Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,337)

Search Parameters:
Keywords = electron-induced mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3859 KB  
Article
PP-Based Blends with PVP-I Additive: Mechanical, Thermal, and Barrier Properties for Packaging of Iodophor Pharmaceutical Formulations
by Melania Leanza, Domenico Carmelo Carbone, Giovanna Poggi, Marco Rapisarda, Marilena Baiamonte, Emanuela Teresa Agata Spina, David Chelazzi, Piero Baglioni, Francesco Paolo La Mantia and Paola Rizzarelli
Polymers 2025, 17(18), 2442; https://doi.org/10.3390/polym17182442 - 9 Sep 2025
Abstract
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the [...] Read more.
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the prolonged storage of I2-based formulations is demanding in plastic packaging because of transmission through the material. Therefore, we explored the possibility of moderating the loss of I2 from an iodophor formulation by introducing small amounts of molecular iodine into the polymer material commonly used in eyedropper caps, i.e., PP. Thus, PP was blended via an extrusion process with a polymeric complex containing iodine (such as PVP-I) or with a second polymeric component able to complex the I2 released from an iodophor solution. The aim of this work was to introduce I2 into PP-based polymer matrices without using organic solvents and indirectly, i.e., through the addition of components that could generate molecular iodine or complex it in the solid phase, as I2 is heat-sensitive. To increase the miscibility between PP and PVP-I, poly(N-vinylpyrrolidone) (PVP) or a vinyl pyrrolidone vinyl acetate copolymer 55/45 (Sokalan) were added as compatibilizers. The PP-based binary and ternary blends, in granular or sheet form, were characterized thermally (Differential Scanning Calorimetry, DSC, and Thermogravimetric analysis, TGA), mechanically (tensile tests), morphologically (scanning electron microscopy (SEM)), and chemically (attenuated total reflectance Fourier transform infrared (ATR-FTIR)). Additionally, the variation in wettability induced by the introduction of the hydrophilic minority components was determined by static contact angle measurements (static contact angle (SCA)), and tests were carried out to determine the barrier properties against oxygen (oxygen transmission rate (OTR)) and molecular iodine. The I2 leaching of the different blends was compared with that of PP by monitoring the I2 retention in a buffered PVP-I solution via UV-vis spectroscopy. Overall, the experimental data showed the capability of the minority components in the blends to increase thermal stability as well as act as a barrier to oxygen. Additionally, the PP blend with PVP-I induced a reduction in molecular iodine leaching in comparison with PP. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

23 pages, 8131 KB  
Article
Study on Graphene-Reinforced Epoxy Solvent-Borne High-Temperature-Resistant Adhesives for Bonding C/C Composites Under Extreme Temperatures
by Yue Wang, Yuqing Zhang, Zhanming Hu, Jingjing Li, Zhuo Gao, Mingchao Wang and Haijun Zhang
Materials 2025, 18(17), 4213; https://doi.org/10.3390/ma18174213 - 8 Sep 2025
Abstract
Drawing inspiration from the bionic nacre structure, graphene was incorporated into the epoxy solvent-borne adhesive to construct a laminated architecture. At the same time, ferrocene was employed as a catalyst to induce the in situ growth of carbon nanotubes (CNTs) under high-temperature conditions. [...] Read more.
Drawing inspiration from the bionic nacre structure, graphene was incorporated into the epoxy solvent-borne adhesive to construct a laminated architecture. At the same time, ferrocene was employed as a catalyst to induce the in situ growth of carbon nanotubes (CNTs) under high-temperature conditions. This modification endowed the epoxy solvent-borne adhesive with not only high strength in atmospheric environments but also the capability to retain considerable mechanical performance at elevated temperatures. Experimental results demonstrated that when the graphene content in the epoxy solution fell within the range of 3.2–4%, the bonding strength exceeded 3 MPa within the temperature range of 1000–1300 °C. In particular, the adhesive exhibited excellent thermal shock resistance, with no degradation in strength observed after 15 thermal shock cycles at 1300 °C. Such exceptional performance was attributed to the formation of interlaminar CNTs generated after high-temperature treatment. Scanning electron microscopy (SEM) observations clearly revealed the laminated graphene sheets and in situ grown CNTs, confirming the feasibility of the strategy to enhance bonding efficacy by mimicking the nacre structure. This approach represented an innovative breakthrough for further research on the application of the “brick-and-mortar” structure in the bonding layer and the in situ growth of CNTs among lamellar graphene, while also providing detailed supporting data. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Graphical abstract

8 pages, 1354 KB  
Communication
Synergistic Deformation of Ferrite/Martensite Laminates Brings High Strength and Good Ductility in Dual-Phase Steel
by Lijuan Zhang, Pengzhan Cai, Ling Zhang, Ziyong Hou and Guilin Wu
Materials 2025, 18(17), 4198; https://doi.org/10.3390/ma18174198 - 7 Sep 2025
Viewed by 129
Abstract
A low-carbon ferrite/martensite-laminated 0.1C5Mn3Al dual-phase steel was hot-rolled to an engineering strain of 98%, and a tensile strength of 1277 ± 44 MPa and a total elongation of 11.8 ± 0.4% was obtained in the steel. Hot-rolling induces a laminated/layered structure characterized by [...] Read more.
A low-carbon ferrite/martensite-laminated 0.1C5Mn3Al dual-phase steel was hot-rolled to an engineering strain of 98%, and a tensile strength of 1277 ± 44 MPa and a total elongation of 11.8 ± 0.4% was obtained in the steel. Hot-rolling induces a laminated/layered structure characterized by alternating ferrite phases and martensite phases distributed perpendicular to the rolling direction. A deformation mechanism was evaluated using nano-indentation and in situ compression of micropillars in a scanning electron microscope. The excellent mechanical properties of the steel are attributed to the refinement of ferrite/martensite layers and ultra-fine martensite laths. The synergistic deformation of the ferrite and martensite laminates provides the steel with a good combination of high strength and tensile elongation. Full article
Show Figures

Figure 1

23 pages, 13382 KB  
Article
Effects of Ion-Regulated Mechanisms on Calcite Precipitation in the Enzyme-Induced Carbonate Precipitation Treatment of Loess
by Xinwen Wang, Wenle Hu, Ke Chen and Weijing Wang
Buildings 2025, 15(17), 3222; https://doi.org/10.3390/buildings15173222 - 7 Sep 2025
Viewed by 154
Abstract
This study examines the effects and mechanisms of different Enzyme-Induced Carbonate Precipitation (EICP) treatments on loess structure improvement. The study focuses on ordinary EICP and three modified methods using MgCl2, NH4Cl, and CaCl2. A series of unconfined [...] Read more.
This study examines the effects and mechanisms of different Enzyme-Induced Carbonate Precipitation (EICP) treatments on loess structure improvement. The study focuses on ordinary EICP and three modified methods using MgCl2, NH4Cl, and CaCl2. A series of unconfined compressive strength (UCS) tests, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and elemental mapping were used to assess both macroscopic performance and microscopic characteristics. The results indicate that ordinary EICP significantly enhances loess particle bonding by promoting calcite precipitation. MgCl2-modified EICP achieves the highest UCS (820 kPa) due to delayed urea hydrolysis and the formation of aragonite alongside calcite, which results in stronger and more continuous cementation. In contrast, NH4Cl reduces urease activity and reverses the reaction, which limits carbonate precipitation and weakens structural cohesion. Excessive CaCl2 leads to a “hijacking mechanism” where hydroxide ions form Ca(OH)2, restricting carbonate formation and diminishing the overall enhancement. This study highlights the mechanisms behind enhancement, degradation, and diversion in the EICP process. It also provides theoretical support for optimizing loess subgrade reinforcement. However, challenges such as uneven permeability, environmental variability, and long-term durability must be addressed before field-scale applications can be realized, necessitating further research. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 8787 KB  
Article
Point Defects in MoNbTi-Based Refractory Multi-Principal-Element Alloys
by Thai hang Chung, Maciej Oskar Liedke, Saikumaran Ayyappan, Maik Butterling, Riley Craig Ferguson, Adric C. L. Jones, Andreas Wagner, Khalid Hattar, Djamel Kaoumi and Farida A. Selim
Metals 2025, 15(9), 989; https://doi.org/10.3390/met15090989 (registering DOI) - 6 Sep 2025
Viewed by 194
Abstract
As emergent material candidates for extreme environments, refractory high-entropy alloys (HEAs) or refractory multi-principal-element alloys (RMPEAs) comprising refractory metals feature qualities such as high radiation tolerance, corrosion resistance, and mechanical strength. A set of MoNbTi-based RMPEA samples with Al, Cr, V, and Zr [...] Read more.
As emergent material candidates for extreme environments, refractory high-entropy alloys (HEAs) or refractory multi-principal-element alloys (RMPEAs) comprising refractory metals feature qualities such as high radiation tolerance, corrosion resistance, and mechanical strength. A set of MoNbTi-based RMPEA samples with Al, Cr, V, and Zr additions are prepared by spark plasma sintering and investigated for their response to irradiation using 10 MeV Si+ ions with a dose of 1.43×1015 ions/cm2. Positron annihilation spectroscopy and transmission electron microscopy are employed as atomic- and meso- scale techniques to reveal how chemical complexity, nanotwinning, and phase fractions play an important role in radiation-induced defect accumulation and damage tolerance. The study provides experimental evidence of nanotwinning acting as an effective sink for radiation-induced point defects. Full article
Show Figures

Figure 1

16 pages, 4676 KB  
Article
Green Synthesis of Nitrogen-Doped Carbon Dots from Pueraria Residues for Use as a Sensitive Fluorescent Probe for Sensing Cr(VI) in Water
by Ziyuan Zheng and Zhengwei Zhou
Sensors 2025, 25(17), 5554; https://doi.org/10.3390/s25175554 - 5 Sep 2025
Viewed by 386
Abstract
In this study, blue fluorescence carbon dots of high quantum yield (42.96%) were successfully synthesized via a one-step hydrothermal method using Pueraria residues as the precursor and urea as the nitrogen source. The preparation process was simple, was environmentally friendly, and did not [...] Read more.
In this study, blue fluorescence carbon dots of high quantum yield (42.96%) were successfully synthesized via a one-step hydrothermal method using Pueraria residues as the precursor and urea as the nitrogen source. The preparation process was simple, was environmentally friendly, and did not use toxic chemicals, with the resulting nitrogen-doped Pueraria carbon dots (N-PCDs) exhibiting excellent dispersibility, regular morphology and stable fluorescence performance. Moreover, fluorescence quenching could be induced through electron transfer between N-PCDs and hexavalent chromium (Cr(VI)) in water, which enabled the application of N-PCDs as a fluorescent probe for sensing Cr(VI) in water, with a limit of detection (LOD) and limit of quantitation (LOQ) of 0.078 μM and 0.26 μM, respectively. The effectiveness of the proposed fluorescent probe was also validated in various water matrices, achieving stable recovery rates ranging from 98.7% to 101.5%. Furthermore, experimental investigations and theoretical calculations through density functional theory (DFT) confirmed that the underlying reaction mechanism was photoinduced electron transfer (PET). Above all, this study not only demonstrated the potential of N-PCDs as sensitive probes to sense toxic elements in the environment, but also promotes the green and scalable production of high-value carbon-based products from waste biomass. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

22 pages, 8816 KB  
Article
Laboratory Study of Dynamic Durability and Material Properties of Bio-Cemented Sand for Green Road Base Applications
by Fuerhaiti Ainiwaer, Tianqi Hou, Rongsong Huang, Jie Li, Lin Fan and Weixing Bao
Materials 2025, 18(17), 4178; https://doi.org/10.3390/ma18174178 - 5 Sep 2025
Viewed by 370
Abstract
Microbial Induced Carbonate Precipitation (MICP) is regarded as a promising eco-friendly alternative to traditional Portland cement for soil stabilization. However, the feasibility of applying bio-cemented soil as a road base material remains inadequately studied, particularly in terms of the relationships between MICP treatment [...] Read more.
Microbial Induced Carbonate Precipitation (MICP) is regarded as a promising eco-friendly alternative to traditional Portland cement for soil stabilization. However, the feasibility of applying bio-cemented soil as a road base material remains inadequately studied, particularly in terms of the relationships between MICP treatment parameters—such as solution content, curing age, and the ratio of bacterial solution (BS) to cementation solution (CS) —and key mechanical and durability properties under realistic road conditions. In this study, an optimal curing condition for bio-cemented sand was first determined through unconfined compression strength (UCS) tests and calcium carbonate content (CCC) determination. Subsequently, dynamic triaxial tests were conducted to evaluate its resistance to cyclic loading. Further road performance tests, including splitting tensile strength, freeze-thaw resistance, temperature shrinkage, and arch expansion assessments, were carried out to comprehensively evaluate the material’s applicability. Scanning electron microscopy (SEM) was employed to elucidate the microstructural mechanisms underlying strength development. The results show that the strength (4.28 MPa) of bio-cemented sand cured under optimal conditions (12% bio-cured solution content, a BS-to-CS ratio of 1:4 and 7-d curing age) satisfies the criteria for road base applications. MICP treatment significantly improved the dynamic properties of aeolian sand (AS), reducing the cumulative plastic axial strain (εp) by nearly 11–46% and increasing the dynamic elastic modulus (Ed) by approximately 7–31% compared to untreated sand. The material also demonstrates satisfactory performance across all four road performance metrics. Microstructural analysis reveals enhanced interparticle bonding due to calcium carbonate precipitation, with samples prepared near the optimum moisture content exhibiting superior integrity and strength. Overall, bio-cemented sand demonstrates excellent potential as a sustainable road base material. These findings provide a theoretical foundation for practical applications of similar bio-cemented soils in road engineering. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 1741 KB  
Review
Nanofluids for Sustainable Heat Transfer Enhancement: Beyond Thermal Conductivity
by Yunus Tansu Aksoy
Sustainability 2025, 17(17), 8006; https://doi.org/10.3390/su17178006 - 5 Sep 2025
Viewed by 392
Abstract
Nanofluids have long been explored for enhancing heat transfer, with early studies focusing primarily on improved thermal conductivity. However, in spray and droplet cooling applications, recent research indicates that conductivity alone cannot fully account for the observed performance gains. Additional mechanisms, such as [...] Read more.
Nanofluids have long been explored for enhancing heat transfer, with early studies focusing primarily on improved thermal conductivity. However, in spray and droplet cooling applications, recent research indicates that conductivity alone cannot fully account for the observed performance gains. Additional mechanisms, such as Brownian-motion-induced convection, dynamic wetting, and nanoparticle-driven surface modification, significantly affect droplet impact dynamics, spreading behavior, boiling transitions, and transient heat transfer during impact and evaporation. This review critically synthesizes these effects, emphasizing how nanofluids interact with complex flow fields, steep thermal gradients, and heated substrates. It also examines emerging strategies for optimizing nanofluid design, including hybrid suspensions and phase-change-enhanced formulations. These developments open new avenues for high-efficiency cooling in electronics, renewable energy systems, and industrial spray processes. By moving beyond thermal conductivity as the sole performance metric, this review promotes a multi-scale, interdisciplinary framework for advancing nanofluid-based thermal technologies that align with sustainability, energy efficiency, and cost effectiveness. Full article
Show Figures

Graphical abstract

15 pages, 8341 KB  
Article
Design, Synthesis, and Characterization of a Novel Tetra-Block Copolymer for High-Performance Self-Healing Batteries
by Işık İpek Avcı Yayla, Omer Suat Taskin and Neslihan Yuca
Polymers 2025, 17(17), 2414; https://doi.org/10.3390/polym17172414 - 5 Sep 2025
Viewed by 377
Abstract
Lithium-ion batteries (LIBs) have become the dominant energy storage technology due to their versatility and superior performance across diverse applications. Silicon (Si) stands out as a particularly promising high-capacity anode material for next-generation LIBs, offering a theoretical capacity nearly ten times greater than [...] Read more.
Lithium-ion batteries (LIBs) have become the dominant energy storage technology due to their versatility and superior performance across diverse applications. Silicon (Si) stands out as a particularly promising high-capacity anode material for next-generation LIBs, offering a theoretical capacity nearly ten times greater than conventional graphite anodes. However, its practical implementation faces a critical challenge: the material undergoes a ~300% volume expansion during lithiation/delithiation, which causes severe mechanical stress, electrode pulverization, and rapid capacity decay. In addressing these limitations, advanced polymer binders serve as essential components for preserving the structural integrity of Si-based anodes. Notably, self-healing polymeric binders have emerged as a groundbreaking solution, capable of autonomously repairing cycle-induced damage and significantly enhancing electrode durability. The evaluation of self-healing performance is generally based on mechanical characterization methods while morphological observations by scanning electron microscopy provide direct evidence of crack closure; for electrochemically active materials, electrochemical techniques including GCD, EIS, and CV are employed to monitor recovery of functionality. In this study, a novel self-healing copolymer (PHX-23) was synthesized for Si anodes using a combination of octadecyl acrylate (ODA), methacrylic acid (MA), 2-hydroxyethyl methacrylate (HEMA), and polyethylene glycol methyl ether methacrylate (PEGMA). The copolymer was thoroughly characterized using NMR, FTIR, TGA, SEM, and EDX to confirm its chemical structure, thermal stability, and morphology. Electrochemical evaluation revealed that the PHX-23 binder markedly improves cycling stability, sustaining a reversible capacity of 427 mAh g−1 after 1000 cycles at 1C. During long-term cycling, the Coulombic efficiency of the PHX-23 polymer is 99.7%, and similar functional binders in the literature have shown similar results at lower C-rates. Comparative analysis with conventional binders (e.g., PVDF and CMC/SBR) demonstrated PHX-23’s exceptional performance, exhibiting higher capacity retention and improved rate capability. These results position PHX-23 as a transformative binder for silicon anodes in next-generation lithium-ion batteries. Full article
(This article belongs to the Special Issue Smart Polymers and Composites in Multifunctional Systems)
Show Figures

Graphical abstract

35 pages, 3619 KB  
Review
Research Progress on the Preparation, Modification, and Applications of g-C3N4 in Photocatalysis and Piezoelectric Photocatalysis
by Mengyang Li, Liuqing Yang, Yizhe Song, Hongru Hou, Yujie Fang, Yucheng Liu, Lihao Xie and Dingze Lu
Inorganics 2025, 13(9), 300; https://doi.org/10.3390/inorganics13090300 - 5 Sep 2025
Viewed by 282
Abstract
The metal-free polymeric semiconductor graphitic carbon nitride (g-C3N4) has emerged as a promising material for photocatalytic applications due to its responsiveness to visible light, adjustable electronic structure, and stability. This review systematically summarizes recent advances in preparation strategies, including [...] Read more.
The metal-free polymeric semiconductor graphitic carbon nitride (g-C3N4) has emerged as a promising material for photocatalytic applications due to its responsiveness to visible light, adjustable electronic structure, and stability. This review systematically summarizes recent advances in preparation strategies, including thermal polycondensation, solvothermal synthesis, and template methods. Additionally, it discusses modification approaches such as heterojunction construction, elemental doping, defect engineering, morphology control, and cocatalyst loading. Furthermore, it explores the diverse applications of g-C3N4-based materials in photocatalysis, including hydrogen (H2) evolution, carbon dioxide (CO2) reduction, pollutant degradation, and the emerging field of piezoelectric photocatalysis. Particular attention is given to g-C3N4 composites that are rationally designed to enhance charge separation and light utilization. Additionally, the synergistic mechanism of photo–piezocatalysis is examined, wherein a mechanically induced piezoelectric field facilitates carrier separation and surface reactions. Despite significant advancements, challenges persist, including limited visible-light absorption, scalability issues, and uncertainties in the multi-field coupling mechanisms. The aim of this review is to provide guidelines for future research that may lead to the development of high-performance and energy-efficient catalytic systems in the context of environmental and energy applications. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Figure 1

30 pages, 12288 KB  
Article
Experimental Investigation of Four-Point Bending Test Results of GFRP and CFRP Composites Used in Wind Turbine Blades
by Senai Yalçinkaya, Mehmet Fatih Yoldaş and Dudu Mertgenç Yoldaş
Polymers 2025, 17(17), 2412; https://doi.org/10.3390/polym17172412 - 5 Sep 2025
Viewed by 396
Abstract
The depletion of fossil fuels and the rise of environmental concerns have increased the importance of renewable energy sources, positioning wind energy as a key alternative. Modern wind turbine blades are predominantly manufactured from composite materials due to their light weight, high strength, [...] Read more.
The depletion of fossil fuels and the rise of environmental concerns have increased the importance of renewable energy sources, positioning wind energy as a key alternative. Modern wind turbine blades are predominantly manufactured from composite materials due to their light weight, high strength, and resistance to corrosion. In offshore applications, approximately 95% of the composite content is glass fiber-reinforced polymer (GFRP), while the remaining 5% is carbon fiber-reinforced polymer (CFRP). GFRP is favored for its low cost and fatigue resistance, whereas CFRP offers superior strength and stiffness but is limited by high production costs. This study investigates the durability of adhesively bonded GFRP and CFRP joints under marine exposure. Seven-layer GFRP and eight-layer CFRP laminates were produced using a 90° unidirectional twill weave and prepared in accordance with ASTM D5868-01. Specimens were immersed in natural Aegean Sea water (21 °C, salinity 3.3–3.7%) for 1, 2, and 3 months. Measurements revealed that GFRP absorbed significantly more moisture (1.02%, 2.97%, 3.78%) than CFRP (0.49%, 0.76%, 0.91%). Four-point bending tests conducted according to ASTM D790 showed reductions in Young’s modulus of up to 9.45% for GFRP and 3.48% for CFRP. Scanning electron microscopy (SEM) confirmed that moisture-induced degradation was more severe in GFRP joints compared to CFRP. These findings highlight the critical role of environmental exposure in the mechanical performance of marine composite joints. Full article
Show Figures

Figure 1

31 pages, 21231 KB  
Article
Comparative Analysis of Chemical Activators and Expansive Agents for Aeolian Sand Stabilization Using Industrial Solid Waste-Based Geopolymers
by Zilu Xie, Zengzhen Qian, Xianlong Lu, Hao Wang and Phatyoufy Lai
Gels 2025, 11(9), 713; https://doi.org/10.3390/gels11090713 - 4 Sep 2025
Viewed by 267
Abstract
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength [...] Read more.
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength of aeolian sand stabilized by ISWG (ASIG). Three chemical activators—NaOH, Ca(OH)2, and CaCl2—along with two expansive agents—desulfurized gypsum and bentonite—were considered. Through X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, mercury intrusion porosimetry and pH values tests, the enhancement mechanisms of the additives on ASIG were elucidated. Results demonstrate that the expansive agent exhibits significantly superior strengthening effects on ASIG compared to the widely applied chemical activators. Chemical activators promoted ISWs dissolution and hydration product synthesis, thereby densifying the hydration product matrix but concurrently enlarged interparticle pores. Desulfurized gypsum incorporation induced morphological changes in ettringite, and excessive desulfurized gypsum generated substantial ettringite that disrupted gel matrix. In contrast, bentonite demonstrated superior pore-filling efficacy while densifying gel matrix through a compaction effect. These findings highlight bentonite superior compatibility with the unique microstructure of aeolian sand compared to conventional alkaline activators or expansive agents, and better effectiveness in enhancing the strength of ASIG. Full article
(This article belongs to the Special Issue Development and Applications of Advanced Geopolymer Gel Materials)
Show Figures

Figure 1

34 pages, 7715 KB  
Review
Tetraphenylethylene (TPE)-Based AIE Luminogens: Recent Advances in Bioimaging Applications
by Vanam Hariprasad, Kavya S. Keremane, Praveen Naik, Dickson D. Babu and Sunitha M. Shivashankar
Photochem 2025, 5(3), 23; https://doi.org/10.3390/photochem5030023 - 4 Sep 2025
Viewed by 236
Abstract
Aggregation-induced emission (AIE) luminogens are materials that exhibit enhanced light emission in the aggregated state, primarily due to the restriction of intramolecular motions, which reduces energy loss through non-radiative pathways. Tetraphenylethylene (TPE) and its derivatives are prominent examples of AIE-active materials, owing to [...] Read more.
Aggregation-induced emission (AIE) luminogens are materials that exhibit enhanced light emission in the aggregated state, primarily due to the restriction of intramolecular motions, which reduces energy loss through non-radiative pathways. Tetraphenylethylene (TPE) and its derivatives are prominent examples of AIE-active materials, owing to their ease of synthesis, tuneable photophysical properties, and strong aggregation tendencies. This review provides an overview of the fundamental AIE mechanisms in TPE-based systems, with a focus on the role of restricted intramolecular rotation (RIR) and π-twisting in governing their emission behaviour. It explores the influence of molecular structure, electronic configuration, and intermolecular interactions on fluorescence properties. Furthermore, recent advances in practical applications of TPE-based AIE luminogens are highlighted across a spectrum of biological imaging domains, including cellular imaging, tissue and in vivo imaging, and organelle-targeted imaging. Additionally, their integration into multifunctional and theranostic platforms, along with the development of stimuli-responsive and self-assembled systems, underscores their versatility and expanding potential in biomedical research and diagnostics. This review aims to offer valuable insights into the design principles and functional potential of TPE-based AIE luminogens, guiding the development of next-generation materials for advanced bioimaging technologies. Full article
(This article belongs to the Special Issue Photochemistry Directed Applications of Organic Fluorescent Materials)
Show Figures

Figure 1

20 pages, 1042 KB  
Review
Architecting Durability: Synergies in Assembly, Self-Repair, and Advanced Characterization of Carbon Nanotube Materials
by Monika R. Snowdon, Shasvat Rathod, Robert L. F. Liang and Marina Freire-Gormaly
Nanomaterials 2025, 15(17), 1352; https://doi.org/10.3390/nano15171352 - 2 Sep 2025
Viewed by 478
Abstract
Carbon nanotubes (CNTs) have remarkable mechanical, electrical, and thermal properties, making them highly attractive as foundational elements for advanced materials. However, translating their nanoscale potential into macroscale reliability and longevity requires a holistic design approach that integrates precise architectural control with robust damage [...] Read more.
Carbon nanotubes (CNTs) have remarkable mechanical, electrical, and thermal properties, making them highly attractive as foundational elements for advanced materials. However, translating their nanoscale potential into macroscale reliability and longevity requires a holistic design approach that integrates precise architectural control with robust damage mitigation strategies. This review presents a synergistic perspective on enhancing the durability of CNT-based systems by critically examining the interplay between molecular assembly, self-repair mechanisms, and the advanced characterization techniques required for their validation. We first establish how foundational architectural control—achieved through strategies like chemical functionalization, field-directed alignment, and dispersion—governs the ultimate performance of CNT materials. A significant focus is placed on advanced functionalization, such as fluorination, and its verification using high-powered spectroscopic tools, including X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Subsequently, this manuscript delves into the mechanisms of self-repair, systematically analyzing both the intrinsic capacity of the carbon lattice to heal atomic-level defects and the extrinsic strategies that incorporate engineered healing agents into composites. This discussion is uniquely supplemented by an exploration of the experimental techniques, such as electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES), that provide crucial evidence for irradiation-induced healing dynamics. Finally, we argue that a “characterization gap” has limited the field’s progress and highlight the critical role of techniques like in situ Raman spectroscopy for quantitatively monitoring healing efficiency at the molecular level. By identifying current challenges and future research frontiers, this review underscores that the creation of truly durable materials depends on an integrated understanding of how to build, repair, and precisely measure CNT-based systems. Full article
Show Figures

Graphical abstract

15 pages, 4614 KB  
Article
Influence of Plasma Assistance on EB-PVD TBC Coating Thickness Distribution and Morphology
by Grzegorz Maciaszek, Krzysztof Cioch, Andrzej Nowotnik and Damian Nabel
Materials 2025, 18(17), 4109; https://doi.org/10.3390/ma18174109 - 1 Sep 2025
Viewed by 466
Abstract
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a [...] Read more.
In this study, the effects of plasma assistance on the electron beam physical vapour deposition (EB-PVD) process were investigated using an industrial coater (Smart Coater ALD Vacuum Technologies GmbH) equipped with a dual hollow cathode system. This configuration enabled the generation of a plasma environment during the deposition of the ceramic top coat onto a metallic substrate. The objective was to assess how plasma assistance influences the microstructure and thickness distribution of 7% wt. yttria-stabilised zirconia (YSZ) thermal barrier coatings (TBCs). Coatings were deposited with and without plasma assistance to enable a direct comparison. The thickness uniformity and columnar morphology of the 7YSZ top coats were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the deposited coatings were verified by the scratch test method. The results demonstrate that, in the presence of plasma, columnar grains become more uniformly spaced and exhibit sharper, well-defined boundaries even at reduced substrate temperatures. XRD analysis confirmed that plasma-assisted EB-PVD processes allow for maintaining the desired tetragonal phase of YSZ without inducing secondary phases or unwanted texture changes. These findings indicate that plasma-assisted EB-PVD can achieve desirable coating characteristics (uniform thickness and optimised columnar structure) more efficiently, offering potential advantages for high-temperature applications in aerospace and power-generation industries. Continued development of the EB-PVD process with the assistance of plasma generation could further improve deposition rates and TBC performance, underscoring the promising future of HC-assisted EB-PVD technology. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

Back to TopTop