Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = emergency supplies transportation vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1487 KiB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 387
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

24 pages, 964 KiB  
Article
Designing a Sustainable Supply Chain Network for Perishable Products Integrating Internet of Things and Mixed Fleets
by Lihong Pan, Xialian Li and Miyuan Shan
J. Theor. Appl. Electron. Commer. Res. 2025, 20(2), 137; https://doi.org/10.3390/jtaer20020137 - 6 Jun 2025
Viewed by 1533
Abstract
Designing a sustainable supply chain network for perishable products is challenging due to their short shelf life and sensitivity to environmental conditions. These factors necessitate strict quality control and efficient logistics. The emergence of Internet of Things (IoT) technology has significantly improved supply [...] Read more.
Designing a sustainable supply chain network for perishable products is challenging due to their short shelf life and sensitivity to environmental conditions. These factors necessitate strict quality control and efficient logistics. The emergence of Internet of Things (IoT) technology has significantly improved supply chain operations by enabling real-time monitoring of environmental conditions. This helps maintain product quality and ensures timely deliveries. Additionally, using mixed fleets—comprising both electric and conventional vehicles—can reduce carbon emissions without compromising operational reliability. While previous studies have explored the application of IoT to enhance delivery efficiency and the use of mixed fleets to address environmental concerns, few have examined both technologies within a unified modeling framework. This study proposes a sustainable multi-period supply chain network for perishable products that integrates IoT technology and mixed fleets into an optimization framework. We develop a multi-objective location-inventory-routing model. The first objective minimizes total costs, including production, facility operation, inventory, transportation, carbon emissions, IoT deployment, and energy use. The second objective aims to maximize service levels, which are measured by product quality and on-time delivery. The model is solved using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). A case study based on real-world data demonstrates the model’s effectiveness. Sensitivity analysis indicates that balancing the emphasis on quality and delivery reliability leads to improved cost and service performance. Furthermore, while total costs steadily increase with higher demand, service levels remain stable, showcasing the model’s robustness. These results provide practical guidance for managing sustainable supply chains for perishable products. Full article
(This article belongs to the Special Issue Digitalization and Sustainable Supply Chain)
Show Figures

Figure 1

19 pages, 976 KiB  
Article
Green Logistics at Selected Logistics Operators in Poland
by Marcin Olkiewicz and Joanna Alicja Dyczkowska
Sustainability 2025, 17(10), 4587; https://doi.org/10.3390/su17104587 - 16 May 2025
Viewed by 646
Abstract
The contemporary development of e-commerce in recent years has contributed to the rapid growth of the logistics industry and its awareness of environmental threats. Alongside the increase in online orders, significant environmental pollution has emerged in the logistics sector. Logistics operators are striving [...] Read more.
The contemporary development of e-commerce in recent years has contributed to the rapid growth of the logistics industry and its awareness of environmental threats. Alongside the increase in online orders, significant environmental pollution has emerged in the logistics sector. Logistics operators are striving to build green logistics policies, and the reliability of the supply chain and the analysis of innovation strategies in green logistics have contributed to the improvement of environmental pollution in the logistics industry and reduced vehicle emissions in transportation. The aim of this study is to assess the implementation of the green logistics concept by selected logistics operators in Poland. The research indicates an increase in exhaust emissions of all harmful compounds in the analyzed transport logistics system by 2030 at the following selected logistics operators: CO, 9.167%; HC, 16.265%; and NOX, 17.354%. According to EU documents, the objectives to be achieved in terms of sustainable development in the field of transport, including for the logistics sector, are to change sustainable propulsion systems, and to optimize the operation of multimodal logistics chains, inter alia, by making greater use of more energy-efficient modes of transport. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

37 pages, 8477 KiB  
Review
Thermal Management for Unmanned Aerial Vehicle Payloads: Mechanisms, Systems, and Applications
by Ganapathi Pamula and Ashwin Ramachandran
Drones 2025, 9(5), 350; https://doi.org/10.3390/drones9050350 - 5 May 2025
Viewed by 3388
Abstract
Unmanned aerial vehicles (UAVs) are emerging as powerful tools for transporting temperature-sensitive payloads, including medical supplies, biological samples, and research materials, to remote or hard-to-reach locations. Effective thermal management is essential for maintaining payload integrity, especially during extended flights or harsh environmental conditions. [...] Read more.
Unmanned aerial vehicles (UAVs) are emerging as powerful tools for transporting temperature-sensitive payloads, including medical supplies, biological samples, and research materials, to remote or hard-to-reach locations. Effective thermal management is essential for maintaining payload integrity, especially during extended flights or harsh environmental conditions. This review presents a comprehensive analysis of temperature control mechanisms for UAV payloads, covering both passive and active strategies. Passive systems, such as phase-change materials and high-performance insulation, provide energy-efficient solutions for short-duration flights. In contrast, active systems, including thermoelectric cooling modules and Joule heating elements, offer precise temperature regulation for more demanding applications. We examined case studies that highlight the integration of these technologies in real-world UAV applications, such as vaccine delivery, blood sample transport, and in-flight polymerase chain reaction diagnostics. Additionally, we discussed critical design considerations, including power efficiency, payload capacity, and the impact of thermal management on flight endurance. We then presented an outlook on emerging technologies, such as hybrid power systems and smart feedback control loops, which promise to enhance UAV-based thermal management. This work aimed to guide researchers and practitioners in advancing thermal control technologies, enabling reliable, efficient, and scalable solutions for temperature-sensitive deliveries using UAVs. Full article
Show Figures

Figure 1

21 pages, 2267 KiB  
Review
A Review of Battery Electric Public Transport Timetabling and Scheduling: A 10 Year Retrospective and New Developments
by Yaoyao Wang, Shun Zhang, Liang Liu, Ping Gong, Weike Lu, Fuwei Wu, Jinggang Gu, Yuxuan Li and Zhichao Cao
Electronics 2025, 14(9), 1694; https://doi.org/10.3390/electronics14091694 - 22 Apr 2025
Viewed by 761
Abstract
Battery electric vehicles (BEVs) have emerged as a cornerstone of sustainable transportation systems, driving a fundamental transformation in public transport (PT) operations over the past decade. The unique characteristics of BEVs, including range limitations and battery degradation dynamics, necessitate a multi-dimensional optimization framework [...] Read more.
Battery electric vehicles (BEVs) have emerged as a cornerstone of sustainable transportation systems, driving a fundamental transformation in public transport (PT) operations over the past decade. The unique characteristics of BEVs, including range limitations and battery degradation dynamics, necessitate a multi-dimensional optimization framework that simultaneously considers energy supply management, operational efficiency, and battery lifecycle optimization in transit scheduling and timetabling. This paper presents a systematic review of BEV timetabling and scheduling research, structured around three main contributions. First, it comprehensively examines the evolution of electric vehicle timetabling problems, providing a detailed comparative analysis of methodological approaches in this domain. Second, it identifies and critically evaluates key developments in electric vehicle scheduling, including extended research directions (such as the integration with crew scheduling) and their practical implications. Third, it investigates the integration of BEV scheduling and timetabling, synthesizing the strengths and limitations of current methodologies while outlining promising avenues for future research. By offering a comprehensive analysis of the advancements in battery electric public transport scheduling over the past decade, this review serves as both a technical reference and a strategic guide for researchers and practitioners in the field of sustainable transportation systems. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems)
Show Figures

Figure 1

17 pages, 4460 KiB  
Article
Active Support Strategies for Power Supply in Extreme Scenarios with Synergies Between Idle and Emergency Resources in the City
by Ruifeng Zhao, Jiangang Lu, Yizhe Chen, Yifan Gao, Ming Li, Chengzhi Wei and Junhao Li
Energies 2025, 18(8), 1940; https://doi.org/10.3390/en18081940 - 10 Apr 2025
Cited by 1 | Viewed by 351
Abstract
There are numerous idle electric vehicle (EV) resources in urban distribution networks, which hold significant potential for emergency power supply support following network failures. Based on this, a proactive power supply support strategy is proposed, integrating urban idle resources and emergency resources under [...] Read more.
There are numerous idle electric vehicle (EV) resources in urban distribution networks, which hold significant potential for emergency power supply support following network failures. Based on this, a proactive power supply support strategy is proposed, integrating urban idle resources and emergency resources under extreme scenarios. First, an emergency dispatch model is established for EVs in public parking lots and electric power supply vehicles (EPSVs), considering the impact of road congestion. Next, the costs of various emergency resources are analyzed, and a multi-source collaborative power restoration strategy is proposed. This strategy includes EPSVs, EVs, photovoltaics, line repair teams, and other resources, with load shedding loss costs incorporated into the optimization framework. Finally, the proposed strategy is validated through simulations using an IEEE 33-node distribution network and a 32-node transportation network. The results demonstrate that the line topology of the faulty distribution network is restored to normal after the repair team’s intervention. Moreover, the strategy enables efficient utilization and economic dispatch of urban idle and emergency resources while improving system reliability. Full article
Show Figures

Figure 1

24 pages, 5345 KiB  
Article
Emergency Capacity Pool to Respond to Unconventional Emergencies Based on Principal–Agent Theory
by Na Jin, Fuyou Tan, Haiyan Wang, Ao Sang and Shipeng Wang
Urban Sci. 2024, 8(4), 262; https://doi.org/10.3390/urbansci8040262 - 20 Dec 2024
Viewed by 682
Abstract
To address the conflict of interest between the government and enterprises regarding urban emergency transportation resources in unconventional emergencies and to enhance resource allocation and response efficiency. This paper proposes a collaborative government–enterprise model for emergency transport capacity reserves and develops an incentive [...] Read more.
To address the conflict of interest between the government and enterprises regarding urban emergency transportation resources in unconventional emergencies and to enhance resource allocation and response efficiency. This paper proposes a collaborative government–enterprise model for emergency transport capacity reserves and develops an incentive model based on principal–agent theory. First, by comprehensively considering enterprise characteristics, high-quality enterprises are selected to collaborate with the government in building an emergency capacity pool of social vehicles. Second, to address potential conflicts of interest between the government and enterprises within the emergency capacity pool, this paper uses principal–agent theory to analyze the interest game process under information asymmetry, constructs a corresponding incentive model, and determines the government’s optimal incentive coefficient, the enterprise’s optimal actual capacity supply ratio, and the benefit distribution between both parties. Finally, numerical simulations and sensitivity analyses were used to verify the model’s applicability. The findings reveal that transport effort cost, economic requisition compensation, and government supervision cost influence the optimal decisions and outcomes in government–enterprise interactions. This study provides theoretical guidance and managerial insights for coordinating emergency transport scheduling between the government and enterprises during unconventional emergencies. Full article
Show Figures

Figure 1

19 pages, 1903 KiB  
Review
A Survey on the Sustainability of Traditional and Emerging Materials for Next-Generation EV Motors
by Francesco Lucchini, Riccardo Torchio and Nicola Bianchi
Energies 2024, 17(23), 5861; https://doi.org/10.3390/en17235861 - 22 Nov 2024
Viewed by 1665
Abstract
The transportation sector is experiencing a profound shift, driven by the urgent need to reduce greenhouse gas (GHG) emissions from internal combustion engine vehicles (ICEVs). As electric vehicle (EV) adoption accelerates, the sustainability of the materials used in their production, particularly in electric [...] Read more.
The transportation sector is experiencing a profound shift, driven by the urgent need to reduce greenhouse gas (GHG) emissions from internal combustion engine vehicles (ICEVs). As electric vehicle (EV) adoption accelerates, the sustainability of the materials used in their production, particularly in electric motors, is becoming a critical focus. This paper examines the sustainability of both traditional and emerging materials used in EV traction motors, with an emphasis on permanent magnet synchronous motors (PMSMs), which remain the dominant technology in the industry. Key challenges include the environmental and supply-chain concerns associated with rare earth elements (REEs) used in permanent magnets, as well as the sustainability of copper windings. Automakers are exploring alternatives such as REE-free permanent magnets, soft magnetic composites (SMCs) for reduced losses in the core, and carbon nanotube (CNT) windings for superior electrical, thermal, and mechanical properties. The topic of materials for EV traction motors is discussed in the literature; however, the focus on environmental, social, and economic sustainability is often lacking. This paper fills the gap by connecting the technological aspects with sustainability considerations, offering insights into the future configuration of EV motors. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

24 pages, 12109 KiB  
Article
Case Study of an Integrated Design and Technical Concept for a Scalable Hyperloop System
by Domenik Radeck, Florian Janke, Federico Gatta, João Nicolau, Gabriele Semino, Tim Hofmann, Nils König, Oliver Kleikemper, Felix He-Mao Hsu, Sebastian Rink, Felix Achenbach and Agnes Jocher
Appl. Syst. Innov. 2024, 7(6), 113; https://doi.org/10.3390/asi7060113 - 11 Nov 2024
Cited by 1 | Viewed by 3179
Abstract
This paper presents the design process and resulting technical concept for an integrated hyperloop system, aimed at realizing efficient high-speed ground transportation. This study integrates various functions into a coherent and technically feasible solution, with key design decisions that optimize performance and cost-efficiency. [...] Read more.
This paper presents the design process and resulting technical concept for an integrated hyperloop system, aimed at realizing efficient high-speed ground transportation. This study integrates various functions into a coherent and technically feasible solution, with key design decisions that optimize performance and cost-efficiency. An iterative design process with domain-specific experts, regular reviews, and a dataset with a single source of truth were employed to ensure continuous and collective progress. The proposed hyperloop system features a maximum speed of 600 kmh and a capacity of 21 passengers per pod (vehicle). It employs air docks for efficient boarding, electromagnetic suspension (EMS) combined with electrodynamic suspension (EDS) for high-speed lane switching, and short stator motor technology for propulsion. Cooling is managed through water evaporation at an operating pressure of 10 mbar, while a 300 kW inductive power supply (IPS) provides onboard power. The design includes a safety system that avoids emergency exits along the track and utilizes separated safety-critical and high-bandwidth communication. With prefabricated concrete parts used for the tube, construction costs can be reduced and scalability improved. A dimensioned cross-sectional drawing, as well as a preliminary pod mass budget and station layout, are provided, highlighting critical technical systems and their interactions. Calculations of energy consumption per passenger kilometer, accounting for all functions, demonstrate a distinct advantage over existing modes of transportation, achieving greater efficiency even at high speeds and with smaller vehicle sizes. This work demonstrates the potential of a well-integrated hyperloop system to significantly enhance transportation efficiency and sustainability, positioning it as a promising extension to existing modes of travel. The findings offer a solid framework for future hyperloop development, encouraging further research, standardization efforts, and public dissemination for continued advancements. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

24 pages, 3158 KiB  
Article
Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach
by Bernardine Chidozie, Ana Ramos, José Vasconcelos, Luis Pinto Ferreira and Reinaldo Gomes
Sustainability 2024, 16(22), 9709; https://doi.org/10.3390/su16229709 - 7 Nov 2024
Cited by 2 | Viewed by 1540
Abstract
As environmental sustainability gains importance, enhancing supply chains to minimize environmental hazards is essential, particularly in industries using residual biomass. This study tackles this by investigating the integration of sustainability criteria into supply chain optimization for a biomass energy company in Portugal, using [...] Read more.
As environmental sustainability gains importance, enhancing supply chains to minimize environmental hazards is essential, particularly in industries using residual biomass. This study tackles this by investigating the integration of sustainability criteria into supply chain optimization for a biomass energy company in Portugal, using a combination of simulation modeling through anyLogistix software (version: 2.15.3.202209061204) and multi-criteria decision-making. Four supply chain scenarios were designed and simulated, differing in their number of distribution centers, the adoption of green logistics, and split-by-ratio distribution strategies over a 305-day period. Through the weighted sum model, Scenario C emerged as the optimal configuration, achieving a balance between operational efficiency and sustainability by reducing CO2 emissions by up to 90% and lowering transportation costs without compromising revenue. Sensitivity analysis further highlighted the trade-offs between cost efficiency, lead times, and environmental impact, showing that the strategic placement of distribution centers and the use of eco-friendly vehicles significantly improve the sustainability of the biomass supply chain. These findings provide practical insights for decision-makers, demonstrating how digital modeling tools can enhance supply chain management by optimizing environmental and operational goals simultaneously. This research contributes to the fields of sustainable logistics and supply chain management by validating the effectiveness of green logistics strategies and multi-criteria decision-making approaches in reducing environmental impact while maintaining economic viability. Full article
Show Figures

Figure 1

12 pages, 1949 KiB  
Article
Analysis of Public Acceptance and Influencing Factors of Cooperative Vehicle Infrastructure Technology
by Wei Bai, Yuan Yuan and Linheng Li
World Electr. Veh. J. 2024, 15(11), 500; https://doi.org/10.3390/wevj15110500 - 31 Oct 2024
Viewed by 977
Abstract
Cooperative vehicle infrastructure technology has emerged as a cutting-edge and indispensable trend within the transportation sector. While addressing the supply-side requisites of the technology, it is equally important to investigate its demand-side response. To investigate the public acceptance of cooperative vehicle infrastructure technology [...] Read more.
Cooperative vehicle infrastructure technology has emerged as a cutting-edge and indispensable trend within the transportation sector. While addressing the supply-side requisites of the technology, it is equally important to investigate its demand-side response. To investigate the public acceptance of cooperative vehicle infrastructure technology and its influencing factors, this paper constructs an extended Technology Acceptance Model (TAM). Then, the paper employs the structural equation model (SEM) to validate the path hypotheses of the model, and pinpoints the variables that significantly influence the intention to use the technology. Moreover, the Bayesian network (BN) model is utilized to assess the magnitude of the effects of diverse influencing factors on the acceptance of the technology. The research findings can provide recommendations for the government to expedite the promotion and implementation of cooperative vehicle infrastructure technology. Full article
(This article belongs to the Special Issue Modeling for Intelligent Vehicles)
Show Figures

Figure 1

26 pages, 2075 KiB  
Review
On-Board Chargers for Electric Vehicles: A Comprehensive Performance and Efficiency Review
by Abrar Rasool Dar, Ahteshamul Haque, Mohammed Ali Khan, Varaha Satya Bharath Kurukuru and Shabana Mehfuz
Energies 2024, 17(18), 4534; https://doi.org/10.3390/en17184534 - 10 Sep 2024
Cited by 12 | Viewed by 8239
Abstract
The transportation industry is experiencing a switch towards electrification. Availability of electric vehicle (EV) charging infrastructure is very critical for broader acceptance of EVs. The increasing use of OBCs, due to their cost-effectiveness and ease of installation, necessitates addressing key challenges. These include [...] Read more.
The transportation industry is experiencing a switch towards electrification. Availability of electric vehicle (EV) charging infrastructure is very critical for broader acceptance of EVs. The increasing use of OBCs, due to their cost-effectiveness and ease of installation, necessitates addressing key challenges. These include achieving high efficiency and power density to overcome space limitations and reduce charging times. Additionally, the growing interest in bidirectional power flow, allowing EVs to supply power back to the grid, highlights the importance of innovative OBC solutions. This review article provides a thorough analysis of the current advancements, challenges, and prospects in EV on-board charger technology. It aims to offer a comprehensive review of OBC architectures, components, technologies, and emerging trends, guiding future research and development. Addressing these challenges is essential to enhance the efficiency, reliability, and integration of OBCs within the broader EV ecosystem. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

29 pages, 5960 KiB  
Article
Strategies for Humanitarian Logistics and Supply Chain in Organizational Contexts: Pre- and Post-Disaster Management Perspectives
by Amir Aghsami, Simintaj Sharififar, Nader Markazi Moghaddam, Ebrahim Hazrati, Fariborz Jolai and Reza Yazdani
Systems 2024, 12(6), 215; https://doi.org/10.3390/systems12060215 - 18 Jun 2024
Cited by 7 | Viewed by 5475
Abstract
Every organization typically comprises various internal components, including regional branches, operations centers/field offices, major transportation hubs, and operational units, among others, housing a population susceptible to disaster impacts. Moreover, organizations often possess resources such as staff, various vehicles, and medical facilities, which can [...] Read more.
Every organization typically comprises various internal components, including regional branches, operations centers/field offices, major transportation hubs, and operational units, among others, housing a population susceptible to disaster impacts. Moreover, organizations often possess resources such as staff, various vehicles, and medical facilities, which can mitigate human casualties and address needs across affected areas. However, despite the importance of managing disasters within organizational networks, there remains a research gap in the development of mathematical models for such scenarios, specifically incorporating operations centers/field offices and external stakeholders as relief centers. Addressing this gap, this study examines an optimization model for both before and after disaster planning in a humanitarian supply chain and logistical framework within an organization. The affected areas are defined as regional branches, operational units, major transportation hubs, operations centers/field offices, external stakeholders, and medical facilities. A mixed-integer nonlinear model is formulated to minimize overall costs, considering factors such as penalty costs for untreated injuries and demand, delays in rescue and relief item distribution operations, and waiting costs for the injured in emergency medical vehicles and air ambulances. The model is implemented using GAMS software 47.1.0 for various test problems across different scales, with the Grasshopper Optimization Algorithm proposed for larger-scale scenarios. Numerical examples are provided to show the effectiveness and feasibility of the proposed model and to validate the metaheuristic approach. Sensitivity analysis is conducted to assess the model’s performance under different conditions, and key managerial insights and implications are discussed. Full article
Show Figures

Figure 1

21 pages, 5047 KiB  
Article
Minimisation of the Energy Expenditure of Electric Vehicles in Municipal Service Companies, Taking into Account the Uncertainty of Charging Point Operation
by Mariusz Izdebski, Marianna Jacyna and Jerzy Bogdański
Energies 2024, 17(9), 2179; https://doi.org/10.3390/en17092179 - 2 May 2024
Cited by 6 | Viewed by 1095
Abstract
This article presents an original method for minimising the energy expenditure of electric vehicles used in municipal service undertakings, taking into account the uncertainty in the functioning of their charging points. The uncertainty of the charging points’ operation was presented as the probability [...] Read more.
This article presents an original method for minimising the energy expenditure of electric vehicles used in municipal service undertakings, taking into account the uncertainty in the functioning of their charging points. The uncertainty of the charging points’ operation was presented as the probability of the occurrence of an emergency situation hindering a point’s operation, e.g., a breakdown or lack of energy supply. The problem is how to calculate the driving routes of electric vehicles so that they will arrive at charging points at times at which there is a minimal probability of breakdowns. The second aspect of this problem to be solved is that the designated routes are supposed to ensure the minimum energy expenditure that is needed for the vehicles to complete the tasks assigned. The developed method is based on two heuristic algorithms, i.e., the ant algorithm and genetic algorithms. These algorithms work in a hybrid combination, i.e., the ant algorithm generates the initial population for the genetic algorithm. An important element of this method is the decision-making model for defining the driving routes of electric vehicles with various restrictions, e.g., their battery capacity or the permissible risk of charging point breakdown along the routes of the vehicles. The criterion function of the model was defined as the minimisation of the energy expenditure needed by the vehicles to perform their transport tasks. The method was verified against real-life data, and its effectiveness was confirmed. The authors presented a method of calibrating the developed optimisation algorithms. Theoretical distributions of the probability of charging point failure were determined based on the Statistica 13 program, while a graphical implementation of the method was carried out using the PTV Visum 23 software. Full article
Show Figures

Figure 1

13 pages, 39444 KiB  
Article
Concept of a Peripheral-Free Electrified Monorail System (PEMS) for Flexible Material Handling in Intralogistics
by Marvin Sperling, Timo Kurschilgen and Pietro Schumacher
Inventions 2024, 9(3), 52; https://doi.org/10.3390/inventions9030052 - 30 Apr 2024
Cited by 2 | Viewed by 2257
Abstract
With the emergence of Industry 4.0 in intralogistics, the need for flexible material handling solutions is increasing. While conventional conveyor systems are often too inflexible to meet changing requirements. Automated guided vehicles offer an answer, additional solutions are required for companies relying on [...] Read more.
With the emergence of Industry 4.0 in intralogistics, the need for flexible material handling solutions is increasing. While conventional conveyor systems are often too inflexible to meet changing requirements. Automated guided vehicles offer an answer, additional solutions are required for companies relying on already busy and crowded shop floors. This paper presents a concept for a periphery-free electrified monorail system (PEMS) that enables flexible material transport with minimal floor requirements. The PEMS is based on classic electrified monorail technology, and requires no additional peripheral devices within the rail system. Installation and maintenance costs are kept to a minimum through simplified branching elements and a battery-powered energy supply for the vehicles. The modular design of the rail elements further allows transport on standardized Euro-pallets. Moreover, a taxonomy for evaluating the passivity of branching elements of electrified monorail systems is introduced. The functionality of the PEMS was validated by conducting real experiments using a prototype, The results show that the PEMS provides high flexibility in terms of layout design and usage, allowing for fast adaption to the changing requirements of intralogistics. Full article
Show Figures

Figure 1

Back to TopTop