A Survey on the Sustainability of Traditional and Emerging Materials for Next-Generation EV Motors
Abstract
:1. Introduction
- Permanent magnets (PMs),
- Ferromagnetic core,
- Windings.
2. Current Status of EV Traction Motors
- High torque density,
- High overload capability,
- Low torque ripple,
- Large flux-weakening capability,
- High efficiency to reduce the losses,
EV Model | Motor Type | Year | Power [kW] |
---|---|---|---|
Audi Q6 e-tron | IM (front) + PMSM (rear) | 2024 | 285 |
BMW i5 Touring | EESM | 2024 | 250 |
Chevrolet Equinox EV | PMSM | 2024 | 159–215 |
Hyundai Ioniq 5 | PMSM | 2021 | 125 |
Honda e:NP2 | PMSM | 2024 | 150 |
Jaguar I-Pace | PMSM | 2018 | 294 |
Kia EV6 | PMSM | 2021 | 239 |
Land Rover | SMR | 2013 | 70 |
Mercedes-Benz EQE | PMSM | 2021 | 215–505 |
Renault ZOE | EESM | 2021 | 100 |
Tesla Model 3 | IM (front) + IPM-SynRM (rear) | 2020 | 366 |
Tesla Model Y | IM (front) + IPM-SynRM (rear) | 2020 | 247 |
Volvo EX90 | PMSM | 2024 | 279–380 |
Xiaomi SU7 | PMSM | 2024 | 220–495 |
3. Traditional Materials for EV Traction Motors
3.1. Permanent Magnets
- High value of the maximum energy product [J/], representing the maximum energy stored per unit volume,
- High value of enables the magnet to resist demagnetization in the presence of external magnetic fields,
- High value of . The higher the material , the stronger the forces of magnetic attraction and repulsion that generate the driving torque,
- A low coercivity and remanence temperature coefficient.
The Issue of Rare Earth Elements
- Hydrometallurgical methods,
- Pyrometallurgical methods,
- Gas-phase extraction.
3.2. Ferromagnetic Core
- High relative magnetic permeability , essential for effectively guiding magnetic flux and minimizing its dispersion,
- Low eddy current and hysteresis losses to increase overall efficiency,
- High magnetic saturation value ,
- Low coercivity value ,
- Thermal stability.
3.3. Windings
4. Emerging Materials for EV Traction Motors
4.1. Permanent Magnets
4.2. Ferromagnetic Core
- Significantly lower relative magnetic permeability due to the presence of spaces of air in the compound,
- Higher hysteresis losses due to the mechanical stress that forms during the compaction process,
- Lower mechanical resistance, which makes the core more sensitive to permanent damage,
- Lower magnetic saturation flux density.
Parameter | Amorphous METGLAS® 2605HB1M | Nanocrystalline FINEMET® FeCuNbSiB | SMC |
---|---|---|---|
Density [kg/] | 7300 | 7180 | 7300 |
[T] | 1.63 | 1.45 | 1.53 |
– | 950 | ||
Electrical resistivity [m] | 1.3 | 1.2–1.5 | 280 |
Coercive force [A/m] | 2.12 | <10 | 200 |
4.3. Windings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GHG | Greenhouse gas |
ICEV | Internal combustion engine vehicle |
IEA | International energy agency |
EV | Electric vehicle |
BEV | Battery electric vehicle |
PHEV | Plug-in hybrid electric vehicle |
LCA | Life cycle assessment |
EoF | End of fife |
PMSM | Permanent magnet synchronous motor |
PM | Permanent magnet |
SRM | Switched reluctance motor |
IM | Induction motor |
IPM | Interior permanent magnet |
SynRM | Synchronous reluctance motor |
PMaSynRM | Permanent magnet assisted synchronous reluctance motor |
EESM | Externally excited synchronous motor |
REE | Rare-earth element |
LREE | Light rare-earth element |
HREE | Heavy rare-earth element |
HEV | Hybrid electric vehicles |
EPS | Environmental priority strategies |
ELU | Environmental load units |
EU | European union |
REO | Rare-earth oxide |
NGO | Non-grain-oriented |
SMC | Soft magnetic composite |
CNT | Carbon nanotubes |
HTS | High temperature superconductors |
References
- Trends in Electric Cars. Available online: https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-cars (accessed on 4 September 2024).
- Tan, K.M.; Yong, J.Y.; Ramachandaramurthy, V.K.; Mansor, M.; Teh, J.; Guerrero, J.M. Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles. Renew. Sustain. Energy Rev. 2023, 184, 113582. [Google Scholar] [CrossRef]
- Parajuly, K.; Ternald, D.; Kuehr, R. The Future of Electric Vehicles and Material Resources: A Foresight Brief; United Nations Environment Programme: Nairobi, Kenya, 2020. [Google Scholar]
- Bloomberg New Energy Finance. Electric Vehicle Outlook 2019; Bloomberg New Energy Finance: New York, NY, USA, 2019. [Google Scholar]
- Climate Pledges Explorer. Available online: https://www.iea.org/data-and-statistics/?country=WORLD&fuel=CO2%20emissions&indicator=TotCO22 (accessed on 4 September 2024).
- Global CO2 Emissions from Transport by Sub-Sector in the Net Zero Scenario, 2000–2030. Available online: https://www.iea.org/data-and-statistics/charts/global-co2-emissions-from-transport-by-sub-sector-in-the-net-zero-scenario-2000-2030-2 (accessed on 24 September 2024).
- Cars and Vans. Available online: https://www.iea.org/energy-system/transport/cars-and-vans (accessed on 24 September 2024).
- Van Vliet, O.; Brouwer, A.S.; Kuramochi, T.; van Den Broek, M.; Faaij, A. Energy use, cost and CO2 emissions of electric cars. J. Power Sources 2011, 196, 2298–2310. [Google Scholar] [CrossRef]
- Faria, R.; Marques, P.; Moura, P.; Freire, F.; Delgado, J.; De Almeida, A.T. Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renew. Sustain. Energy Rev. 2013, 24, 271–287. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A review on electric vehicles: Technologies and challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Farzaneh, F.; Jung, S. Lifecycle carbon footprint comparison between internal combustion engine versus electric transit vehicle: A case study in the US. J. Clean. Prod. 2023, 390, 136111. [Google Scholar] [CrossRef]
- Gao, Z.; Xie, H.; Yang, X.; Zhang, L.; Yu, H.; Wang, W.; Liu, Y.; Xu, Y.; Ma, B.; Liu, X.; et al. Electric vehicle lifecycle carbon emission reduction: A review. Carbon Neutraliz. 2023, 2, 528–550. [Google Scholar] [CrossRef]
- Deng, C.; Qian, Y.; Song, X.; Xie, M.; Duan, H.; Shen, P.; Qiao, Q. Are electric vehicles really the optimal option for the transportation sector in China to approach pollution reduction and carbon neutrality goals? J. Environ. Manag. 2024, 356, 120648. [Google Scholar] [CrossRef]
- Kim, H.C.; Wallington, T.J.; Arsenault, R.; Bae, C.; Ahn, S.; Lee, J. Cradle-to-gate emissions from a commercial electric vehicle Li-ion battery: A comparative analysis. Environ. Sci. Technol. 2016, 50, 7715–7722. [Google Scholar] [CrossRef]
- Omahne, V.; Knez, M.; Obrecht, M. Social aspects of electric vehicles research—Trends and relations to sustainable development goals. World Electr. Veh. J. 2021, 12, 15. [Google Scholar] [CrossRef]
- Rajaeifar, M.A.; Ghadimi, P.; Raugei, M.; Wu, Y.; Heidrich, O. Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. Resour. Conserv. Recycl. 2022, 180, 106144. [Google Scholar] [CrossRef]
- Niri, A.J.; Poelzer, G.A.; Zhang, S.E.; Rosenkranz, J.; Pettersson, M.; Ghorbani, Y. Sustainability challenges throughout the electric vehicle battery value chain. Renew. Sustain. Energy Rev. 2024, 191, 114176. [Google Scholar] [CrossRef]
- Wang, Z.; Ching, T.W.; Huang, S.; Wang, H.; Xu, T. Challenges Faced by Electric Vehicle Motors and Their Solutions. IEEE Access 2021, 9, 5228–5249. [Google Scholar] [CrossRef]
- Lee, C.H.; Hua, W.; Long, T.; Jiang, C.; Iyer, L.V. A critical review of emerging technologies for electric and hybrid vehicles. IEEE Open J. Veh. Technol. 2021, 2, 471–485. [Google Scholar] [CrossRef]
- Zhang, X.; Gerada, D.; Xu, Z.; Zhang, F.; Gerada, C. A review of carbon emissions from electrical machine materials. Electronics 2024, 13, 1714. [Google Scholar] [CrossRef]
- Podmiljšak, B.; Saje, B.; Jenuš, P.; Tomše, T.; Kobe, S.; Žužek, K.; Šturm, S. The Future of Permanent-Magnet-Based Electric Motors: How Will Rare Earths Affect Electrification? Materials 2024, 17, 848. [Google Scholar] [CrossRef]
- Rom, C.L.; Smaha, R.W.; O’Donnell, S.; Dugu, S.; Bauers, S.R. Emerging magnetic materials for electric vehicle drive motors. MRS Bull. 2024, 49, 738–750. [Google Scholar] [CrossRef]
- Krings, A.; Boglietti, A.; Cavagnino, A.; Sprague, S. Soft magnetic material status and trends in electric machines. IEEE Trans. Ind. Electron. 2016, 64, 2405–2414. [Google Scholar] [CrossRef]
- Ramesh, P.; Lenin, N. High power density electrical machines for electric vehicles—Comprehensive review based on material technology. IEEE Trans. Magn. 2019, 55, 0900121. [Google Scholar] [CrossRef]
- O’Donnell, D.; Bartos, S.; Tjong, J.; Kar, N.C. Utilization of innovative materials toward permanent magnet synchronous e-motors for traction application: A review. In Proceedings of the 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES), Bangkok, Thailand, 15–18 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 380–385. [Google Scholar]
- Hashemnia, N.; Asaei, B. Comparative study of using different electric motors in the electric vehicles. In Proceedings of the 2008 18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–5. [Google Scholar]
- Pellegrino, G.; Vagati, A.; Boazzo, B.; Guglielmi, P. Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Trans. Ind. Appl. 2012, 48, 2322–2332. [Google Scholar] [CrossRef]
- Huynh, T.A.; Hsieh, M.F. Performance analysis of permanent magnet motors for electric vehicles (EV) traction considering driving cycles. Energies 2018, 11, 1385. [Google Scholar] [CrossRef]
- Thangavel, S.; Mohanraj, D.; Girijaprasanna, T.; Raju, S.; Dhanamjayulu, C.; Muyeen, S. A comprehensive review on electric vehicle: Battery management system, charging station, traction motors. IEEE Access 2023, 11, 20994–21019. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, F.; Brown, I.P.; Krishnamurthy, M. Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications. IEEE Trans. Transp. Electrif. 2015, 1, 245–254. [Google Scholar] [CrossRef]
- Jahns, T. Getting rare-earth magnets out of EV traction machines: A review of the many approaches being pursued to minimize or eliminate rare-earth magnets from future EV drivetrains. IEEE Electrif. Mag. 2017, 5, 6–18. [Google Scholar] [CrossRef]
- El Hadraoui, H.; Zegrari, M.; Chebak, A.; Laayati, O.; Guennouni, N. A multi-criteria analysis and trends of electric motors for electric vehicles. World Electr. Veh. J. 2022, 13, 65. [Google Scholar] [CrossRef]
- Bianchi, N.; Bolognani, S.; Carraro, E.; Castiello, M.; Fornasiero, E. Electric vehicle traction based on synchronous reluctance motors. IEEE Trans. Ind. Appl. 2016, 52, 4762–4769. [Google Scholar] [CrossRef]
- Adamas Intelligence. EV Motor Materials Monthly Report. 2022. Available online: https://www.adamasintel.com/wp-content/uploads/2024/07/Adamas-Intelligence-EV-Motor-Materials-Monthly-Sample-June-2022.pdf (accessed on 2 October 2024).
- Widmer, J.D.; Martin, R.; Kimiabeigi, M. Electric vehicle traction motors without rare earth magnets. Sustain. Mater. Technol. 2015, 3, 7–13. [Google Scholar] [CrossRef]
- Riba, J.R.; López-Torres, C.; Romeral, L.; Garcia, A. Rare-earth-free propulsion motors for electric vehicles: A technology review. Renew. Sustain. Energy Rev. 2016, 57, 367–379. [Google Scholar] [CrossRef]
- Wang, Y.; Bianchi, N.; Qu, R. Comparative study of non-rare-earth and rare-earth PM motors for EV applications. Energies 2022, 15, 2711. [Google Scholar] [CrossRef]
- Estenlund, S.; Alaküla, M.; Reinap, A. PM-less machine topologies for EV traction: A literature review. In Proceedings of the 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, 2–4 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Traction Motors in Electric Vehicles: A Snapshot of Technologies and Performance. Available online: https://www.hv.se/globalassets/dokument/iv/e-drive-2---report.pdf (accessed on 25 September 2024).
- Müller, S.; Maier, D.; Parspour, N. Inductive electrically excited synchronous machine for electrical vehicles—Design, optimization and measurement. Energies 2023, 16, 1657. [Google Scholar] [CrossRef]
- Sporty Performance: Powerful Drives. Available online: https://www.audi-mediacenter.com/en/the-audi-q6-e-tron-electric-mobility-on-a-new-level-15929/sporty-performance-powerful-drives-15932 (accessed on 30 September 2024).
- Xiaomi SU 7 MAX. Available online: https://www.evhub.cc/portfolio/items/xiaomi-su-7-max (accessed on 30 September 2024).
- Chevrolet Equinox EV. Available online: https://greencarscompare.com/cars/chevrolet-equinox-ev-awd/ (accessed on 30 September 2024).
- Hernandez, M.; Messagie, M.; Hegazy, O.; Marengo, L.; Winter, O.; Van Mierlo, J. Environmental impact of traction electric motors for electric vehicles applications. Int. J. Life Cycle Assess. 2017, 22, 54–65. [Google Scholar] [CrossRef]
- de Souza, D.F.; da Silva, P.P.F.; Sauer, I.L.; de Almeida, A.T.; Tatizawa, H. Life Cycle Assessment of Electric Motors-A Systematic Literature Review. J. Clean. Prod. 2024, 456, 142366. [Google Scholar] [CrossRef]
- Ormerod, J.; Karati, A.; Baghel, A.P.S.; Prodius, D.; Nlebedim, I.C. Sourcing, Refining and Recycling of Rare-Earth Magnets. Sustainability 2023, 15, 14901. [Google Scholar] [CrossRef]
- Permanent Magnets History in the Aspect of Magnet Energy. Available online: https://www.magnetnrg.com/pm-hisory.html (accessed on 26 September 2024).
- Pavel, C.C.; Thiel, C.; Degreif, S.; Blagoeva, D.; Buchert, M.; Schüler, D.; Tzimas, E. Role of substitution in mitigating the supply pressure of rare earths in electric road transport applications. Sustain. Mater. Technol. 2017, 12, 62–72. [Google Scholar] [CrossRef]
- Papagianni, S.; Moschovi, A.M.; Sakkas, K.M.; Chalaris, M.; Yakoumis, I. Preprocessing and leaching methods for extraction of REE from permanent magnets: A scoping review. AppliedChem 2022, 2, 14. [Google Scholar] [CrossRef]
- Torta, G.; Ciacci, L.; Vassura, I.; Passarini, F. Exploring mass and economic potentials of rare earth elements recycling from electric vehicles at end-of-life. Miner. Econ. 2024, 37, 573–587. [Google Scholar] [CrossRef]
- Vaimann, T.; Kallaste, A.; Kilk, A.; Belahcen, A. Magnetic properties of reduced Dy NdFeB permanent magnets and their usage in electrical machines. In Proceedings of the 2013 Africon, Pointe aux Piments, Mauritius, 9–12 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5. [Google Scholar]
- Alonso, E.; Wallington, T.; Sherman, A.; Everson, M.; Field, F.; Roth, R.; Kirchain, R. An assessment of the rare earth element content of conventional and electric vehicles. SAE Int. J. Mater. Manuf. 2012, 5, 473–477. [Google Scholar] [CrossRef]
- Yano, J.; Muroi, T.; Sakai, S.I. Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010–2030. J. Mater. Cycles Waste Manag. 2016, 18, 655–664. [Google Scholar] [CrossRef]
- Steen, B.; Rydberg, T. Eps Weighting Factors-Version 2020d; IVL Svenska Miljöinstitutet: Stockholm, Sweden, 2020; Volume D, pp. 2018–2020. [Google Scholar]
- Rare Earths Statistics and Information. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-rare-earths.pdf (accessed on 26 September 2024).
- Stegen, K.S. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy 2015, 79, 1–8. [Google Scholar] [CrossRef]
- Looney, R. Recent Developments on the Rare Earth Front: Evidence of a new technocratic mercantilism emerging in China? World Econ. J. 2011, 12, 47–78. [Google Scholar]
- Chen, Y.; Zheng, B. What happens after the rare earth crisis: A systematic literature review. Sustainability 2019, 11, 1288. [Google Scholar] [CrossRef]
- Ali, S.H. Social and environmental impact of the rare earth industries. Resources 2014, 3, 123–134. [Google Scholar] [CrossRef]
- Bailey, G.; Mancheri, N.; Van Acker, K. Sustainability of permanent rare earth magnet motors in (H) EV industry. J. Sustain. Metall. 2017, 3, 611–626. [Google Scholar] [CrossRef]
- Jouini, M.; Royer-Lavallée, A.; Pabst, T.; Chung, E.; Kim, R.; Cheong, Y.W.; Neculita, C.M. Sustainable production of rare earth elements from mine waste and geoethics. Minerals 2022, 12, 809. [Google Scholar] [CrossRef]
- Agusdinata, D.B.; Liu, W. Global sustainability of electric vehicles minerals: A critical review of news media. Extr. Ind. Soc. 2023, 13, 101231. [Google Scholar] [CrossRef]
- Charalampides, G.; Vatalis, K.I.; Apostoplos, B.; Ploutarch-Nikolas, B. Rare earth elements: Industrial applications and economic dependency of Europe. Procedia Econ. Financ. 2015, 24, 126–135. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Z.; Chen, C. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 2017, 7, 203. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the rare earth elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Rademaker, J.H.; Kleijn, R.; Yang, Y. Recycling as a strategy against rare earth element criticality: A systemic evaluation of the potential yield of NdFeB magnet recycling. Environ. Sci. Technol. 2013, 47, 10129–10136. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Yang, Y.; Walton, A.; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O.; Buchert, M.; Steenari, B.M.; Van Gerven, T.; Jones, P.T.; et al. REE recovery from end-of-life NdFeB permanent magnet scrap: A critical review. J. Sustain. Metall. 2017, 3, 122–149. [Google Scholar] [CrossRef]
- Kumari, A.; Sahu, S.K. A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Sep. Purif. Technol. 2023, 317, 123527. [Google Scholar] [CrossRef]
- Pošković, E.; Ferraris, L.; Franchini, F.; Caneschi, A. Rare Earth Magnets Recycling: Study of a Safer and Cost-Effective Technique. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. Science 2018, 362, eaao0195. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, K.; Zhang, H.; Jiang, F.; Tang, L. A study on a novel multistage-AFPM with modular stator core made of different materials of silicon steel and SMC. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Mukundan, S.; Dhulipati, H.; Chauvin, L.; Silva Guruwatta Vidanalage, B.D.; Edrisy, A.; Tjong, J.; Kar, N.C. Comparative Performance Analysis of Copper and Aluminum Wound Fractional—Slot PMSMs for High—Speed Traction Application. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Pastura, M.; Barater, D.; Nuzzo, S.; Franceschini, G. Investigation of resistivity impact on ac losses in hairpin conductors. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Notari, R.; Pastura, M.; Nuzzo, S.; Barater, D.; Franceschini, G.; Gerada, C. AC losses reduction in Hairpin Windings produced via Additive Manufacturing. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1144–1149. [Google Scholar]
- Petrelli, G.; Nuzzo, S.; Zou, T.; Cutuli, G.; Barater, D.; Gerada, C. On Comparing Aluminum and Copper in Wound Field Synchronous Motors for Traction Applications. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–7. [Google Scholar]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Chang. 2016, 39, 305–315. [Google Scholar] [CrossRef]
- FRED. Federal Reserve Economic Data (FRED)t. Available online: https://fred.stlouisfed.org/ (accessed on 2 October 2024).
- Valero, A.; Valero, A.; Calvo, G.; Ortego, A. Material bottlenecks in the future development of green technologies. Renew. Sustain. Energy Rev. 2018, 93, 178–200. [Google Scholar] [CrossRef]
- Huang, C.L.; Xu, M.; Cui, S.; Li, Z.; Fang, H.; Wang, P. Copper-induced ripple effects by the expanding electric vehicle fleet: A crisis or an opportunity. Resour. Conserv. Recycl. 2020, 161, 104861. [Google Scholar] [CrossRef]
- Born, K.; Ciftci, M.M. The limitations of end-of-life copper recycling and its implications for the circular economy of metals. Resour. Conserv. Recycl. 2024, 200, 107318. [Google Scholar] [CrossRef]
- Copper Statistics and Information. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-copper.pdf (accessed on 30 September 2024).
- Acquaviva, A.; Diana, M.; Raghuraman, B.; Petersson, L.; Nategh, S. Sustainability aspects of electrical machines for e-mobility applications part ii: Aluminium hairpin vs. copper hairpin. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Northey, S.; Haque, N.; Mudd, G. Using sustainability reporting to assess the environmental footprint of copper mining. J. Clean. Prod. 2013, 40, 118–128. [Google Scholar] [CrossRef]
- Guzmán, J.I.; Faúndez, P.; Jara, J.J.; Retamal, C. On the source of metals and the environmental sustainability of battery electric vehicles versus internal combustion engine vehicles: The lithium production case study. J. Clean. Prod. 2022, 376, 133588. [Google Scholar] [CrossRef]
- Onifade, M.; Zvarivadza, T.; Adebisi, J.A.; Said, K.O.; Dayo-Olupona, O.; Lawal, A.I.; Khandelwal, M. Advancing toward sustainability: The emergence of green mining technologies and practices. Green Smart Min. Eng. 2024, 1, 157–174. [Google Scholar] [CrossRef]
- Tiwari, N.K.; Pal, V.C. A Comprehensive review of the utilization of solar energy in the copper mining process. In Proceedings of the 2022 IEEE Silchar Subsection Conference (SILCON), Silchar, India, 4–6 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Kramer, M.; McCallum, R.; Anderson, I.; Constantinides, S. Prospects for non-rare earth permanent magnets for traction motors and generators. Jom 2012, 64, 752–763. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Wall, F.; Merriman, D. The rare earth elements: Demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 2018, 27, 201–216. [Google Scholar] [CrossRef]
- Mandal, S.; Debata, M.; Sengupta, P.; Basu, S. L10 FeNi: A promising material for next generation permanent magnets. Crit. Rev. Solid State Mater. Sci. 2023, 48, 703–725. [Google Scholar] [CrossRef]
- Wang, J.P. Environment-friendly bulk Fe16N2 permanent magnet: Review and prospective. J. Magn. Magn. Mater. 2020, 497, 165962. [Google Scholar] [CrossRef]
- Brody, R.; Ohodnicki, P.; Ghosh, M.; Macias, C.; Sherman, A.; Talaat, A.; Cui, J.; Grainger, B. Trade study for rare-earth-free interior permanent magnet synchronous machine using MnBi permanent magnets. IEEE Trans. Ind. Appl. 2024, 60, 6010–6022. [Google Scholar] [CrossRef]
- Cui, J. Cost Effective 6.5% Silicon Steel Laminate for Electric Machines. 2020. Available online: https://www.osti.gov/biblio/1749947 (accessed on 2 October 2024).
- Jiang, X.; Roosendaal, T.; Lu, X.; Palasyuk, O.; Dennis, K.W.; Dahl, M.; Choi, J.P.; Polikarpov, E.; Marinescu, M.; Cui, J. Mechanical and electrical properties of low temperature phase MnBi. J. Appl. Phys. 2016, 119, 033903. [Google Scholar] [CrossRef]
- Rani, P.; Kashyap, M.K.; Singla, R.; Thakur, J.; Reshak, A.H. Magnetism and magnetocrystalline anisotropy of tetragonally distorted L10-FeNi: N alloy. J. Alloys Compd. 2020, 835, 155325. [Google Scholar] [CrossRef]
- Ye, L.; Wang, F.; Liu, Y.; Zhou, H.; Liu, L.; Ding, Y.; Sun, Y.; Yan, A. New structural features and pinning-evolved coercivity mechanism: A potential route for developing high coercivities in anisotropic Sm-Fe-N material. J. Mater. Res. Technol. 2024, 30, 451–460. [Google Scholar] [CrossRef]
- Galioto, S.J.; Reddy, P.B.; El-Refaie, A.M.; Alexander, J.P. Effect of magnet types on performance of high-speed spoke interior-permanent-magnet machines designed for traction applications. IEEE Trans. Ind. Appl. 2014, 51, 2148–2160. [Google Scholar] [CrossRef]
- Matsuhashi, D.; Matsuo, K.; Okitsu, T.; Ashikaga, T.; Mizuno, T. Comparison study of various motors for EVs and the potentiality of a ferrite magnet motor. IEEJ J. Ind. Appl. 2015, 4, 174–179. [Google Scholar] [CrossRef]
- Obata, M.; Morimoto, S.; Sanada, M.; Inoue, Y. Characteristic of PMASynRM with ferrite magnets for EV/HEV applications. In Proceedings of the 2012 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 21–24 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6. [Google Scholar]
- Silveyra, J.M.; Xu, P.; Keylin, V.; DeGeorge, V.; Leary, A.; McHenry, M.E. Amorphous and nanocomposite materials for energy-efficient electric motors. J. Electron. Mater. 2016, 45, 219–225. [Google Scholar] [CrossRef]
- Kauder, T.; Hameyer, K. Performance factor comparison of nanocrystalline, amorphous, and crystalline soft magnetic materials for medium-frequency applications. IEEE Trans. Magn. 2017, 53, 8401504. [Google Scholar] [CrossRef]
- Theisen, E.A. Recent advances and remaining challenges in manufacturing of amorphous and nanocrystalline alloys. IEEE Trans. Magn. 2022, 58, 2001207. [Google Scholar] [CrossRef]
- Amorphous Metal. Available online: https://education.mrsec.wisc.edu/amorphous-metal/ (accessed on 7 October 2024).
- Nishiyama, N.; Tanimoto, K.; Makino, A. Outstanding efficiency in energy conversion for electric motors constructed by nanocrystalline soft magnetic alloy “NANOMET®” cores. AIP Adv. 2016, 6, 055925. [Google Scholar] [CrossRef]
- Nonaka, T.; Zeze, S.; Makino, S.; Ohto, M. Research on motor with nanocrystalline soft magnetic alloy stator cores. J. Eng. 2019, 2019, 4158–4162. [Google Scholar]
- Enomoto, Y.; Deguchi, K.; Imagawa, T. Development of an Ultimate-high-efficiency Motor by utilizing High-Bs Nanocrystalline Alloy. IEEJ J. Ind. Appl. 2020, 9, 102–108. [Google Scholar] [CrossRef]
- Butvin, P.; Butvinová, B.; Silveyra, J.M.; Chromčíková, M.; Janičkovič, D.; Sitek, J.; Švec, P.; Vlasák, G. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys. J. Magn. Magn. Mater. 2010, 322, 3035–3040. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Lamichhane, T.N.; Sethuraman, L.; Dalagan, A.; Wang, H.; Keller, J.; Paranthaman, M.P. Additive manufacturing of soft magnets for electrical machines—A review. Mater. Today Phys. 2020, 15, 100255. [Google Scholar] [CrossRef]
- Yoshizawa, Y.a.; Oguma, S.; Yamauchi, K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 1988, 64, 6044–6046. [Google Scholar] [CrossRef]
- Taccetti, J.M.; Johnson, J.B.; Rose, C.R. Characterization and modeling of amorphous metallic cores. In Proceedings of the 2015 IEEE Pulsed Power Conference (PPC), Austin, TX, USA, 31 May–4 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Enomoto, Y.; Kimura, M.; Marukawa, Y.; Sano, H. Distributed Winding IPM Motor with an Amorphous Metal Stator Core. IEEJ J. Ind. Appl. 2022, 11, 730–736. [Google Scholar]
- Metglas Amorphous Metal Transformer Core. Available online: https://metglas.com/wp-content/uploads/2020/05/DT-Core-TechBulletin-21-May-2020-Final.pdf (accessed on 7 October 2024).
- FINEMET Nanocrystalline Soft Magnetic Material. Available online: https://www.hilltech.com/pdf/hl-fm10-cFinemetIntro.pdf (accessed on 7 October 2024).
- Guo, Y.; Ba, X.; Liu, L.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. A review of electric motors with soft magnetic composite cores for electric drives. Energies 2023, 16, 2053. [Google Scholar] [CrossRef]
- Huang, S.; Zou, M.; Zhang, W.; Rallabandi, V.; Dial, L.; Buresh, S.; Zierer, J.; Jassal, A.; Johnson, F. Development of dual phase soft magnetic laminate for advanced electric machines. AIP Adv. 2023, 13, 025021. [Google Scholar] [CrossRef]
- Reddy, P.B.; El-Refaie, A.M.; Galioto, S.; Alexander, J.P. Design of Synchronous Reluctance Motor Utilizing Dual-Phase Material for Traction Applications. IEEE Trans. Ind. Appl. 2017, 53, 1948–1957. [Google Scholar] [CrossRef]
- Ismagilov, F.; Vavilov, V.; Pronin, E.; Yushkova, O.; Zherebtsov, A. Investigation of technologies for manufacturing dual-phase magnetic steels for elements of electric machines: A review. J. Magn. Magn. Mater. 2023, 588, 171320. [Google Scholar] [CrossRef]
- Rallabandi, V.; Taran, N.; Ionel, D.M.; Eastham, J.F. On the feasibility of carbon nanotube windings for electrical machines—Case study for a coreless axial flux motor. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–7. [Google Scholar]
- Zhang, S.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J.G.; Liang, R. Carbon-nanotube-based electrical conductors: Fabrication, optimization, and applications. Adv. Electron. Mater. 2019, 5, 1800811. [Google Scholar] [CrossRef]
- Sivasubramaniyam, V.; Ramasamy, S.; Venkatraman, M.; Gatto, G.; Kumar, A. Carbon nanotubes as an alternative to copper wires in electrical machines: A review. Energies 2023, 16, 3665. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef]
- Pyrhönen, J.; Montonen, J.; Lindh, P.; Vauterin, J.; Otto, M. Replacing copper with new carbon nanomaterials in electrical machine windings. Int. Rev. Electr. Eng. 2015, 10. [Google Scholar] [CrossRef]
- Janas, D. From bio to nano: A review of sustainable methods of synthesis of carbon nanotubes. Sustainability 2020, 12, 4115. [Google Scholar] [CrossRef]
- Robert, F.; Prince, A.A.; Fredo, A.J. Investigation of using CNT and Cu/CNT wires for replacing Cu for power electronics and electrical applications. ECS J. Solid State Sci. Technol. 2022, 11, 023011. [Google Scholar] [CrossRef]
- Chiricozzi, E.; Angeloni, L.; Natali, M.; Passeri, D. The nanomaterials and the new generation of electric motors. In Proceedings of the 7th International Conference on Magnetism and Metallurgy, Rome, Italy, 13–15 June 2016. [Google Scholar]
- Pyrhönen, J.; Otto, M.; Ayguzina, V.; Petrov, I.; Vauterin, J.; Ismagilov, F.; Vavilov, V.Y. Applicability of carbon nanotube materials in present-day and future electrical machines. In Proceedings of the 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 23–26 August 2020; IEEE: Piscataway, NJ, USA, 2020; Volume 1, pp. 2379–2384. [Google Scholar]
- Healy, M.L.; Dahlben, L.J.; Isaacs, J.A. Environmental assessment of single-walled carbon nanotube processes. J. Ind. Ecol. 2008, 12, 376–393. [Google Scholar] [CrossRef]
- Plata, D.L.; Hart, A.J.; Reddy, C.M.; Gschwend, P.M. Early evaluation of potential environmental impacts of carbon nanotube synthesis by chemical vapor deposition. Environ. Sci. Technol. 2009, 43, 8367–8373. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.J.; Zhang, L.; Mattison, N.T.; O’Carroll, D.M.; Whelton, A.J.; Uddin, N.; Nguyen, T.; Huang, Q.; Henry, T.B.; Holbrook, R.D.; et al. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol. 2011, 45, 9837–9856. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Goerzen, D.; Jena, P.V.; Zeng, E.; Pasquali, M.; Meidl, R.A.; Heller, D.A. Human and environmental safety of carbon nanotubes across their life cycle. Nat. Rev. Mater. 2024, 9, 63–81. [Google Scholar] [CrossRef]
- Upadhyayula, V.K.; Meyer, D.E.; Curran, M.A.; Gonzalez, M.A. Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: A review. J. Clean. Prod. 2012, 26, 37–47. [Google Scholar] [CrossRef]
- Gavankar, S.; Suh, S.; Keller, A.A. The role of scale and technology maturity in life cycle assessment of emerging technologies: A case study on carbon nanotubes. J. Ind. Ecol. 2015, 19, 51–60. [Google Scholar] [CrossRef]
- Sekiguchi, D.; Nakamura, T.; Misawa, S.; Kitano, H.; Matsuo, T.; Amemiya, N.; Ito, Y.; Yoshikawa, M.; Terazawa, T.; Osamura, K.; et al. Trial test of fully HTS induction/synchronous machine for next generation electric vehicle. IEEE Trans. Appl. Supercond. 2011, 22, 5200904. [Google Scholar] [CrossRef]
- Nakamura, T.; Itoh, Y.; Yoshikawa, M.; Nishimura, T.; Ogasa, T.; Amemiya, N.; Ohashi, Y.; Fukui, S.; Furuse, M. Tremendous enhancement of torque density in HTS induction/synchronous machine for transportation equipments. IEEE Trans. Appl. Supercond. 2014, 25, 5202304. [Google Scholar] [CrossRef]
- Cha, J.; Yoon, J.; Koo, J.; Bong, U.; Sim, K.; Hahn, S. Loss Reduction and Operating Time Extension Using Segmented HTS Field Coil Bobbin for High-Speed Operation of EV Traction Motor. IEEE Trans. Appl. Supercond. 2024, 34, 5201705. [Google Scholar] [CrossRef]
Parameter | Fe | AlNiCo | SmCo | NdFeB |
---|---|---|---|---|
[kJ/] | 8.35–31.8 | 10.7–71.6 | 130–240 | 220–421 |
Remanence [T] | 0.23–0.41 | 0.7–1.28 | 0.83–1.16 | 1.00–1.41 |
Coercive force [kA/m] | 50–290 | 37–143 | 480–840 | 760–1030 |
Density [kg/] | 4900 | 6800–7300 | 8400 | 7400 |
Electric resistivity [m] | 0.01 | 0.5–0.7 | 0.53–0.86 | 1.6 |
[K] | 523.15 | 773.15 | 573.15 | 423.15 1 |
[K] | 723.15 | 1133.15 | 1073.15 | 583.15 |
Price [USD/kg] | 7.1 | 58 | 100 | 75 |
Parameter | Value |
---|---|
Density [kg/] | 7800 |
[T] | 1.8–2.1 |
40,000 | |
Electrical resistivity [m] | 0.4–0.5 |
Coercive force [A/m] | 4 |
Parameter | Cu | Al |
---|---|---|
Density [kg/] | 8960 | 2700 |
Electric resistivity [cm] | 0.0172 | 0.0265 |
Thermal conductivity [W/(mK)] | 400 | 273 |
Breaking strength [MPa] | 200 | 110 |
Parameter | SmFeN | FeN | L10 FeNi | MnBi |
---|---|---|---|---|
[kJ/] | 470 | 159 | 446 | 135 |
Remanence [T] | 1.3 | 1.3 | 1.5 | 0.62 |
Coercive force [kA/m] | 884 | 300 | 100–200 | 510 |
[K] | 749 | 653 | 830 | 650 |
Parameter | Value |
---|---|
Density [kg/] | 1500 |
Electric resistivity [m] | |
Thermal conductivity [W/(mK)] | 3000 |
Breaking strength [MPa] | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchini, F.; Torchio, R.; Bianchi, N. A Survey on the Sustainability of Traditional and Emerging Materials for Next-Generation EV Motors. Energies 2024, 17, 5861. https://doi.org/10.3390/en17235861
Lucchini F, Torchio R, Bianchi N. A Survey on the Sustainability of Traditional and Emerging Materials for Next-Generation EV Motors. Energies. 2024; 17(23):5861. https://doi.org/10.3390/en17235861
Chicago/Turabian StyleLucchini, Francesco, Riccardo Torchio, and Nicola Bianchi. 2024. "A Survey on the Sustainability of Traditional and Emerging Materials for Next-Generation EV Motors" Energies 17, no. 23: 5861. https://doi.org/10.3390/en17235861
APA StyleLucchini, F., Torchio, R., & Bianchi, N. (2024). A Survey on the Sustainability of Traditional and Emerging Materials for Next-Generation EV Motors. Energies, 17(23), 5861. https://doi.org/10.3390/en17235861