pantelides, S.T. Atomic-Scale Mechanisms for Diffusion of Impurities in Transition-Metal Nitrides. Surf. Coat. Technol. 2010, 204, 2089–2094. [Google Scholar] [CrossRef]
- Muratore, C.; Hu, J.J.; Voevodin, A.A. Adaptive Nanocomposite Coatings with a Titanium Nitride Diffusion Barrier Mask for High-Temperature Tribological Applications. Thin Solid Film. 2007, 515, 3638–3643. [Google Scholar] [CrossRef]
- Papi, P.A.; Mulligan, C.P.; Gall, D. CrN-Ag Nanocomposite Coatings: Control of Lubricant Transport by Diffusion Barriers. Thin Solid Film. 2012, 524, 211–217. [Google Scholar] [CrossRef]
- Fenker, M.; Balzer, M.; Kappl, H. Corrosion Protection with Hard Coatings on Steel: Past Approaches and Current Research Efforts. Surf. Coat. Technol. 2014, 257, 182–205. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, M.; Wang, C.; Mi, Y.; Lei, Y. Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition. Adv. Energy Mater. 2016, 6, 1600468. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Chiu, C.H.; Li, C.; Wu, W.; Chang, S.Y. Development of Anti-Wear and Anti-Bacteria TaN-(Ag,Cu) Thin Films—A Review. Surf. Coat. Technol. 2013, 233, 159–168. [Google Scholar] [CrossRef]
- Echavarría1, A.M.; Bejarano, G.G.; Meza, J.M. Mechanical and tribological features of TaN(Ag-Cu) duplex nanocomposite coatings: Their response to heat treatment, Ingeniare. Rev. Chil. Ing. 2017, 25, 662–673. [Google Scholar] [CrossRef]
- Hong, C.; He, P.; Tian, J.; Chang, F.; Wu, J.; Zhang, P.; Dai, P. On the Microstructure and Mechanical Properties of CrNx/Ag Multilayer Films Prepared by Magnetron Sputtering. Materials 2020, 13, 1316. [Google Scholar] [CrossRef]
- Im, H.S.; Sim, K.B.; Seong, T.Y. Thermally Stable AgCu Alloy Disc Array for near Infrared Filters. Curr. Appl. Phys. 2020, 20, 1321–1327. [Google Scholar] [CrossRef]
- Elofsson, V.; Almyras, G.A.; Lü, B.; Boyd, R.D.; Sarakinos, K. Atomic Arrangement in Immiscible Ag–Cu Alloys Synthesized Far-from-Equilibrium. Acta Mater. 2016, 110, 114–121. [Google Scholar] [CrossRef]
- Li, S.; Hu, S.; Xu, K.; Jiang, W.; Liu, Y.; Leng, Z.; Liu, J. Construction of Fiber-Shaped Silver Oxide/Tantalum Nitride p-n Heterojunctions as Highly Efficient Visible-Light-Driven Photocatalysts. J. Colloid. Interface Sci. 2017, 504, 561–569. [Google Scholar] [CrossRef]
- Baek, W.-C.; Zhou, J.P.; Im, J.; Ho, P.S.; Lee, J.G.; Hwang, S.B.; Choi, K.-K.; Kyun Park, S.; Jung, O.-J.; Smith, L.; et al. Oxidation of the Ta Diffusion Barrier and Its Effect On The Reliability of Cu Interconnects. In Proceedings of the 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, CA, USA, 26–30 March 2006. [Google Scholar]
- Lee, H.W.; Bien, D.C.S.; Badaruddin, S.A.M.; Teh, A.S. Silver (Ag) as a Novel Masking Material in Glass Etching for Microfluidics Applications. Microsyst. Technol. 2013, 19, 253–259. [Google Scholar] [CrossRef]
- Herzig, C.; Divinski, S. V Grain Boundary Diffusion in Metals: Recent Developments. Mat. Trans. 2003, 44, 14–27. [Google Scholar] [CrossRef]
- Ou, K.-L.; Wu, W.-F.; Chou, C.-P.; Chiou, S.-Y.; Wu, C.-C. Improved TaN Barrier Layer against Cu Diffusion by Formation of an Amorphous Layer Using Plasma Treatment. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2002, 20, 2154–2161. [Google Scholar] [CrossRef]
- Yan, H.; Wu, J.; Xie, H.; Thomas, H.R.; Feng, S. An Analytical Model for Chemical Diffusion in Layered Contaminated Sediment Systems with Bioreactive Caps. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 2471–2490. [Google Scholar] [CrossRef]
- Chee, S.S.; Lee, J.H. Preparation and Oxidation Behavior of Ag-Coated Cu Nanoparticles Less than 20 Nm in Size. J. Mater. Chem. C Mater. 2014, 2, 5372–5381. [Google Scholar] [CrossRef]
- Vanegas Parra, H.S.; Calderón Velasco, S.; Alfonso Orjuela, J.E.; Olaya Florez, J.J.; Carvalho, S. Influence of Ag Doping on the Microstructural, Optical, and Electrical Properties of ZrSiN Coatings Deposited through Pulsed-DC Reactive Magnetron Sputtering. Coatings 2023, 13, 1154. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, Y.; Wu, T.; Zuo, B.; Bian, S.; Lu, K.; Zhao, L.; Yu, L.; Xu, J. Insight into the Mechanisms of Nitride Films with Excellent Hardness and Lubricating Performance: A Review. Nanomaterials 2023, 13, 2205. [Google Scholar] [CrossRef]
- Mulligan, C.P.; Gall, D. CrN-Ag Self-Lubricating Hard Coatings. Surf. Coat. Technol. 2005, 200, 1495–1500. [Google Scholar] [CrossRef]
- Tan, G.; Xu, J.; Chirume, W.M.; Zhang, J.; Zhang, H.; Hu, X. Antibacterial and Anti-Inflammatory Coating Materials for Orthopedic Implants: A Review. Coatings 2021, 11, 1401. [Google Scholar] [CrossRef]
- Ali, A.; Petrů, M.; Azeem, M.; Noman, T.; Masin, I.; Amor, N.; Militky, J.; Tomková, B. A Comparative Performance of Antibacterial Effectiveness of Copper and Silver Coated Textiles. J. Ind. Text. 2022, 53, 15280837221134990. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, J.H.; Dey, A.; Li, C.; Cho, Y.J. Effects of TaN Cap Layer on the Tribological and Antibacterial Properties of TaN-(Ag,Cu) Nanocomposite Thin Films. Coatings 2025, 15, 1175. https://doi.org/10.3390/coatings15101175
Hsieh JH, Dey A, Li C, Cho YJ. Effects of TaN Cap Layer on the Tribological and Antibacterial Properties of TaN-(Ag,Cu) Nanocomposite Thin Films. Coatings. 2025; 15(10):1175. https://doi.org/10.3390/coatings15101175
Chicago/Turabian StyleHsieh, Jang Hsing, Anwesha Dey, Chuan Li, and You Jen Cho. 2025. "Effects of TaN Cap Layer on the Tribological and Antibacterial Properties of TaN-(Ag,Cu) Nanocomposite Thin Films" Coatings 15, no. 10: 1175. https://doi.org/10.3390/coatings15101175
APA StyleHsieh, J. H., Dey, A., Li, C., & Cho, Y. J. (2025). Effects of TaN Cap Layer on the Tribological and Antibacterial Properties of TaN-(Ag,Cu) Nanocomposite Thin Films. Coatings, 15(10), 1175. https://doi.org/10.3390/coatings15101175