Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (367)

Search Parameters:
Keywords = emeA gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5419 KiB  
Article
Molecular Surveillance and Whole Genomic Characterization of Bovine Rotavirus A G6P[1] Reveals Interspecies Reassortment with Human and Feline Strains in China
by Ahmed H. Ghonaim, Mingkai Lei, Yang Zeng, Qian Xu, Bo Hong, Dongfan Li, Zhengxin Yang, Jiaru Zhou, Changcheng Liu, Qigai He, Yufei Zhang and Wentao Li
Vet. Sci. 2025, 12(8), 742; https://doi.org/10.3390/vetsci12080742 (registering DOI) - 7 Aug 2025
Abstract
Group A rotavirus (RVA) is a leading causative agent of diarrhea in both young animals and humans. In China, multiple genotypes are commonly found within the bovine population. In this study, we investigated 1917 fecal samples from calves with diarrhea between 2022 and [...] Read more.
Group A rotavirus (RVA) is a leading causative agent of diarrhea in both young animals and humans. In China, multiple genotypes are commonly found within the bovine population. In this study, we investigated 1917 fecal samples from calves with diarrhea between 2022 and 2025, with 695 testing positive for RVA, yielding an overall detection rate of 36.25%. The highest positivity rate was observed in Hohhot (38.98%), and annual detection rates ranged from 26.75% in 2022 to 42.22% in 2025. A bovine rotavirus (BRV) strain, designated 0205HG, was successfully isolated from a fecal sample of a newborn calf. Its presence was confirmed through cytopathic effects (CPEs), the indirect immunofluorescence assay (IFA), electron microscopy (EM), and high-throughput sequencing. Genomic characterization identified the strain as having the G6-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3 genotype constellation. The structural proteins VP2 and VP7, along with nonstructural genes NSP1–NSP4, shared high sequence identity with Chinese bovine strains, whereas VP1, VP4, and NSP5 clustered more closely with human rotaviruses, and VP3 was related to feline strains. These findings highlight the genetic diversity and interspecies reassortment of BRVs in China, underlining the importance of continued surveillance and evolutionary analysis. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
14 pages, 2583 KiB  
Article
Transcriptome and Metabolome Analyses Reveal the Physiological Variations of a Gradient-Pale-Green Leaf Mutant in Sorghum
by Kuangzheng Qu, Dan Li, Zhenxing Zhu and Xiaochun Lu
Agronomy 2025, 15(8), 1841; https://doi.org/10.3390/agronomy15081841 - 30 Jul 2025
Viewed by 225
Abstract
Sorghum is an important cereal crop. The maintenance of leaf color significantly influences sorghum growth and development. Although the mechanisms of leaf color mutation have been well studied in many plants, those in sorghum remain largely unclear. Here, we identified a sorghum gradient-pale-green [...] Read more.
Sorghum is an important cereal crop. The maintenance of leaf color significantly influences sorghum growth and development. Although the mechanisms of leaf color mutation have been well studied in many plants, those in sorghum remain largely unclear. Here, we identified a sorghum gradient-pale-green leaf mutant (sbgpgl1) from the ethyl methanesulfonate (EMS) mutagenesis mutant library. Phenotypic, photosynthesis-related parameter, ion content, transcriptome, and metabolome analyses were performed on wild-type BTx623 and the sbgpgl1 mutant at the heading stage, revealing changes in several agronomic traits and physiological indicators. Compared with BTx623, sbgpgl1 showed less height, with a smaller length and width of leaf and panicle. The overall Chl a and Chl b contents in sbgpgl1 were lower than those in BTx623. The net photosynthetic rate, stomatal conductance, and transpiration rate were significantly reduced in sbgpgl1 compared to BTx623. The content of copper (Cu), zinc (Zn), and manganese (Mn) was considerably lower in sbgpgl1 leaves than in BTx623. A total of 4469 differentially expressed genes (DEGs) and 775 differentially accumulated metabolites (DAMs) were identified by RNA-seq and UPLC-MS/MS. The results showed that sbgpgl1 primarily influenced sorghum metabolism by regulating metabolic pathways and the biosynthesis of secondary metabolites, especially flavonoids and phenolic acids, resulting in the gradient-pale-green leaf phenotype. These findings reveal key genes and metabolites involved on a molecular basis in physiological variations of the sorghum leaf color mutant. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 3958 KiB  
Article
ZmNLR-7-Mediated Synergistic Regulation of ROS, Hormonal Signaling, and Defense Gene Networks Drives Maize Immunity to Southern Corn Leaf Blight
by Bo Su, Xiaolan Yang, Rui Zhang, Shijie Dong, Ying Liu, Hubiao Jiang, Guichun Wu and Ting Ding
Curr. Issues Mol. Biol. 2025, 47(7), 573; https://doi.org/10.3390/cimb47070573 - 21 Jul 2025
Viewed by 295
Abstract
The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize (Zea mays L.). It has emerged as a significant biological stressor [...] Read more.
The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize (Zea mays L.). It has emerged as a significant biological stressor threatening the global food supplies and security. Based on previous cross-species homologous gene screening assays conducted in the laboratory, this study identified the maize disease-resistance candidate gene ZmNLR-7 to investigate the maize immune regulation mechanism against Bipolaris maydis. Subcellular localization assays confirmed that the ZmNLR-7 protein is localized in the plasma membrane and nucleus, and phylogenetic analysis revealed that it contains a conserved NB-ARC domain. Analysis of tissue expression patterns revealed that ZmNLR-7 was expressed in all maize tissues, with the highest expression level (5.11 times) exhibited in the leaves, and that its transcription level peaked at 11.92 times 48 h post Bipolaris maydis infection. Upon inoculating the ZmNLR-7 EMS mutants with Bipolaris maydis, the disease index was increased to 33.89 and 43.33, respectively, and the lesion expansion rate was higher than that in the wild type, indicating enhanced susceptibility to southern corn leaf blight. Physiological index measurements revealed a disturbance of ROS metabolism in ZmNLR-7 EMS mutants, with SOD activity decreased by approximately 30% and 55%, and POD activity decreased by 18% and 22%. Moreover, H2O2 content decreased, while lipid peroxide MDA accumulation increased. Transcriptomic analysis revealed a significant inhibition of the expression of the key genes NPR1 and ACS6 in the SA/ET signaling pathway and a decrease in the expression of disease-related genes ERF1 and PR1. This study established a new paradigm for the study of NLR protein-mediated plant immune mechanisms and provided target genes for molecular breeding of disease resistance in maize. Overall, these findings provide the first evidence that ZmNLR-7 confers resistance to southern corn leaf blight in maize by synergistically regulating ROS homeostasis, SA/ET signal transduction, and downstream defense gene expression networks. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Graphical abstract

14 pages, 2027 KiB  
Article
The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development
by José A. Mercado-Hornos, Claudia Rodríguez-Hiraldo, Consuelo Guerrero, Sara Posé, Antonio J. Matas, Lourdes Rubio and José A. Mercado
Plants 2025, 14(14), 2241; https://doi.org/10.3390/plants14142241 - 20 Jul 2025
Viewed by 379
Abstract
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is [...] Read more.
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is largely unknown; however, the reallocation of K+ into the apoplast has been proposed as a contributing factor to the decrease in fruit turgor, contributing to fruit softening. High-affinity K+ transporters belonging to the KUP/HT/HAK transporter family have been implicated in this process in some fruits. In this study, a comprehensive genome-wide analysis of the KUP/KT/HAK family of high-affinity K+ transporters in strawberry (Fragaria × ananassa Duch.) was conducted, identifying 60 putative transporter genes. The chromosomal distribution of the FaKUP gene family and phylogenetic relationship and structure of predicted proteins were thoroughly examined. Transcriptomic profiling revealed the expression of 19 FaKUP genes within the fruit receptacle, with a predominant downregulation observed during ripening, particularly in FaKUP14, 24 and 47. This pattern suggests their functional relevance in early fruit development and turgor maintenance. Mineral composition analyses confirmed that K+ is the most abundant macronutrient in strawberry fruits, exhibiting a slight decrease as ripening progressed. Membrane potential (Em) and diffusion potentials (ED) at increasing external K+ concentrations were measured by electrophysiology in parenchymal cells of green and white fruits. The results obtained suggest a significant diminution in cytosolic K+ levels in white compared to green fruits. Furthermore, the slope of change in ED at increasing external K+ concentration indicated a lower K+ permeability of the plasma membrane in white fruits, aligning with transcriptomic data. This study provides critical insights into the regulatory mechanisms of K+ transport during strawberry ripening and identifies potential targets for genetic modifications aimed at enhancing fruit firmness and shelf life. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

17 pages, 6777 KiB  
Article
Filamentous Temperature-Sensitive Z Protein J175 Regulates Maize Chloroplasts’ and Amyloplasts’ Division and Development
by Huayang Lv, Xuewu He, Hongyu Zhang, Dianyuan Cai, Zeting Mou, Xuerui He, Yangping Li, Hanmei Liu, Yinghong Liu, Yufeng Hu, Zhiming Zhang, Yubi Huang and Junjie Zhang
Plants 2025, 14(14), 2198; https://doi.org/10.3390/plants14142198 - 16 Jul 2025
Viewed by 355
Abstract
Plastid division regulatory genes play a crucial role in the morphogenesis of chloroplasts and amyloplasts. Chloroplasts are the main sites for photosynthesis and metabolic reactions, while amyloplasts are the organelles responsible for forming and storing starch granules. The proper division of chloroplasts and [...] Read more.
Plastid division regulatory genes play a crucial role in the morphogenesis of chloroplasts and amyloplasts. Chloroplasts are the main sites for photosynthesis and metabolic reactions, while amyloplasts are the organelles responsible for forming and storing starch granules. The proper division of chloroplasts and amyloplasts is essential for plant growth and yield maintenance. Therefore, this study aimed to examine the J175 (FtsZ2-2) gene, cloned from an ethyl methanesulphonate (EMS) mutant involved in chloroplast and amyloplast division in maize, through map-based cloning. We found that J175 encodes a cell division protein, FtsZ (filamentous temperature-sensitive Z). The FtsZ family of proteins is widely distributed in plants and may be related to the division of chloroplasts and amyloplasts. The J175 protein is localized in plastids, and its gene is expressed across various tissues. From the seedling stage, the leaves of the j175 mutant exhibited white stripes, while the division of chloroplasts was inhibited, leading to a significant increase in volume and a reduction in their number. Measurement of the photosynthetic rate showed a significant decrease in the photosynthetic efficiency of j175. Additionally, the division of amyloplasts in j175 grains at different stages was impeded, resulting in irregular polygonal starch granules. RNA-seq analyses of leaves and kernels also showed that multiple genes affecting plastid division, such as FtsZ1, ARC3, ARC6, PDV1-1, PDV2, and MinE1, were significantly downregulated. This study demonstrates that the maize gene j175 is essential for maintaining the division of chloroplasts and amyloplasts and ensuring normal plant growth, and provides an important gene resource for the molecular breeding of maize. Full article
(This article belongs to the Special Issue Crop Genetics and Breeding)
Show Figures

Figure 1

21 pages, 5607 KiB  
Article
EM Dipeptide Enhances Milk Protein Secretion: Evidence from Integrated Metabolomic and Transcriptomic Analysis
by Yuqing Liu, Yuhao Yan, Runjun Yang, Xiaohui Li, Chuang Zhai, Xuan Wu, Xibi Fang and Boqun Liu
Metabolites 2025, 15(7), 476; https://doi.org/10.3390/metabo15070476 - 14 Jul 2025
Viewed by 317
Abstract
Background/Objectives: Breast milk provides essential nutrition and immune protection to support infant growth and development. However, insufficient breast milk remains a serious issue, and bioactive peptides represent a potential strategy to promote lactation. In this study, we investigated the impact of a methionine-containing [...] Read more.
Background/Objectives: Breast milk provides essential nutrition and immune protection to support infant growth and development. However, insufficient breast milk remains a serious issue, and bioactive peptides represent a potential strategy to promote lactation. In this study, we investigated the impact of a methionine-containing dipeptide, EM, on MCF-10A mammary epithelial cells. Methods: MCF-10A cells were treated with EM, and cell proliferation and the expression of key milk protein genes were assessed. Integrated transcriptomic and untargeted metabolomic analyses were performed to identify EM-induced changes in metabolic and gene expression pathways. Results: EM treatment significantly enhanced cell proliferation and upregulated the expression of key milk protein genes (CSN1S1 (casein alpha-S1, encoding alpha-S1 casein), CSN2 (casein beta, encoding beta-casein), and CSN3 (casein kappa, encoding kappa-casein)) at both transcriptional and protein levels compared to controls. Integrated transcriptomic and metabolomic analyses revealed that EM reprogrammed amino acid metabolism, lipid biosynthesis, and nutrient transport pathways. Core genes such as SLC7A11, APOE, and ABCA1 were identified as critical nodes linking metabolic and transcriptional networks. Conclusions: These findings indicate that EM may promote lactogenic activity by modulating metabolic and transcriptional networks in vitro, highlighting the potential of dipeptide-based nutritional interventions, which warrants further in vivo validation. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

25 pages, 5252 KiB  
Article
Predicting the Damaging Potential of Uncharacterized KCNQ1 and KCNE1 Variants
by Svetlana I. Tarnovskaya and Boris S. Zhorov
Int. J. Mol. Sci. 2025, 26(14), 6561; https://doi.org/10.3390/ijms26146561 - 8 Jul 2025
Viewed by 361
Abstract
Voltage-gated potassium channels Kv7.1, encoded by the gene KCNQ1, play critical roles in various physiological processes. In cardiomyocytes, the complex Kv7.1-KCNE1 mediates the slow component of the delayed rectifier potassium current that is essential for the action potential repolarization. Over 1000 [...] Read more.
Voltage-gated potassium channels Kv7.1, encoded by the gene KCNQ1, play critical roles in various physiological processes. In cardiomyocytes, the complex Kv7.1-KCNE1 mediates the slow component of the delayed rectifier potassium current that is essential for the action potential repolarization. Over 1000 KCNQ1 missense variants, many of which are associated with long QT syndrome, are reported in ClinVar and other databases. However, over 600 variants are of uncertain clinical significance (VUS), have conflicting interpretations of pathogenicity, or lack germline information. Computational prediction of the damaging potential of such variants is important for the diagnostics and treatment of cardiac disease. Here, we collected 1750 benign and pathogenic missense variants of Kv channels from databases ClinVar, Humsavar, and Ensembl Variation and tested 26 bioinformatics tools in their ability to identify known pathogenic or likely pathogenic (P/LP) variants. The best-performing tool, AlphaMissense, predicted the pathogenicity of 195 VUSs in Kv7.1. Among these, 79 variants of 66 wildtype residues (WTRs) are also reported as P/LP variants in sequentially matching positions of at least one hKv7.1 paralogue. In available cryoEM structures of Kv7.1 with activated and deactivated voltage-sensing domains, 52 WTRs form intersegmental contacts with WTRs of ClinVar-listed variants, including 21 WTRs with P/LP variants. ClinPred and paralogue annotation methods consistently predicted that 21 WTRs of KCNE1 have 34 VUSs with damaging potential. Among these, 8 WTRs are contacting 23 Kv7.1 WTRs with 13 ClinVar-listed variants in the AlphaFold3 model. Analysis of intersegmental contacts in CryoEM and AlphaFold3 structures suggests atomic mechanisms of dysfunction for some VUSs. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases: 2nd Edition)
Show Figures

Figure 1

13 pages, 1990 KiB  
Article
Elephant Cathelicidin-Derived Peptides Inhibit Herpes Simplex Virus 1 Infection
by Haiche Yisihaer, Peng Dong, Pengpeng Li, Enjie Deng, Rui Meng, Lin Jin and Guilan Li
Antibiotics 2025, 14(7), 655; https://doi.org/10.3390/antibiotics14070655 - 28 Jun 2025
Viewed by 407
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally prevalent pathogen that can infect a variety of animal species as well as humans. However, existing antiviral therapies are constrained in their capacity to effectively target viral latency and prevent recurrent infections. Antimicrobial peptides [...] Read more.
Herpes simplex virus type 1 (HSV-1) is a globally prevalent pathogen that can infect a variety of animal species as well as humans. However, existing antiviral therapies are constrained in their capacity to effectively target viral latency and prevent recurrent infections. Antimicrobial peptides (AMPs), particularly cathelicidins, as part of innate immune system have demonstrated broad-spectrum efficacy against viral pathogens. In this study, four peptides derived from Elephas maximus cathelicidin EM were designed and optimized (EM-1 to EM-4). We identified low toxicity peptide derivatives through hemolytic and cytotoxicity assays, quantified their anti-HSV-1 activity by determining IC50. Antiviral mechanisms were investigated using RT-qPCR and antiviral efficacy was ultimately validated in C57BL/6J mice through viral load quantification in brain, lung, and heart tissues. Our findings revealed that EM-1 significantly inhibited HSV-1 replication in U251 cells. In a murine footpad inoculation model, EM-1 administration substantially reduced viral loads and alleviated inflammatory responses. Histological assessment demonstrated that EM-1 treatment mitigated HSV-1 induced tissue damage in infected mice. We also found that EM-1 exerted its antiviral effects by upregulating the expression of interferon-gamma and its downstream genes, such as ISG15 and MX1. These findings indicated that EM-1 is a dual function peptide that inhibits replication of HSV-1 as well as enhances host antiviral immunity. Collectively, this study highlights the therapeutic potential of elephant cathelicidin derived peptides in antiviral development. Full article
(This article belongs to the Special Issue The Discovery of Novel Antimicrobial Agents to Combat Infections)
Show Figures

Figure 1

20 pages, 2912 KiB  
Article
Integrative Molecular and Immune Profiling in Advanced Unresectable Melanoma: Tumor Microenvironment and Peripheral PD-1+ CD4+ Effector Memory T-Cells as Potential Markers of Response to Immune Checkpoint Inhibitor Therapy
by Manuel Molina-García, María Jesús Rojas-Lechuga, Teresa Torres Moral, Francesca Crespí-Payeras, Jaume Bagué, Judit Mateu, Nikolaos Paschalidis, Vinícius Gonçalves de Souza, Sebastian Podlipnik, Cristina Carrera, Josep Malvehy, Rui Milton Patricio da Silva-Júnior and Susana Puig
Cancers 2025, 17(12), 2022; https://doi.org/10.3390/cancers17122022 - 17 Jun 2025
Viewed by 490
Abstract
Background/Objectives: Immune checkpoint inhibitors (ICIs) have revolutionized advanced melanoma treatment, yet many patients fail to achieve sustained clinical benefit. Several biomarkers, including tumor microenvironment (TME) signature, PD-1/PD-L1 expression, and IFN-γ signaling, have been proposed. However, robust predictive markers remain elusive. This study aimed [...] Read more.
Background/Objectives: Immune checkpoint inhibitors (ICIs) have revolutionized advanced melanoma treatment, yet many patients fail to achieve sustained clinical benefit. Several biomarkers, including tumor microenvironment (TME) signature, PD-1/PD-L1 expression, and IFN-γ signaling, have been proposed. However, robust predictive markers remain elusive. This study aimed to identify molecular markers of response by analyzing tumor and peripheral immune signatures. Methods: This study analyzed 21 advanced melanoma patients treated with ICIs. Formalin-fixed, paraffin-embedded tumors underwent RNA-sequencing targeting 1392 immuno-oncology probes. Genes significantly associated with progression-free survival (PFS) by log-rank test underwent hierarchical clustering analysis (HCA). Differential expression and xCell analyses were then performed on the resulting clusters. Cox multivariate analysis was applied to identify independent PFS predictors. Pre-treatment peripheral blood mononuclear cells were analyzed by mass cytometry, followed by FlowSOM and UMAP clustering. Results: Fifty-five genes significantly associated with PFS identified two molecular clusters via HCA. Cluster A demonstrated prolonged PFS (59.4 vs. 2.4 months, p = 0.0004), while Cluster B was characterized by downregulated IFN-γ signaling, antigen presentation pathways, and reduced immune score. Multivariate Cox analysis confirmed molecular cluster as an independent PFS predictor (p < 0.001). Mass cytometry revealed higher frequencies of circulating PD-1+ CD4+ effector memory (EM) T subpopulations among responders. Conclusions: This study highlights the potential role of molecular and immune profiling in predicting ICI response in advanced melanoma. The identification of distinct molecular clusters underscores significant TME heterogeneity, with immune-cold tumor clusters associated with poorer outcomes. Furthermore, circulating PD-1+ T subpopulations emerged as potential markers of ICI response, suggesting their value in improving patient stratification. Full article
(This article belongs to the Special Issue Prediction of Melanoma)
Show Figures

Figure 1

17 pages, 7108 KiB  
Article
Transcriptome Differential Expression Regulation Analysis of the Narrow-Leaf Mutant of Sorghum Bicolor
by Jinhong Li, Yiwei Wang, Yuche Zhao, Shirui Zhang, Chunyu Wang, Ling Cong, Yanpeng Zhang, Shuang Gang and Xiaochun Lu
Agronomy 2025, 15(6), 1432; https://doi.org/10.3390/agronomy15061432 - 12 Jun 2025
Viewed by 845
Abstract
Leaf morphology influences photosynthesis, transpiration, and, ultimately, crop yield. To elucidate the molecular regulatory mechanisms underlying narrow leaves in Sorghum bicolor, we identified key DEGs (differentially expressed genes) influencing leaf morphology. The nal6 (the narrow-leaf mutant6) was obtained through 0.1% EMS (ethyl [...] Read more.
Leaf morphology influences photosynthesis, transpiration, and, ultimately, crop yield. To elucidate the molecular regulatory mechanisms underlying narrow leaves in Sorghum bicolor, we identified key DEGs (differentially expressed genes) influencing leaf morphology. The nal6 (the narrow-leaf mutant6) was obtained through 0.1% EMS (ethyl methane sulfonate) chemical mutagenesis of the WT (BTX623). Compared with the WT leaves, there were significant differences in leaf width and length at the flowering stage. A total of 1520 DEGs between the nal6 and WT were screened at the flowering stage based on the transcriptome analysis of sword leaves. KEGG and GO enrichment analyses revealed that DEGs were significantly enriched in pathways such as plant signal transduction, cytokinin biosynthesis, photosynthetic antenna proteins, and secondary metabolite biosynthesis. Further analysis indicated that four DEGs are involved in regulating auxin signaling transduction, thirteen DEGs are involved in regulating zeatin signal transduction, and two DEGs are involved in regulating zeatin biosynthesis. These genes are differentially expressed in nal6, directly affecting the signaling of auxin and zeatin and the biosynthesis of zeatin. Our findings provide a theoretical foundation for understanding the molecular regulation of narrow leaves and breeding ideal plant types in Sorghum bicolor. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 2424 KiB  
Article
Transcriptome and Metabolome Analysis of the Leaf Colour Mutation Mechanism in a Light-Green Leaf Mutant of Maize
by Dan Li, Kuangzheng Qu, Dianrong Ma, Zhenxing Zhu and Xiaochun Lu
Agronomy 2025, 15(6), 1364; https://doi.org/10.3390/agronomy15061364 - 31 May 2025
Cited by 1 | Viewed by 488
Abstract
Leaf colour is a valuable morphological phenotype for studying plant metabolism and physiology. To elucidate the mutation mechanism of leaf colour variation in maize, we compared the ethyl methylsulfonate (EMS)-induced maize mutant zmpgl, which has light green leaves, with the wild-type maize [...] Read more.
Leaf colour is a valuable morphological phenotype for studying plant metabolism and physiology. To elucidate the mutation mechanism of leaf colour variation in maize, we compared the ethyl methylsulfonate (EMS)-induced maize mutant zmpgl, which has light green leaves, with the wild-type maize line B73. At the seedling stage, the zmpgl mutant presented distinct light green leaf colouration. Comprehensive analyses revealed that both the photosynthetic parameters and pigment contents of the mutant seedlings were significantly lower than those of the wild-type seedlings. Transmission electron microscopy of the mutant leaves revealed alterations in the chloroplast structure, which consequently impaired the photosynthetic efficiency and accumulation of organic matter. Through integrated transcriptomic and metabolomic profiling, we identified differentially expressed genes (DEGs) and differentially abundant metabolites associated with the zmpgl phenotype. These molecular components were associated with pathways related to plant metabolism, chloroplast structure-associated hormone signalling, and redox homeostasis. Further investigation revealed a significant differential expression of genes involved in several critical biological processes, including tetrapyrrole synthesis, lipid metabolism (related to leaf photosynthesis), amino acid metabolism (associated with chlorophyll synthesis and the light response), and abscisic acid (ABA) biosynthesis. These processes are crucial for plant photosynthesis, respiration, and catalytic functions. This study not only provides a valuable resource for further investigation of plant photosynthetic systems but also establishes a foundational framework for the comprehensive functional characterisation of genes involved in the leaf colour change in the zmpgl mutant. These findings contribute to our understanding of the molecular basis of leaf colour variation and its impact on photosynthetic performance in maize. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 2338 KiB  
Article
Combining Transcriptome and Hormone-Targeted Metabolome Analyses to Dissect the Regulatory Mechanisms Underlying Wheat Peduncle Elongation
by Huifang Hao, Lu Chen, Zhiyang Cao, Xiujuan Jin, Feng Guo, Zerui Shi, Jinwen Yang, Juan Lu and Daizhen Sun
Plants 2025, 14(11), 1611; https://doi.org/10.3390/plants14111611 - 25 May 2025
Viewed by 561
Abstract
Wheat is an important global food crop. The peduncle significantly impacts the plant’s height, architecture, and yield, and understanding its genetic mechanisms is crucial not only for improving wheat’s architecture but also for enhancing its yield. In this study, we identified an elongated [...] Read more.
Wheat is an important global food crop. The peduncle significantly impacts the plant’s height, architecture, and yield, and understanding its genetic mechanisms is crucial not only for improving wheat’s architecture but also for enhancing its yield. In this study, we identified an elongated uppermost internode (eui) mutant in the EMS-induced progeny of Jinmai 90 (JM90). We conducted phenotypic identification, genetic analysis, and cytological observation combined with transcriptome and targeted hormone metabolism analysis and compared the differences between the eui mutant and the wild-type (WT). The results indicated that an incompletely dominant gene mutation caused the eui mutant to display significant elongation of the peduncle and an increase in the plant height. This was attributed to the considerable elongation of parenchyma cells, while no significant differences were noted in other internodes. These traits were accompanied by an increase in the spikelets per spike and grains per spike. Subsequently, transcriptome and targeted hormone metabolome sequencing were performed and identified 15,969 differentially expressed genes (DEGs) and 27 hormone-related differentially accumulated metabolites (DAMs). KEGG enrichment analysis indicated that the DEGs in MS1_VS_WS1 were significantly enriched in two pathways: those related to tryptophan metabolism and diterpenoid biosynthesis. Analysis indicated that the peduncle elongation caused by the eui mutant is primarily regulated by auxin. This study offers a foundation for the exploration and cloning of genes associated with the peduncle, establishing a theoretical basis for understanding the molecular mechanisms behind wheat peduncle elongation and for developing ideal plant types and breeding high-yield varieties. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

15 pages, 5873 KiB  
Article
A Point Mutation of the Alpha-Tubulin Gene ClTUA Causes Dominant Dwarf Phenotype in Watermelon (Citrullus lanatus)
by Ziwei Hu, Leichen Zhang, Jun Shi, Quansheng Ying, Huafeng Zhang, Xingping Zhang, Yun Deng and Yuhong Wang
Horticulturae 2025, 11(6), 562; https://doi.org/10.3390/horticulturae11060562 - 22 May 2025
Viewed by 417
Abstract
Vine length is a crucial plant architecture trait in watermelon, which determines its height. In this study, we identified a dominant dwarf watermelon mutant by treating G42 with Ethyl methanesulfonate (EMS). In order to clarify the causes of the dwarfism in mutants, genetic [...] Read more.
Vine length is a crucial plant architecture trait in watermelon, which determines its height. In this study, we identified a dominant dwarf watermelon mutant by treating G42 with Ethyl methanesulfonate (EMS). In order to clarify the causes of the dwarfism in mutants, genetic statistics, phenotypic observation, and cytological observation were carried out. Meanwhile, individual resequencing combined with molecular markers was used to map the candidate gene. Our results demonstrated that the dwarf mutant exhibited incomplete dominance. The dwarf plants showed a decrease in the number of internodal cells, shortened internodes, and reduced vine length. Gene mapping indicated that the target gene responsible for this mutation was ClTUA, which encodes α-tubulin. A point mutation in the dwarf plants was identified, specifically, a change from C to T at the 1851st base pair. Further experiments, including transcriptome analysis and Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS), revealed that this gene mutation affected auxin synthesis, leading to the dwarfing of the plants. This study provides new germplasm resources and a theoretical foundation for plant architecture breeding in watermelon. Full article
(This article belongs to the Special Issue Germplasm Resources and Genetics Improvement of Watermelon and Melon)
Show Figures

Figure 1

28 pages, 4104 KiB  
Article
Transcriptome Analysis Reveals the Molecular Mechanisms for Mycorrhiza-Enhanced Drought Tolerance in Maize by Regulating the Ca2+ Signaling Pathway
by Qiaoming Zhang, Wenjing Yang, Miaomiao Wang, Junwei Chen, Zhaoran Zhang, Yanan Wei, Qingshan Chang and Minggui Gong
J. Fungi 2025, 11(5), 375; https://doi.org/10.3390/jof11050375 - 14 May 2025
Cited by 1 | Viewed by 574
Abstract
With the continuous change of climate, drought stress has emerged as the primary constraint on crop growth, posing a significant threat to the stability of global grain reserves. Arbuscular mycorrhizal fungi (AMF), as a kind of widely distributed root endophytes, enhance the drought [...] Read more.
With the continuous change of climate, drought stress has emerged as the primary constraint on crop growth, posing a significant threat to the stability of global grain reserves. Arbuscular mycorrhizal fungi (AMF), as a kind of widely distributed root endophytes, enhance the drought tolerance of maize (Zea mays L.) through regulating the physiological and molecular responses. However, comprehensive transcriptome analysis to reveal the molecular mechanism of drought tolerance in the symbiotic process between AMF and maize is still limited. In the potted plant experiment, maizes inoculated with and without arbuscular mycorrhizal fungus Funneliformis mosseae were grown under well-watered (WW) or drought-stressed (DS) conditions. By using RNA-Seq and transcriptome analysis on maize roots and leaves, this work aimed to investigate the differential expressed genes (DEGs) related to the Ca2+ signaling pathway induced by AMF symbiosis under drought stress. Our findings indicated that F. mosseae inoculation resulted in a decrease in the net fluxes of Ca2+, while simultaneously elevating Ca2+ contents in the maize roots and leaves under well-watered or drought-stressed conditions. Notably, 189 DEGs were regulated not only by AMF symbiosis and drought stress, but also exhibited preferential expression in either leaves or roots. The annotation and enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that most of the DEGs were significantly enriched in Ca2+ signaling pathway genes, related to signal transduction, cellular process, and defense response. A high number of DEGs with this function (including calcineurin B-like protein (CBL), CBL-interacting protein kinase (CIPK), mitogen-activated protein kinase (MAPK), and calcium-dependent protein kinase (CDPK) receptor kinases) were upregulated-DEGs or downregulated-DEGs in F. mosseae-inoculated maizes under drought stress. Furthermore, some DEGs belong to transcription factor (TF) families, including bHLH ERF, and, MYB, were speculated to play key roles in improving the drought tolerance of maize. Based on the expression data and co-expression analysis between TF and Ca2+ signaling pathway genes, Whirly1 with CBL11, and BRI1-EMS-SUPPRESSOR 1 (BES1) with CBL10, CIPK24, CDPK1, CDPK14, CDPK19, and MAPK9 genes showed significant positive correlations, while B3 domain-containing transcription factors (B3 TFs) with MAPK1 and both CBL9 genes showed significant negative correlations in response to both F. mosseae inoculation and drought stress. The regulation of Ca2+ signaling pathways by AMF symbiosis was an important response mechanism of maize to improve their drought resistance. This study provides insightful perspectives on how AMF-induced modulation of gene expression within the Ca2+ signaling pathway can enhance the drought tolerance of mycorrhizal maize in the future. Full article
Show Figures

Figure 1

20 pages, 2263 KiB  
Review
Brassinosteroid Signaling Dynamics: Ubiquitination-Dependent Regulation of Core Signaling Components
by Riguang Qiu, Yan Zhou and Juan Mao
Int. J. Mol. Sci. 2025, 26(10), 4502; https://doi.org/10.3390/ijms26104502 - 8 May 2025
Viewed by 582
Abstract
Brassinosteroids (BRs) are essential phytohormones that orchestrate various stages of plant growth and development. The BR signaling cascade is mediated through a phosphorylation network involving sequential activation of the plasma membrane-localized receptor kinase Brassinosteroid-Insensitive 1 (BRI1), the cytoplasmic kinase Brassinosteroid-Insensitive 2 (BIN2), and [...] Read more.
Brassinosteroids (BRs) are essential phytohormones that orchestrate various stages of plant growth and development. The BR signaling cascade is mediated through a phosphorylation network involving sequential activation of the plasma membrane-localized receptor kinase Brassinosteroid-Insensitive 1 (BRI1), the cytoplasmic kinase Brassinosteroid-Insensitive 2 (BIN2), and the transcription factors BRI1-EMS suppressor 1 (BES1) and Brassinazole-Resistant 1 (BZR1). These transcription factors activate thousands of nuclear genes. Recent evidence highlights that ubiquitination has emerged as an equally pivotal mechanism that dynamically controls the BR signaling pathway by modulating the activity, subcellular localization, and protein stability of these core signaling components. In this review, we systematically analyze the central role of ubiquitination in determining the function, localization, and degradation of these proteins to fine-tune the outputs of BR signaling. We provide comparative perspectives on the functional conservation and divergence of ubiquitin-related regulatory components in the model plant Arabidopsis versus other plant species. Furthermore, we critically evaluate current knowledge gaps in the ubiquitin-mediated spatiotemporal control of BR signaling, offering insights into potential research directions to elucidate this sophisticated regulatory network. Full article
Show Figures

Figure 1

Back to TopTop