Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (256)

Search Parameters:
Keywords = electrothermal performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 23202 KB  
Article
A Port-Hamiltonian Perspective on Dual Active Bridge Converters: Modeling, Analysis, and Experimental Validation
by Yaoqiang Wang, Zhaolong Sun, Peiyuan Li, Jian Ai, Chan Wu, Zhan Shen and Fujin Deng
Energies 2025, 18(19), 5197; https://doi.org/10.3390/en18195197 - 30 Sep 2025
Abstract
The operational stability and performance of dual active bridge (DAB) converters are dictated by an intricate coupling of electrical, magnetic, and thermal dynamics. Conventional modeling paradigms fail to capture these interactions, creating a critical gap between design predictions and real performance. A unified [...] Read more.
The operational stability and performance of dual active bridge (DAB) converters are dictated by an intricate coupling of electrical, magnetic, and thermal dynamics. Conventional modeling paradigms fail to capture these interactions, creating a critical gap between design predictions and real performance. A unified Port-Hamiltonian model (PHM) is developed, embedding nonlinear, temperature-dependent material physics within a single, energy-conserving structure. Derived from first principles and experimentally validated, the model reproduces high-frequency dynamics, including saturation-driven current spikes, with superior fidelity. The energy-based structure systematically exposes the converter’s stability boundaries, revealing not only thermal runaway limits but also previously obscured electro-thermal oscillatory modes. The resulting framework provides a rigorous foundation for the predictive co-design of magnetics, thermal management, and control, enabling guaranteed stability and optimized performance across the full operational envelope. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

24 pages, 4577 KB  
Article
Analysis of Electro-Thermal De-Icing on a NACA0012 Airfoil Under Harsh SLD Conditions and Different Angles of Attack
by Sobhan Ghorbani Nohooji and Moussa Tembely
Aerospace 2025, 12(10), 883; https://doi.org/10.3390/aerospace12100883 - 29 Sep 2025
Abstract
Ice accretion (icing) on aircraft surfaces is a significant safety risk through airfoil shape modification and reduction in aerodynamic efficiency. This process occurs when an aircraft flies through clouds of supercooled water droplets that freeze upon impact on exposed surfaces. To counter this [...] Read more.
Ice accretion (icing) on aircraft surfaces is a significant safety risk through airfoil shape modification and reduction in aerodynamic efficiency. This process occurs when an aircraft flies through clouds of supercooled water droplets that freeze upon impact on exposed surfaces. To counter this hazard, electro-thermal de-icing systems integrate heaters in critical regions to melt ice and reduce performance losses. In this study, a multiphysics computational model is used to simulate ice accretion and electro-thermal de-icing on a NACA-0012 airfoil, accounting for factors such as airflow, droplet impingement, phase changes, and heat conduction. The model’s predictions are validated against experimental data, confirming its accuracy. A cyclic electro-thermal ice protection system (ETIPS) is then tested under both standard and severe supercooled large droplet (SLD) conditions, examining how droplet size and angle of attack affect de-icing performance. Simulations without an active de-icing system show severe aerodynamic degradation, including an 11.1% loss of lift and a 48.2% increase in drag at a 12 angle of attack. For large droplets (median 200 μm), the drag coefficient increases by 36.5%. Under harsh icing conditions, the effectiveness of the de-icing system is found to depend on droplet size, angle of attack, and heater placement. Even with continuous heater operation, ice continues to accumulate on the leading edge at higher angles of attack. While the ETIPS performs effectively against large droplets in heated zones, unheated regions experience significant ice buildup (especially with 200 μm droplets). This indicates that additional or extended heaters may be necessary to ensure complete protection in extreme conditions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 2289 KB  
Article
GaN/InN HEMT-Based UV Photodetector on SiC with Hexagonal Boron Nitride Passivation
by Mustafa Kilin and Firat Yasar
Photonics 2025, 12(10), 950; https://doi.org/10.3390/photonics12100950 - 24 Sep 2025
Viewed by 90
Abstract
This work presents a novel Gallium Nitride (GaN) high-electron-mobility transistor (HEMT)-based ultraviolet (UV) photodetector architecture that integrates advanced material and structural design strategies to enhance detection performance and stability under room-temperature operation. This study is conducted as a fully numerical simulation using the [...] Read more.
This work presents a novel Gallium Nitride (GaN) high-electron-mobility transistor (HEMT)-based ultraviolet (UV) photodetector architecture that integrates advanced material and structural design strategies to enhance detection performance and stability under room-temperature operation. This study is conducted as a fully numerical simulation using the Silvaco Atlas platform, providing detailed electrothermal and optoelectronic analysis of the proposed device. The device is constructed on a high-thermal-conductivity silicon carbide (SiC) substrate and incorporates an n-GaN buffer, an indium nitride (InN) channel layer for improved electron mobility and two-dimensional electron gas (2DEG) confinement, and a dual-passivation scheme combining silicon nitride (SiN) and hexagonal boron nitride (h-BN). A p-GaN layer is embedded between the passivation interfaces to deplete the 2DEG in dark conditions. In the device architecture, the metal contacts consist of a 2 nm Nickel (Ni) adhesion layer followed by Gold (Au), employed as source and drain electrodes, while a recessed gate embedded within the substrate ensures improved electric field control and effective noise suppression. Numerical simulations demonstrate that the integration of a hexagonal boron nitride (h-BN) interlayer within the dual passivation stack effectively suppresses the gate leakage current from the typical literature values of the order of 108 A to approximately 1010 A, highlighting its critical role in enhancing interfacial insulation. In addition, consistent with previous reports, the use of a SiC substrate offers significantly improved thermal management over sapphire, enabling more stable operation under UV illumination. The device demonstrates strong photoresponse under 360 nm ultraviolet (UV) illumination, a high photo-to-dark current ratio (PDCR) found at approximately 106, and tunable performance via structural optimization of p-GaN width between 0.40 μm and 1.60 μm, doping concentration from 5×1016 cm3 to 5×1018 cm3, and embedding depth between 0.060 μm and 0.068 μm. The results underscore the proposed structure’s notable effectiveness in passivation quality, suppression of gate leakage, and thermal management, collectively establishing it as a robust and reliable platform for next-generation UV photodetectors operating under harsh environmental conditions. Full article
Show Figures

Figure 1

16 pages, 3843 KB  
Article
Electro-Thermal Analysis of Lithium-Ion Battery Modules Equipped with Thermal Barrier Pad for Urban Air Mobility During Flight Scenarios
by Geesoo Lee
Energies 2025, 18(18), 5006; https://doi.org/10.3390/en18185006 - 20 Sep 2025
Viewed by 213
Abstract
This study presents an electro-thermal analysis of high-power lithium-ion battery modules for urban air mobility (UAM) applications, focusing on assessing the operational impact of installing a thermal barrier pad (TBP)—designed for thermal runaway delay—to ensure that the module maintains acceptable performance during normal [...] Read more.
This study presents an electro-thermal analysis of high-power lithium-ion battery modules for urban air mobility (UAM) applications, focusing on assessing the operational impact of installing a thermal barrier pad (TBP)—designed for thermal runaway delay—to ensure that the module maintains acceptable performance during normal operations. An integrated electro-thermal simulation model was developed and validated through single-cell experiments under step-load conditions, showing good agreement with measured voltage and temperature. In the baseline module without a TBP, higher discharge rates resulted in increased heat generation and cell temperatures, with approximately 42.5% of the electrical output dissipated as heat under the 5C condition. When the TBP was applied, the cooling performance of the heat sink decreased, leading to higher module temperatures and increased temperature differences between the cell and the heat sink, particularly as the TBP thickness increased. A simplified UAM flight scenario was simulated to evaluate temperature behavior throughout various operating phases. For the 1.5 mm TBP model, the maximum temperature (75.7 °C) remained within the design limit (80 °C). However, increasing the maximum take-off discharge rate to 6C or higher caused the module to reach its thermal limit or cut-off voltage before mission completion. These results indicate that TBP installation can be applied without unacceptable performance degradation under normal operation, provided that its thickness is optimized by considering cooling performance, thermal safety, and weight/volume constraints in UAM applications. Full article
Show Figures

Figure 1

19 pages, 2428 KB  
Article
Quality of Vitamin B12 Supplements Regarding Vitamin Assay and Content of Heavy Metals
by Magdalena Krawczyk-Coda, Agnieszka Zgoła-Grześkowiak and Ewa Stanisz
Molecules 2025, 30(18), 3808; https://doi.org/10.3390/molecules30183808 - 19 Sep 2025
Viewed by 319
Abstract
Vegetarians must rely on supplements to meet the recommended daily intake of vitamin B12. Therefore, it is essential to establish a rapid, inexpensive, and reliable method of determining B12 levels in order to accurately characterize and assess the quality of supplements. This study [...] Read more.
Vegetarians must rely on supplements to meet the recommended daily intake of vitamin B12. Therefore, it is essential to establish a rapid, inexpensive, and reliable method of determining B12 levels in order to accurately characterize and assess the quality of supplements. This study describes a methodology for quantifying vitamin B12 in the form of methylcobalamin and cyanocobalamin following 2 min of ultrasound-assisted extraction performed at pH 4. Vitamin B12 was determined using UV-Vis spectrophotometry and liquid chromatography-tandem mass spectrometry. Thus, LC-MS/MS validated the cost-effective UV-Vis method. The content and form of vitamin B12 in the tested supplements were investigated, and serious discrepancies were found in the content or form of vitamin B12 in three out of ten supplements. To verify the quality of the analyzed supplements, the presence of metal impurities (as Cd, Hg, and Pb) was also assessed using high-resolution continuum source electrothermal atomic absorption spectrometry. No risk associated with the presence of these metals has been noted. Nevertheless, our findings underscore the need for stricter quality control in supplement manufacturing. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Figure 1

16 pages, 2431 KB  
Article
Visual Performance and Photobiological Effects of White LED Systems Based on Spectral Compensation
by Xuehua Shen, Huanting Chen, Bin Chen, Xiaoxi Ji and Fangming Qin
Photonics 2025, 12(9), 917; https://doi.org/10.3390/photonics12090917 - 14 Sep 2025
Viewed by 242
Abstract
The visual performance and photobiological effects of white LED systems based on spectral compensation are discussed, specifically focusing on the total optical power, the ratio of scotopic vision luminous flux to photopic vision luminous flux (S/P), the blue light hazard (BLH), and the [...] Read more.
The visual performance and photobiological effects of white LED systems based on spectral compensation are discussed, specifically focusing on the total optical power, the ratio of scotopic vision luminous flux to photopic vision luminous flux (S/P), the blue light hazard (BLH), and the circadian action factor (CAF). Theoretical models are established by integrating the spectral power distribution (SPD) with spectral sensitivity functions associated with the human visual system, and meanwhile, the impacts of LEDs’ electro-thermal characteristics on the mixed spectral structure and optical properties are analyzed. As experimental results demonstrate, an excellent agreement is shown between the calculated and measured values of the total optical power, S/P, BLH, and CAF, in terms of both values and variation trends. These proposed models are expected to serve as effective tools for understanding the visual perception and non-visual biological effects in specific illumination environments. Moreover, they can offer valuable reference frameworks for the development of lighting solutions that are more human-centered and health-oriented. Full article
Show Figures

Figure 1

24 pages, 6368 KB  
Article
Electro-Thermal Modeling and Parameter Identification of an EV Battery Pack Using Drive Cycle Data
by Vinura Mannapperuma, Lalith Chandra Gaddala, Ruixin Zheng, Doohyun Kim, Youngki Kim, Ankith Ullal, Shengrong Zhu and Kyoung Pyo Ha
Batteries 2025, 11(9), 319; https://doi.org/10.3390/batteries11090319 - 27 Aug 2025
Viewed by 779
Abstract
This paper presents a novel electro-thermal modeling approach for a lithium-ion battery pack in an electric vehicle (EV), along with parameter identification using controller area network (CAN) data collected from chassis dynamometer and real-world driving tests. The proposed electro-thermal model consists of a [...] Read more.
This paper presents a novel electro-thermal modeling approach for a lithium-ion battery pack in an electric vehicle (EV), along with parameter identification using controller area network (CAN) data collected from chassis dynamometer and real-world driving tests. The proposed electro-thermal model consists of a first-order equivalent circuit model (ECM) and a lumped-parameter thermal network in considering a simplified cooling circuit layout and temperature distributions across four distinct zones within the battery pack. This model captures the nonuniform heat transfer between the pack modules and the coolant, as well as variations in coolant temperature and flow rates. Model parameters are identified directly from vehicle-level test data without relying on laboratory-level measurements. Validation results demonstrate that the model can predict terminal voltage with an RMSE of less than 6 V (normalized root mean square error of less than 2%), and battery module surface temperatures with root mean square errors of less than 2 °C for over 90% of the test cases. The proposed approach provides a cost-effective and accurate solution for predicting electro-thermal behavior of EV battery systems, making it a valuable tool for battery design and management to optimize performance and ensure the safety of EVs. Full article
Show Figures

Figure 1

22 pages, 3544 KB  
Article
Research on Portfolio Strategies for Low-Carbon Transition Pathways in Electricity-Heat Nexus Systems Incorporating Multi-Device Integrated Systems
by Jingyu Li, Qiang Huang, Na Zhang, Ruyue Han and Guangchen Liu
Energies 2025, 18(17), 4531; https://doi.org/10.3390/en18174531 - 26 Aug 2025
Cited by 1 | Viewed by 514
Abstract
Driven by the “Dual Carbon” objectives, integrated energy systems face an imperative to achieve synergistic optimization encompassing economic viability, low-carbon performance, and operational flexibility. To facilitate the low-carbon transition of combined heat and power (CHP) units, this study proposes an integrated optimization framework [...] Read more.
Driven by the “Dual Carbon” objectives, integrated energy systems face an imperative to achieve synergistic optimization encompassing economic viability, low-carbon performance, and operational flexibility. To facilitate the low-carbon transition of combined heat and power (CHP) units, this study proposes an integrated optimization framework coupling CHP with diversified auxiliary installations. A multi-dimensional comprehensive evaluation is conducted on distinct coupling configurations incorporating electric boilers, heat pumps, thermal energy storage, and carbon capture and storage. Initially, an electro-thermal optimization model integrating multi-component devices—including CHP with carbon capture and storage (CHP-CCS), electric boilers, heat pumps, and thermal energy storage—is developed. A comprehensive evaluation index system is established across four dimensions: economic efficiency, operational flexibility, low-carbon performance, and technology readiness level. Subsequently, the Tanimoto coefficient is introduced to supersede the Euclidean distance in the conventional Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology, thereby refining the similarity measurement approach for optimal solution selection. Collectively, the configuration integrating CHP-CCS with electric boilers and heat pumps emerges as the optimal pathway. This configuration ensures reliable electricity and thermal load supply while substantially reducing system-level low-carbon transition costs and carbon emissions, concurrently enhancing renewable energy accommodation capacity. Full article
Show Figures

Figure 1

18 pages, 3300 KB  
Article
Electro-Thermal Transient Characteristics of Photovoltaic–Thermal (PV/T)–Heat Pump System
by Wenlong Zou, Gang Yu and Xiaoze Du
Energies 2025, 18(17), 4513; https://doi.org/10.3390/en18174513 - 25 Aug 2025
Viewed by 712
Abstract
This study investigates the electro-thermal transient response of a photovoltaic–thermal (PV/T)–heat pump system under dynamic disturbances to optimize operational stability. A dynamic model integrating a PV/T collector and a heat pump was developed by the transient heat current method, enabling high-fidelity simulations of [...] Read more.
This study investigates the electro-thermal transient response of a photovoltaic–thermal (PV/T)–heat pump system under dynamic disturbances to optimize operational stability. A dynamic model integrating a PV/T collector and a heat pump was developed by the transient heat current method, enabling high-fidelity simulations of step perturbations: solar irradiance reduction, compressor operation, condenser water flow rate variations, and thermal storage tank volume changes. This study highlights the thermal storage tank’s critical role. For Vtank = 2 m3, water tank volume significantly suppresses the water tank and PV/T collector temperature fluctuations caused by solar irradiance reduction. PV/T collector temperature fluctuation suppression improved by 46.7%. For the PV/T heat pump system in this study, the water tank volume was selected between 1 and 1.5 m3 to optimize the balance of thermal inertia and cost. Despite PV cell electrical efficiency gains from PV cell temperature reductions caused by solar irradiance reduction, power recovery remains limited. Compressor dynamic performance exhibits asymmetry: the hot water temperature drop caused by speed reduction exceeds the rise from speed increase. Load fluctuations reveal heightened risk: load reduction triggers a hot water 7.6 °C decline versus a 2.2 °C gain under equivalent load increases. Meanwhile, water flow rate variation in condenser identifies electro-thermal time lags (100 s thermal and 50 s electrical stabilization), necessitating predictive compressor control to prevent temperature and compressor operation oscillations caused by system condition changes. These findings advance hybrid renewable systems by resolving transient coupling mechanisms and enhancing operational resilience, offering actionable strategies for PV/T–heat pump deployment in building energy applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

12 pages, 5061 KB  
Article
A Programmable Soft Electrothermal Actuator Based on a Functionally Graded Structure for Multiple Deformations
by Fan Bu, Feng Zhu, Zhengyan Zhang and Hanbin Xiao
Polymers 2025, 17(17), 2288; https://doi.org/10.3390/polym17172288 - 24 Aug 2025
Viewed by 650
Abstract
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, [...] Read more.
Soft electrothermal actuators have attracted increasing attention in soft robotics and wearable systems due to their simple structure, low driving voltage, and ease of integration. However, traditional designs based on homogeneous or layered composites often suffer from interfacial failure and limited deformation modes, restricting their long-term stability and actuation versatility. In this study, we present a programmable soft electrothermal actuator based on a functionally graded structure composed of polydimethylsiloxane (PDMS)/multiwalled carbon nanotube (MWCNTs) composite material and an embedded EGaIn conductive circuit. Rheological and mechanical characterization confirms the enhancement of viscosity, modulus, and tensile strength with increasing MWCNTs content, confirming that the gradient structure improves mechanical performance. The device shows excellent actuation performance (bending angle up to 117°), fast response (8 s), and durability (100 cycles). The actuator achieves L-shaped, U-shaped, and V-shaped bending deformations through circuit pattern design, demonstrating precise programmability and reconfigurability. This work provides a new strategy for realizing programmable, multimodal deformation in soft systems and offers promising applications in adaptive robotics, smart devices, and human–machine interfaces. Full article
Show Figures

Figure 1

10 pages, 2442 KB  
Article
Design and Measurements of an Electrothermal Filter Using CMOS Technology
by Mariusz Jankowski, Michał Szermer and Marcin Janicki
Electronics 2025, 14(17), 3355; https://doi.org/10.3390/electronics14173355 - 23 Aug 2025
Viewed by 394
Abstract
Electronic circuits and systems often require continuous monitoring of their temperature. For most sensors, voltage is the temperature-sensitive parameter; however, electrothermal filters are one of a few exceptions, for which signal frequency or phase is the measure of temperature. Such filters are an [...] Read more.
Electronic circuits and systems often require continuous monitoring of their temperature. For most sensors, voltage is the temperature-sensitive parameter; however, electrothermal filters are one of a few exceptions, for which signal frequency or phase is the measure of temperature. Such filters are an essential part of temperature sensors, based on the measurement of material thermal diffusivity, in which the input signal of the filter is a square wave. However, the phase shift introduced by the filter depends on the signal frequency. Thus, the authors decided to explore this dependence in more detail by measuring filter response to sinusoidal input signals. The investigations presented in this paper were carried out for an electrothermal filter designed and manufactured in an ASIC using 3 µm CMOS technology. The obtained measurement results confirmed the hypothesis that both the gain and the phase shift in the filter strongly depend on the input signal frequency. Accurate data on the thermal impedance of filters is crucial for the optimization of their performance. Full article
(This article belongs to the Special Issue Mixed Design of Integrated Circuits and Systems)
Show Figures

Figure 1

15 pages, 5130 KB  
Article
An Explorative Study on Using Carbon Nanotube-Based Superhydrophobic Self-Heating Coatings for UAV Icing Protection
by Jincheng Wang, James Frantz, Edward Chumbley, Abdallah Samad and Hui Hu
Molecules 2025, 30(17), 3472; https://doi.org/10.3390/molecules30173472 - 23 Aug 2025
Viewed by 763
Abstract
In-flight icing presents a critical safety hazard for unmanned aerial vehicles (UAVs), resulting in ice accumulation on propeller surfaces that compromise UAV aerodynamic performance and operational integrity. While hybrid anti-/de-icing systems (i.e., combining active heating with passive superhydrophobic coatings) have been developed recently [...] Read more.
In-flight icing presents a critical safety hazard for unmanned aerial vehicles (UAVs), resulting in ice accumulation on propeller surfaces that compromise UAV aerodynamic performance and operational integrity. While hybrid anti-/de-icing systems (i.e., combining active heating with passive superhydrophobic coatings) have been developed recently to efficiently address this challenge, conventional active heating sub-systems utilized in the hybrid anti-/de-icing systems face significant limitations when applied to curved geometries of UAV propeller blades. This necessitates the development of innovative self-heating superhydrophobic coatings that can conform perfectly to complex surface topographies. Carbon-based electrothermal coatings, particularly those incorporating graphite and carbon nanotubes, represent a promising approach for ice mitigation applications. This study presents a comprehensive experimental investigation into the development and optimization of a novel self-heating carbon nanotube (CNT)-based superhydrophobic coating specifically designed for UAV icing mitigation. The coating’s anti-/de-icing efficacy was evaluated through a comprehensive experimental campaign conducted on a rotating UAV propeller under typical glaze icing conditions within an advanced icing research tunnel facility. The durability of the coating was also examined in a rain erosion test rig under the continuous high-speed impingement of water droplets. Experimental results demonstrate the successful application of the proposed sprayable self-heating superhydrophobic coating in UAV icing mitigation, providing valuable insights into the viability of CNT-based electrothermal coatings for practical UAV icing protection. This work contributes to the advancement of icing protection technologies for un-manned aerial systems operating in adverse weather conditions. Full article
(This article belongs to the Special Issue Micro/Nano-Materials for Anti-Icing and/or De-Icing Applications)
Show Figures

Figure 1

13 pages, 4421 KB  
Article
Design and Demonstration of a 10 kV, 60 A SiC MOSFET-Based Medium-Voltage Power Module
by Kai Xiao, Yining Zhang, Shuming Tan, Jianyu Pan, Hao Feng, Yuxi Liang and Zheng Zeng
Energies 2025, 18(16), 4407; https://doi.org/10.3390/en18164407 - 19 Aug 2025
Viewed by 767
Abstract
Silicon carbide (SiC) MOSFETs with voltage ratings above 3.3 kV are emerging as key enablers for next-generation medium-voltage (MV) power conversion systems, offering superior blocking capabilities, faster switching speeds, and an improved thermal performance compared to conventional silicon IGBTs. However, the practical deployment [...] Read more.
Silicon carbide (SiC) MOSFETs with voltage ratings above 3.3 kV are emerging as key enablers for next-generation medium-voltage (MV) power conversion systems, offering superior blocking capabilities, faster switching speeds, and an improved thermal performance compared to conventional silicon IGBTs. However, the practical deployment of 10 kV SiC devices remains constrained by the immaturity of high-voltage chip and packaging technologies. Current development is often limited to engineering samples provided by a few suppliers and custom packaging solutions evaluated only in laboratory settings. To advance the commercialization of 10 kV SiC power modules, this paper presents the design and characterization of a 10 kV, 60 A half-bridge module employing the XHP housing and newly developed SiC MOSFET chips from China Electronics Technology Group Corporation (CETC). Electro-thermal simulations based on a finite element analysis were conducted to extract key performance parameters, with a measured parasitic inductance of 24 nH and a thermal resistance of 0.0948 K/W. To further validate the packaging concept, a double-pulse test platform was implemented. The dynamic switching behavior of the module was experimentally verified under a 6 kV DC-link voltage, demonstrating the feasibility competitiveness of this approach and paving the way for the industrial adoption of 10 kV SiC technology in MV applications. Full article
Show Figures

Figure 1

21 pages, 3124 KB  
Article
Systematic Characterization of Lithium-Ion Cells for Electric Mobility and Grid Storage: A Case Study on Samsung INR21700-50G
by Saroj Paudel, Jiangfeng Zhang, Beshah Ayalew and Rajendra Singh
Batteries 2025, 11(8), 313; https://doi.org/10.3390/batteries11080313 - 16 Aug 2025
Viewed by 638
Abstract
Accurate parametric modeling of lithium-ion batteries is essential for battery management system (BMS) design in electric vehicles and broader energy storage applications, enabling reliable state estimation and effective thermal control under diverse operating conditions. This study presents a detailed characterization of lithium-ion cells [...] Read more.
Accurate parametric modeling of lithium-ion batteries is essential for battery management system (BMS) design in electric vehicles and broader energy storage applications, enabling reliable state estimation and effective thermal control under diverse operating conditions. This study presents a detailed characterization of lithium-ion cells to support advanced BMS in electric vehicles and stationary storage. A second-order equivalent circuit model is developed to capture instantaneous and dynamic voltage behavior, with parameters extracted through Hybrid Pulse Power Characterization over a broad range of temperatures (−10 °C to 45 °C) and state-of-charge levels. The method includes multi-duration pulse testing and separates ohmic and transient responses using two resistor–capacitor branches, with parameters tied to physical processes like charge transfer and diffusion. A weakly coupled electro-thermal model is presented to support real-time BMS applications, enabling accurate voltage, temperature, and heat generation prediction. This study also evaluates open-circuit voltage and direct current internal resistance across pulse durations, leading to power capability maps (“fish charts”) that capture discharge and regenerative performance across SOC and temperature. The analysis highlights performance asymmetries between charging and discharging and confirms model accuracy through curve fitting across test conditions. These contributions enhance model realism, thermal control, and power estimation for real-world lithium-ion battery applications. Full article
Show Figures

Figure 1

24 pages, 6274 KB  
Article
Accurate Prediction of Voltage and Temperature for a Sodium-Ion Pouch Cell Using an Electro-Thermal Coupling Model
by Hekun Zhang, Zhendong Zhang, Yelin Deng and Jianxu Yu
Batteries 2025, 11(8), 312; https://doi.org/10.3390/batteries11080312 - 16 Aug 2025
Cited by 1 | Viewed by 784
Abstract
Due to their advantages, such as abundant raw material reserves, excellent thermal stability, and superior low-temperature performance, sodium-ion batteries (SIBs) exhibit significant potential for future applications in energy storage and electric vehicles. Therefore, in this study, a commercial pouch-type SIB with sodium iron [...] Read more.
Due to their advantages, such as abundant raw material reserves, excellent thermal stability, and superior low-temperature performance, sodium-ion batteries (SIBs) exhibit significant potential for future applications in energy storage and electric vehicles. Therefore, in this study, a commercial pouch-type SIB with sodium iron sulfate cathode material was investigated. Firstly, a second-order RC equivalent circuit model was established through parameter identification using multi-rate hybrid pulse power characterization (M-HPPC) tests at various temperatures. Then, both the specific heat capacity and entropy coefficient of the sodium-ion battery were measured through experiments. Building upon this, an electro-thermal coupling model was developed by incorporating a lumped-parameter thermal model that accounts for the heat generation of the tabs. Finally, the prediction performance of this model was validated through discharge tests under different temperature conditions. The results demonstrate that the proposed electro-thermal coupling model can achieve the simultaneous prediction of both temperature and voltage, providing valuable references for the future development of thermal management systems for SIBs. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Figure 1

Back to TopTop