Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (638)

Search Parameters:
Keywords = electronic packaging materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3808 KB  
Article
Rheological, Thermal and Mechanical Properties of Blown Film Based on Starch and Clay Nanocomposites
by Heidy Tatiana Criollo Guevara, Lis Vanesa Ocoró Caicedo, Jhon Jairo Rios Acevedo, Marcelo Alexander Guancha Chalapud and Carolina Caicedo
Processes 2026, 14(2), 276; https://doi.org/10.3390/pr14020276 - 13 Jan 2026
Viewed by 148
Abstract
Growing concern over the environmental impact of conventional plastics has driven the development of biodegradable alternatives. In this context, natural polymers such as starch have emerged as sustainable options. Commercial montmorillonite, implemented as a reference nanomaterial, allows for the enhancement of the properties [...] Read more.
Growing concern over the environmental impact of conventional plastics has driven the development of biodegradable alternatives. In this context, natural polymers such as starch have emerged as sustainable options. Commercial montmorillonite, implemented as a reference nanomaterial, allows for the enhancement of the properties of biodegradable materials. In this study, commercial cassava starch powder plasticized with water and 35% glycerol, along with commercial nanoclay at concentrations of 0%, 2%, and 4%, was used as film reinforcement. The manufacturing process employed extrusion to evaluate the effectiveness of the nanomaterial in improving the mechanical and functional characteristics of the films. Films with varying concentrations of glycerol and nanoclay were produced to determine the optimal formulation by assessing their rheological, thermal, and mechanical properties. These films were subjected to comprehensive analysis using internationally standardised techniques, including Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and morphological characterisation via Scanning Electron Microscopy (SEM). Among the properties evaluated, water vapour permeability (WVTR) was of particular interest. Results showed that higher nanoclay content improved moisture retention, thus enhancing the films’ water barrier properties. Mechanical testing indicated that the film with the highest nanoclay concentration, F-g35-NC4, displayed tensile strength values of 0.23 ± 0.02 MPa and elongation of 66.90% ± 4.85, whereas F-g35-NC0 and F-g35-NC2 exhibited lower values. Conversely, the highest tear resistance was also recorded for F-g35-NC4, reaching 0.740 ± 0.009 kg. Contact angle measurements revealed a hydrophilic tendency, with values of 89.93° ± 8.78°. Finally, WVTR analysis confirmed that increased nanoclay content enhanced moisture retention and improved the water barrier performance, with a value of 0.030 ± 0.011 g/m2·day, supporting potential applications in the packaging sector. Full article
Show Figures

Graphical abstract

17 pages, 2540 KB  
Review
Hexagonal Boron Nitride Nanosheets: Properties, Preparation and Applications in Thermal Management
by Min Liu and Yilin Wang
Nanomaterials 2026, 16(2), 101; https://doi.org/10.3390/nano16020101 - 12 Jan 2026
Viewed by 350
Abstract
Hexagonal boron nitride nanosheets (BNNSs) have emerged as one of the most promising materials for next-generation thermal management, driven by the intensifying heat dissipation demands of highly integrated electronics. While conventional polymer-based packaging materials are lightweight and electrically insulating, their intrinsically low thermal [...] Read more.
Hexagonal boron nitride nanosheets (BNNSs) have emerged as one of the most promising materials for next-generation thermal management, driven by the intensifying heat dissipation demands of highly integrated electronics. While conventional polymer-based packaging materials are lightweight and electrically insulating, their intrinsically low thermal conductivity severely limits effectiveness in high-power devices. The remarkable thermal transport, wide bandgap, chemical robustness, and mechanical strength of BNNSs offer a compelling solution. This review provides a comprehensive overview of the structural and physical foundations that underpin the anisotropic yet exceptional thermal properties of bulk h-BN and BNNSs. We examine major synthesis routes including tape exfoliation, ball milling, liquid-phase exfoliation, chemical vapor deposition, and metal–organic chemical vapor deposition, highlighting how process mechanisms govern nanosheet thickness, defect density, crystallinity, and scalability. Particular emphasis is placed on the advantages of BNNSs in thermal management systems, from their use as high-efficiency thermally conductive fillers and advanced thermal interface materials. We conclude by examining key challenges including large-area growth, filler alignment, and interfacial engineering, and by presenting future research directions that could enable the practical deployment of BNNSs-based thermal management technologies. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

34 pages, 4355 KB  
Review
Thin-Film Sensors for Industry 4.0: Photonic, Functional, and Hybrid Photonic-Functional Approaches to Industrial Monitoring
by Muhammad A. Butt
Coatings 2026, 16(1), 93; https://doi.org/10.3390/coatings16010093 - 12 Jan 2026
Viewed by 226
Abstract
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, [...] Read more.
The transition toward Industry 4.0 requires advanced sensing platforms capable of delivering real-time, high-fidelity data under extreme industrial conditions. Thin-film sensors, leveraging both photonic and functional approaches, are emerging as key enablers of this transformation. By exploiting optical phenomena such as Fabry–Pérot interference, guided-mode resonance, plasmonics, and photonic crystal effects, thin-film photonic devices provide highly sensitive, electromagnetic interference-immune, and remotely interrogated solutions for monitoring temperature, strain, and chemical environments. Complementarily, functional thin films including oxide-based chemiresistors, nanoparticle coatings, and flexible electronic skins extend sensing capabilities to diverse industrial contexts, from hazardous gas detection to structural health monitoring. This review surveys the fundamental optical principles, material platforms, and deposition strategies that underpin thin-film sensors, emphasizing advances in nanostructured oxides, 2D materials, hybrid perovskites, and additive manufacturing methods. Application-focused sections highlight their deployment in temperature and stress monitoring, chemical leakage detection, and industrial safety. Integration into Internet of Things (IoT) networks, cyber-physical systems, and photonic integrated circuits is examined, alongside challenges related to durability, reproducibility, and packaging. Future directions point to AI-driven signal processing, flexible and printable architectures, and autonomous self-calibration. Together, these developments position thin-film sensors as foundational technologies for intelligent, resilient, and adaptive manufacturing in Industry 4.0. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

19 pages, 7525 KB  
Article
Effect of Silica- and Cellulose-Based Nanofillers in Poly(butylene succinate-co-butylene adipate)-Based Composites
by Camilla Ferretti, Miriam Cappello, Patrizia Cinelli, Damiano Rossi, Nicolas Sbirrazzuoli, Giovanna Molinari, Maria Cristina Righetti and Maurizia Seggiani
Polymers 2026, 18(2), 189; https://doi.org/10.3390/polym18020189 - 9 Jan 2026
Viewed by 273
Abstract
In an effort to reduce global dependence on fossil-based polymers and advance toward a more sustainable materials industry, research over recent decades has increasingly focused on the development of bio-based polymers and broadening their potential applications. Within this context, the present study investigates [...] Read more.
In an effort to reduce global dependence on fossil-based polymers and advance toward a more sustainable materials industry, research over recent decades has increasingly focused on the development of bio-based polymers and broadening their potential applications. Within this context, the present study investigates nanocomposites based on poly(butylene succinate-co-butylene adipate) (PBSA), reinforced with two types of nanofillers: silicon dioxide nanoparticles (SiO2 NPs) and cellulose nanofibrils (CNFs). The main objective of this work is to examine how the morphology, geometry, and chemical nature of the nanofillers influence the thermal, mechanical, and barrier properties of PBSA, as well as its biodegradability. For each nanofiller, three formulations were prepared, containing 1, 2, and 5 wt% of filler, respectively. Scanning electron microscopy (SEM) analysis confirmed good dispersion and minimal aggregation in the SiO2-based systems, whereas marked aggregation was observed in the CNF-based samples. Thermal analysis indicated that the intrinsic thermal properties of neat PBSA were largely preserved. Mechanical testing revealed improvements in both the elastic modulus and elongation at break for most nanocomposite samples. In particular, CNFs provided the most consistent reinforcing effect, with enhancements of approximately 40% in the elastic modulus (495.4 vs. 356.4 GPa in neat PBSA) and 52% in elongation at the break (185.1 vs. 122.0% in neat PBSA) with 5 wt% loading. Additionally, the incorporation of nanofillers did not alter the surface hydrophilicity, but it did improve the oxygen barrier performance and enhanced disintegration under composting conditions. Overall, these findings demonstrate the promising potential of PBSA-based nanocomposites for sustainable rigid packaging applications. Full article
Show Figures

Graphical abstract

18 pages, 2523 KB  
Article
Antibacterial and Hydrophobic PLA Biocomposites Enabled by Geraniol-Modified Flax Fibres
by Alona Pawłowska, Magdalena Stepczyńska, Volodymyr Krasinskyi and Joanna Pach
Polymers 2026, 18(2), 183; https://doi.org/10.3390/polym18020183 - 9 Jan 2026
Viewed by 332
Abstract
In the medical industry, strong disinfectants are used to limit bacterial proliferation on the surface of polymer-based materials; however, they may leave hazardous residues. To prevent potential harm to human health, safer disinfection substitutes are continuously searched. This study evaluates the effect of [...] Read more.
In the medical industry, strong disinfectants are used to limit bacterial proliferation on the surface of polymer-based materials; however, they may leave hazardous residues. To prevent potential harm to human health, safer disinfection substitutes are continuously searched. This study evaluates the effect of a natural biocidal modifier, geraniol (GR), on the properties of flax-reinforced biocomposites. Biocomposites containing 80 wt% polylactide (PLA) and 20 wt% flax fibres were prepared, and fibres were modified with 1%, 5%, 10%, or 20% GR. The materials were examined using tensile tests, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetry (TG), contact angle measurements, scanning electron microscopy (SEM), and antibacterial activity tests. The incorporation of flax fibres increased the storage modulus from 2730 MPa (PLA) to 3447 MPa, while GR-modified fibres further enhanced stiffness up to 3769 MPa for the 20% GR sample. Strong antibacterial activity against Escherichia coli and Staphylococcus aureus was achieved in biocomposites containing ≥10% GR, with R = 5 and R ≥ 6, respectively. Surface hydrophobicity also improved progressively, and a water contact angle of 92° was obtained at 20% GR. These results demonstrate that geraniol-modified flax fibres effectively impart antibacterial activity and hydrophobicity to PLA biocomposites, indicating their potential for use in sustainable packaging applications and materials for the medical sector. Full article
(This article belongs to the Special Issue Modification of Natural Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 3990 KB  
Article
Novel Garlic Carbon Dot-Incorporated Starch Whey Protein Emulsion Gel for Apple Spoilage Sensing
by Hebat-Allah S. Tohamy
Gels 2026, 12(1), 47; https://doi.org/10.3390/gels12010047 - 1 Jan 2026
Viewed by 329
Abstract
This study presents the development of a smart packaging material utilizing garlic-derived nitrogen-doped carbon dots (CDs) integrated into a whey protein–starch (WP-S) emulsion. The research aimed to create a real-time, non-invasive biosensor capable of detecting microbial spoilage. The synthesized CDs demonstrated strong pH-sensitive [...] Read more.
This study presents the development of a smart packaging material utilizing garlic-derived nitrogen-doped carbon dots (CDs) integrated into a whey protein–starch (WP-S) emulsion. The research aimed to create a real-time, non-invasive biosensor capable of detecting microbial spoilage. The synthesized CDs demonstrated strong pH-sensitive photoluminescence, exhibiting distinct changes in CIE coordinates and fluorescence intensity in response to varying pH values. The WP-S-CDs emulsion was tested against E. coli, S. aureus, and C. albicans. The results showed that the composite film provided a clear colorimetric shift and fluorescence quenching, both of which are directly correlated with microbial metabolic activity. The physical and electronic properties of the composite were investigated to understand the sensing mechanism. Scanning electron microscopy (SEM) of the dried film revealed that the WP-S-CDs system formed a more porous structure with larger pore sizes (3.63–8.18 µm) compared to the control WP-S film (1.62–6.52 µm), which facilitated the rapid diffusion of microbial metabolites. Additionally, density functional theory (DFT) calculations demonstrated that the incorporation of CDs significantly enhanced the composite’s electronic properties by reducing its band gap and increasing its dipole moment, thereby heightening its reactivity and sensitivity to spoilage byproducts. In a practical application on apples, the WP-S-CDs coating produced a visible red spot, confirming its function as a dynamic sensor. The material also showed a dual-action antimicrobial effect, synergistically inhibiting C. albicans while exhibiting an antagonistic effect against bacteria. These findings validate the potential of the WP-S-CDs emulsion as a powerful, multi-faceted intelligent packaging system for food quality monitoring. Full article
(This article belongs to the Special Issue Hydrogels for Food Safety and Sensing Applications)
Show Figures

Graphical abstract

15 pages, 3397 KB  
Article
Microstructures and Mechanical Properties of TiC-Reinforced Red Mud–Alumina Composite Ceramics
by Zhengliang Wang, Anmin Li and Yunchuan Shi
Crystals 2026, 16(1), 15; https://doi.org/10.3390/cryst16010015 - 25 Dec 2025
Viewed by 281
Abstract
TiC-reinforced red mud–alumina composite ceramics were fabricated by spark plasma sintering. The materials exhibited excellent mechanical properties when incorporating 4 wt.% TiC and sintering at 1100 °C, achieving a flexural strength of 675.81 MPa, Vickers hardness of 2137.2 HV, relative density of 96.79%, [...] Read more.
TiC-reinforced red mud–alumina composite ceramics were fabricated by spark plasma sintering. The materials exhibited excellent mechanical properties when incorporating 4 wt.% TiC and sintering at 1100 °C, achieving a flexural strength of 675.81 MPa, Vickers hardness of 2137.2 HV, relative density of 96.79%, and fracture toughness of 7.65 MPa·m1/2. Microstructural characterization reveals that the enhanced mechanical performance is attributed to the in situ formation of CaAl12O19 and the development of a unique intragranular microstructure with Al2O3 grains. The composites demonstrated non-wetting behavior against molten copper, maintaining interfacial stability without detectable reactions or elemental interdiffusion at elevated temperatures. This work provides an effective strategy for valorizing red mud in fabricating high-performance ceramics suitable for electronic packaging applications. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

14 pages, 5339 KB  
Communication
Enhancing Electromigration Lifetime Through Controlled Reduction of Bismuth Content in Sn-Bi-Ag Solder Interconnects
by Shengbo Wang, Shuai Meng, Houlin Liu and Mingliang Huang
Materials 2025, 18(24), 5672; https://doi.org/10.3390/ma18245672 - 17 Dec 2025
Viewed by 206
Abstract
This study systematically investigates the influence of Bi content on the electromigration (EM) lifetime of low-temperature Cu/Sn-xBi-1Ag (600 μm)/Cu interconnects, where x = 57, 47 and 40 wt.%. The intrinsically higher product of diffusivity and effective charge number (DZ*) for Bi [...] Read more.
This study systematically investigates the influence of Bi content on the electromigration (EM) lifetime of low-temperature Cu/Sn-xBi-1Ag (600 μm)/Cu interconnects, where x = 57, 47 and 40 wt.%. The intrinsically higher product of diffusivity and effective charge number (DZ*) for Bi compared to Sn drives pronounced preferential migration of Bi atoms towards the anode, resulting in progressive β-Sn/Bi phase separation and linear thickening of a Bi-rich layer at the anode. Reducing the Bi content suppresses the EM-induced atomic flux (JEM) through three principal mechanisms: (i) a decrease in the atomic concentration of mobile Bi atoms; (ii) a reduction in electrical resistivity that weakens the electron wind force; and (iii) an increase in lattice diffusion distance that lowers the effective diffusion coefficient (Deff). The suppression of JEM directly governs the thickening kinetics of anodic Bi layer, as evidenced by the close agreement between the calculated (1:0.40:0.23) and measured (1:0.45:0.26) anodic Bi layer growth rate ratios. Consequently, the EM lifetime is significantly extended from 62.3 h (Sn-57Bi-1Ag) to 164.9 h (Sn-47Bi-1Ag) and 414.1 h (Sn-40Bi-1Ag), representing 2.6-fold and 6.6-fold improvements, respectively. This study highlights that reducing the Bi content is an effective strategy for enhancing the EM reliability of Sn-Bi-Ag solder interconnects. Full article
Show Figures

Figure 1

15 pages, 3538 KB  
Article
Carbon Dots Synergizing with Phosphate Starch to Construct Dual Conduction Pathways for High-Performance Smart Packaging Films
by Xiaoxu Zhang, Chengguo Liu, Xiaoqin Yang, Qian Jiang, Can Liu, Ping Zhao and Jingyan Liu
Materials 2025, 18(24), 5644; https://doi.org/10.3390/ma18245644 - 16 Dec 2025
Viewed by 298
Abstract
The advancement of smart packaging technology demands high-performance and sustainable sensing materials. While starch is a biodegradable natural polymer, its inherent high crystallinity restricts charge transport capability. This study developed a novel smart sensing film by incorporating ellagic acid-derived blue, fluorescent carbon dots [...] Read more.
The advancement of smart packaging technology demands high-performance and sustainable sensing materials. While starch is a biodegradable natural polymer, its inherent high crystallinity restricts charge transport capability. This study developed a novel smart sensing film by incorporating ellagic acid-derived blue, fluorescent carbon dots (CDs) into phosphate starch (PS), which is rich in phosphorus. The effects of silver ions (Ag+), sodium carboxymethyl cellulose (CMC), and CDs on the film properties were systematically investigated. Results indicate that CDs act as flexible nano-crosslinkers, forming hydrogen bonds with PS molecular chains and effectively balancing strength and toughness—achieving a tensile strength of 5.1 MPa and an elongation at break of 24.1%. Phosphorus, in synergy with CDs, facilitates an efficient dual conduction pathway for ions and electrons: phosphate groups enable ion transport, while the conjugated carbon cores of the CDs provide electron transport channels. This synergistic effect significantly reduces the film’s electrical impedance from 6.93 × 106 Ω to 1.12 × 106 Ω (a reduction of 84%) and enhances thermal stability, increasing the char residue from 1.1% to 18.3%. The PS/CDs composite film exhibits a strong linear current response to pH in the range of 2–7 (R2 = 0.9450), and shows enhanced discrimination between fresh orange juice (pH = 3.38) and spoiled orange juice (pH = 2.68), with a current change of 0.62 × 10−5 A. Moreover, the film exhibits strong blue fluorescence at 427 nm, with an intensity that shows a pronounced pH-dependent response. This study elucidates the mechanism by which phosphorus and CDs synergistically enhance the sensing performance of starch-based films, offering a new strategy for developing high-performance starch-based materials for smart packaging. Full article
Show Figures

Graphical abstract

16 pages, 2904 KB  
Review
A Brief Review of the Electromigration Reliability for Sn-Bi-Based Solder Joints
by Jeongheon Lee and Jae B. Kwak
Electronics 2025, 14(24), 4895; https://doi.org/10.3390/electronics14244895 - 12 Dec 2025
Viewed by 459
Abstract
Electromigration (EM) presents a major reliability challenge in advanced electronic packaging as device scaling and rising power demands lead to higher current densities in solder joints. While eutectic Sn-58Bi solder is widely adopted as a low-temperature alternative for its energy efficiency and compatibility [...] Read more.
Electromigration (EM) presents a major reliability challenge in advanced electronic packaging as device scaling and rising power demands lead to higher current densities in solder joints. While eutectic Sn-58Bi solder is widely adopted as a low-temperature alternative for its energy efficiency and compatibility with heat-sensitive substrates, its heterogeneous microstructure renders it vulnerable to EM-induced degradation. This review summarizes recent progress in understanding the EM behavior of Sn-Bi solder joints. We first introduce lifetime prediction models based on Black’s law, emphasizing the influences of current density, Joule heating, and thermomigration. Subsequently, the microstructural mechanisms accelerating degradation, including phase segregation and the coarsening of intermetallic compounds (IMCs), are examined. Various alloying strategies are evaluated for their effectiveness in strengthening the solder matrix and suppressing atomic diffusion to improve EM resistance. The critical role of substrate metallization is also discussed, comparing how different surface finishes affect interfacial reactions and joint lifetimes. Additionally, operational methods such as current polarity reversal are explored as potential pathways to mitigate degradation. Finally, we conclude that the EM reliability of Sn-Bi solder joints depends on the combined effects of alloy chemistry, interfacial reactions, and operating conditions, and we suggest future research directions in advanced modeling and material design for next-generation electronic applications. Full article
Show Figures

Figure 1

23 pages, 8989 KB  
Article
Characterization of Novel Composite Materials with Radiation Shielding Properties for Electronic Encapsulation
by Carla Ortiz Sánchez, Juan José Medina Del Barrio, Gonzalo Fernández Romero, Ángel Yedra Martínez, Paula Ruiz Losada and Luis Alejandro Arriaga Arellano
Materials 2025, 18(24), 5564; https://doi.org/10.3390/ma18245564 - 11 Dec 2025
Viewed by 980
Abstract
It is well known that the space radiation environment, which has contributions from the trapped particles within the Van Allen belts, solar energetic particles (SEPs) and galactic cosmic rays (GCRs), directly influences space systems. These systems rely on complex and fragile electronic devices, [...] Read more.
It is well known that the space radiation environment, which has contributions from the trapped particles within the Van Allen belts, solar energetic particles (SEPs) and galactic cosmic rays (GCRs), directly influences space systems. These systems rely on complex and fragile electronic devices, whose performance can be degraded because of the action of the radiation and its related phenomena: single-event effects (SEEs), displacement damages (DDs) and total ionizing dose (TID). This could cause failures to arise through various mechanisms, ranging from parametric drift failures, such as leakage current and threshold voltage, among others, to destructive effects, like single-event burnout (SEB) or single-event latch-up (SEL). These failures in electronics affect the system’s reliability and its performance, which could compromise the mission’s success. Considering this, the main objective of the SRPROTEC project is to develop and validate new composite materials with better shielding performance against space radiation to increase the radiation tolerance of microelectronic devices encapsulated with these materials. For this purpose, three composites will be synthesized using a liquid epoxy resin filled with silica as a matrix mixed in different proportions, with a high-Z filler. The presence of low-Z elements from the high hydrogen content in the polymer and the presence of high-Z fillers are expected to produce a material with good radiation shielding properties. The developed materials will be exhaustively characterized, subjecting the three composites and control samples to rheological outgassing; gamma radiation shielding; and thermal, electrical, thermomechanical and moisture absorption, among other tests. Finally, the composite with the best performance will be selected and subjected to degradation tests (thermal cycling in vacuum, thermal cycling, thermal shock and relative humidity tests) to determine its suitability for space packaging applications. Full article
(This article belongs to the Topic Advanced Composite Materials)
Show Figures

Figure 1

27 pages, 18364 KB  
Article
Modeling and Experimental Analysis of the Dislocation Structure Evolution During Deformation of High-Purity Aluminum
by Abbas Sadeghi, Robert Kahlenberg, Tomasz Wojcik, Roman Schuster, Philipp Retzl, Yao V. Shan and Ernst Kozeschnik
Metals 2025, 15(12), 1348; https://doi.org/10.3390/met15121348 - 8 Dec 2025
Viewed by 484
Abstract
In this study, the three internal variables model (3IVM) for dislocation density evolution is further developed into the advanced ABC (advABC) model to simulate the thermo-mechanical behavior of high-purity aluminum (5N). In contrast to conventional FEM packages (e.g., ABAQUS, ANSYS), the present physically [...] Read more.
In this study, the three internal variables model (3IVM) for dislocation density evolution is further developed into the advanced ABC (advABC) model to simulate the thermo-mechanical behavior of high-purity aluminum (5N). In contrast to conventional FEM packages (e.g., ABAQUS, ANSYS), the present physically based ABC framework directly captures the evolution of the underlying dislocation structure, providing a more coherent prediction of flow behavior. The enhanced model extends the classical formulation by incorporating dislocation annihilation mechanisms and introducing the wall volume fraction as an evolving variable. Simulations are performed over a wide temperature range from −196 °C to 500 °C and at three strain rates of 1, 0.1, and 0.01 s−1. To validate the model, both stress–strain flow curves and microstructural observations obtained via Electron Backscatter Diffraction (EBSD) are used. The simulation results show excellent agreement with experimental data, successfully capturing the temperature- and strain-rate-dependence of the flow behavior, as well as the evolution of dislocation substructures. This work demonstrates the capability of the advABC model to describe both macroscopic and microscopic aspects of deformation. It provides a robust framework for predicting material behavior under complex thermo-mechanical conditions. Full article
(This article belongs to the Special Issue Heat Treatment and Mechanical Behavior of Steels and Alloys)
Show Figures

Graphical abstract

25 pages, 6295 KB  
Article
Life Cycle Assessment of Hearing Aid Devices: Environmental Impact Analysis and Improvement Opportunities
by Rafael da Rosa Selhorst, Cristiano Alves, Chaojun Li and Arlindo Silva
Recycling 2025, 10(6), 219; https://doi.org/10.3390/recycling10060219 - 5 Dec 2025
Viewed by 428
Abstract
This research presents a cradle-to-grave Life Cycle Assessment (LCA) of a modern behind-the-ear hearing aid system, with the objective of assessing its environmental impacts and identifying areas for improvement and innovation. The assessment, developed in compliance with ISO 14040/14044, included the entire product [...] Read more.
This research presents a cradle-to-grave Life Cycle Assessment (LCA) of a modern behind-the-ear hearing aid system, with the objective of assessing its environmental impacts and identifying areas for improvement and innovation. The assessment, developed in compliance with ISO 14040/14044, included the entire product system—including accessories, packaging, use phase, and end-of-life treatment—over a period of five years. The results provide an in-depth evaluation of its freshwater ecotoxicity, human carcinogenic toxicity, global warming, and fossil resource scarcity as key impact categories. Considerable environmental impacts were associated with certain components, manufacturing processes, and logistics. Strategies for improvement, including material replacement, increased component durability, packaging optimization, and sustainable sourcing of energy, were suggested. The investigation demonstrates how LCA can facilitate eco-design and sustainability in medical electronics. The findings of this work are derived from experimental modeling in an academic setting, which includes intrinsic uncertainties. The results emphasize the significance of using LCA as a strategic instrument to guide product development and to pinpoint opportunities for environmental improvement. Full article
Show Figures

Figure 1

33 pages, 2261 KB  
Review
Citrus Waste Valorization: Unconventional Pathways for Sustainable Biomaterials and Bioactive Products
by Valeria Olmedo-Galarza, Nicolás Pinto-Mosquera, Holguer Pineda-Flores and Luis Manosalvas-Quiroz
Sustainability 2025, 17(24), 10887; https://doi.org/10.3390/su172410887 - 5 Dec 2025
Viewed by 1362
Abstract
Citrus fruits are among the most important global crops, with annual production exceeding 160 million tons. Processing produces significant waste, mainly peels, seeds, and pulp, which can make up to fifty percent of the fruit’s mass. This review critically examines innovative ways to [...] Read more.
Citrus fruits are among the most important global crops, with annual production exceeding 160 million tons. Processing produces significant waste, mainly peels, seeds, and pulp, which can make up to fifty percent of the fruit’s mass. This review critically examines innovative ways to valorize these byproducts. Recent research shows that peels, seeds, and pulp can be converted into high-value materials, including biocomposites and biomaterials, marking a shift from traditional uses like animal feed and biogas production. Notable innovations include smart packaging, pectin-based wound dressings, and biodegradable polymers for sustainable electronics. Advanced green extraction methods, such as deep eutectic solvents, have achieved extraction yields over 85% for flavonoids. Additionally, multifunctional biorefineries processing citrus and olive residues have increased biogas yields by 38–42%. The review explores emerging applications in nanotechnology, nutraceuticals, biodegradable polymers, and functional coatings, all aligned with principles of circular economy and green chemistry. These advances suggest that citrus waste can play a significant role in sustainability efforts and new market development. The review also discusses barriers to adoption, including scalability challenges, regulatory limits, and consumer acceptance, from both global and regional viewpoints. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

20 pages, 1600 KB  
Article
Hybrid Biocomposites Based on Chitosan/Gelatin with Coffee Silverskin Extracts as Promising Biomaterials for Advanced Applications
by Argyri-Ioanna Petaloti and Dimitris S. Achilias
Polymers 2025, 17(23), 3194; https://doi.org/10.3390/polym17233194 - 30 Nov 2025
Viewed by 549
Abstract
Biopolymers such as chitosan and gelatin are emerging as leading alternatives to traditional plastic packaging due to their enhanced capabilities and biodegradability. Blends of chitosan and gelatin combine chitosan’s antimicrobial and film-forming properties with gelatin’s biocompatibility and flexibility. These biomaterials possess tunable mechanical, [...] Read more.
Biopolymers such as chitosan and gelatin are emerging as leading alternatives to traditional plastic packaging due to their enhanced capabilities and biodegradability. Blends of chitosan and gelatin combine chitosan’s antimicrobial and film-forming properties with gelatin’s biocompatibility and flexibility. These biomaterials possess tunable mechanical, biological, and physicochemical properties, making them suitable for biomedical, pharmaceutical, food packaging, environmental, and agricultural applications. This study investigates the preparation and characterization of composite biopolymer films based on chitosan and gelatin, incorporating coffee silverskin extract (SSE) as a natural bioactive additive. Coffee silverskin, a by-product of coffee roasting, is rich in phenolic compounds and demonstrates notable antioxidant potential. The objective of this work was to enhance the antioxidant, mechanical, and physicochemical properties of chitosan–gelatin films through the integration of SSE. The biocomposite materials were prepared using solvent casting, followed by extensive characterization techniques, including Fourier-transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and UV–Vis spectroscopy. Additionally, color measurements, mechanical properties, and physicochemical properties were assessed. The transmission rates of oxygen and water vapor were also examined, along with the antioxidant activity of the films. The inclusion of coffee silverskin extract facilitated intermolecular interactions between the polymer chains, resulting in improved structural integrity. Furthermore, films containing CSE exhibited enhanced antioxidant activity (up to 28.43% DPPH radical scavenging activity), as well as improved water vapor barrier properties and mechanical strength compared to the pure chitosan–gelatin. The films showed a yellowish appearance. There was a noticeable reduction in the rate of oxygen transmission through the films as well. These results highlight the potential of coffee silverskin as a sustainable source of functional compounds for the development of bioactive materials suited for biodegradable packaging and biomedical applications. Full article
(This article belongs to the Special Issue New Progress in the Polymer-Based Biomaterials)
Show Figures

Figure 1

Back to TopTop