Design, Synthesis, and Characterization of a Novel Tetra-Block Copolymer for High-Performance Self-Healing Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Tetra-Block Copolymer
2.2. Electrode Preparation and Battery Assembling
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stuart, M.A.C.; Huck, W.T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M. Emerging Applications of Stimuli-Responsive Polymer Materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8, 127–143. [Google Scholar] [CrossRef]
- Xian, G.; Qi, X.; Shi, J.; Tian, J.; Xiao, H. Toughened and Self-Healing Carbon Nanotube/Epoxy Resin Composites Modified with Polycaprolactone Filler for Coatings, Adhesives and FRP. J. Build. Eng. 2025, 111, 113207. [Google Scholar] [CrossRef]
- Blaiszik, B.J.; Kramer, S.L.B.; Olugebefola, S.C.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-Healing Polymers and Composites. Annu. Rev. Mater. Res. 2010, 40, 179–211. [Google Scholar] [CrossRef]
- Moyer, K.; Meng, C.; Marshall, B.; Assal, O.; Eaves, J.; Perez, D.; Karkkainen, R.; Roberson, L.; Pint, C.L. Carbon Fiber Reinforced Structural Lithium-Ion Battery Composite: Multifunctional Power Integration for CubeSats. Energy Storage Mater. 2020, 24, 676–681. [Google Scholar] [CrossRef]
- Xian, G.; Bai, Y.; Qi, X.; Wang, J.; Tian, J.; Xiao, H. Hygrothermal Aging on the Mechanical Property and Degradation Mechanism of Carbon Fiber Reinforced Epoxy Composites Modified by Nylon 6. J. Mater. Res. Technol. 2024, 33, 6297–6306. [Google Scholar] [CrossRef]
- Mohd Nurazzi, N.; Asyraf, M.M.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Landi, B.J.; Ganter, M.J.; Cress, C.D.; DiLeo, R.A.; Raffaelle, R.P. Carbon Nanotubes for Lithium Ion Batteries. Energy Environ. Sci. 2009, 2, 638–654. [Google Scholar] [CrossRef]
- Zhai, P.; Yang, Z.; Wei, Y.; Guo, X.; Gong, Y. Two-Dimensional Fluorinated Graphene Reinforced Solid Polymer Electrolytes for High-Performance Solid-State Lithium Batteries. Adv. Energy Mater. 2022, 12, 2200967. [Google Scholar] [CrossRef]
- KardanMoghaddam, H.; Maraki, M.; Rajaei, A. Graphene-Reinforced Polymeric Nanocomposites in Computer and Electronics Industries. Facta Univ.-Ser. Electron. Energetics 2020, 33, 351–378. [Google Scholar] [CrossRef]
- Liu, Y.; Hsu, S. Synthesis and Biomedical Applications of Self-Healing Hydrogels. Front. Chem. 2018, 6, 449. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Urban, M.W. Self-Healing Polymeric Materials. Chem. Soc. Rev. 2013, 42, 7446–7467. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Urban, M.W. Self-Healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Xu, J.; Ding, C.; Chen, P.; Tan, L.; Chen, C.; Fu, J. Intrinsic Self-Healing Polymers for Advanced Lithium-Based Batteries: Advances and Strategies. Appl. Phys. Rev. 2020, 7, 031304. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Zhao, Q.; Dou, S.; Liu, H.; Huang, Y.; Hu, X. Si-Containing Precursors for Si-Based Anode Materials of Li-Ion Batteries: A Review. Energy Storage Mater. 2016, 4, 92–102. [Google Scholar] [CrossRef]
- Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J. Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review. Nano Energy 2017, 31, 113–143. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Yang, J.-Y.; Yu, B.; Shi, B.-M.; Zhao, C.-R.; Yu, Z.-L. Self-Healing Alginate–Carboxymethyl Chitosan Porous Scaffold as an Effective Binder for Silicon Anodes in Lithium-Ion Batteries. Rare Met. 2019, 38, 832–839. [Google Scholar] [CrossRef]
- Ezeigwe, E.R.; Dong, L.; Manjunatha, R.; Tan, M.; Yan, W.; Zhang, J. A Review of Self-Healing Electrode and Electrolyte Materials and Their Mitigating Degradation of Lithium Batteries. Nano Energy 2021, 84, 105907. [Google Scholar] [CrossRef]
- Luo, C.; Fan, X.; Ma, Z.; Gao, T.; Wang, C. Self-Healing Chemistry between Organic Material and Binder for Stable Sodium-Ion Batteries. Chem 2017, 3, 1050–1062. [Google Scholar] [CrossRef]
- Yao, Y.; McDowell, M.T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W.D.; Cui, Y. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Lett. 2011, 11, 2949–2954. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wu, H.; McDowell, M.T.; Yao, Y.; Wang, C.; Cui, Y. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Lett. 2012, 12, 3315–3321. [Google Scholar] [CrossRef]
- Son, Y.; Sim, S.; Ma, H.; Choi, M.; Son, Y.; Park, N.; Cho, J.; Park, M. Exploring Critical Factors Affecting Strain Distribution in 1D Silicon-Based Nanostructures for Lithium-Ion Battery Anodes. Adv. Mater. 2018, 30, 1705430. [Google Scholar] [CrossRef]
- Wu, H.; Chan, G.; Choi, J.W.; Ryu, I.; Yao, Y.; McDowell, M.T.; Lee, S.W.; Jackson, A.; Yang, Y.; Hu, L.; et al. Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes through Solid–Electrolyte Interphase Control. Nat. Nanotech. 2012, 7, 310–315. [Google Scholar] [CrossRef]
- Li, J.; Fu, W.; Zhang, B.; Zhu, G.; Miljkovic, N. Ultrascalable Three-Tier Hierarchical Nanoengineered Surfaces for Optimized Boiling. ACS Nano 2019, 13, 14080–14093. [Google Scholar] [CrossRef]
- Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C.F.; Fuller, T.F.; Luzinov, I.; Yushin, G. Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Appl. Mater. Interfaces 2010, 2, 3004–3010. [Google Scholar] [CrossRef]
- Li, J.; Lewis, R.B.; Dahn, J.R. Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries. Electrochem. Solid-State Lett. 2006, 10, A17. [Google Scholar] [CrossRef]
- Taskin, O.S.; Yuca, N. Biomass-Derived Polymers for Li-Ion Batteries. In ACS Symposium Series; Gupta, R.K., Ed.; American Chemical Society: Washington, DC, USA, 2024; Volume 1487, pp. 81–90. ISBN 978-0-8412-9654-1. [Google Scholar]
- Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science 2011, 334, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.; Xu, Y.; Zhao, H.; Gu, X.; Qiu, J.; Li, S.; Wu, M.; Song, X.; Yan, C.; Liu, G.; et al. Dual-Functional Gum Arabic Binder for Silicon Anodes in Lithium Ion Batteries. Nano Energy 2015, 12, 178–185. [Google Scholar] [CrossRef]
- Taskin, O.S.; Yayla, I.I.A.; Yuca, N. Interpenetrating and Cross-Linking Effects of Commercial and Biopolymer Binders on Silicon Anode Performance in Lithium-Ion Batteries. Mater. Chem. Phys. 2025, 339, 130723. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, S.; Kim, J.; Park, S.; Lee, S.; Yoo, S.; Kim, J.; Choi, N.; Ryu, J.; Park, S. Room-Temperature Crosslinkable Natural Polymer Binder for High-Rate and Stable Silicon Anodes. Adv. Funct. Mater. 2020, 30, 1908433. [Google Scholar] [CrossRef]
- Liu, Y.; Tai, Z.; Zhou, T.; Sencadas, V.; Zhang, J.; Zhang, L.; Konstantinov, K.; Guo, Z.; Liu, H.K. An All-Integrated Anode via Interlinked Chemical Bonding between Double-Shelled–Yolk-Structured Silicon and Binder for Lithium-Ion Batteries. Adv. Mater. 2017, 29, 1703028. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Chen, Z.; Wang, C.; Andrews, S.C.; Cui, Y.; Bao, Z. The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes. ACS Appl. Mater. Interfaces 2016, 8, 2318–2324. [Google Scholar] [CrossRef] [PubMed]
- Taskin, O.S.; Yuca, N.; Papavasiliou, J.; Avgouropoulos, G. Interconnected Conductive Gel Binder for High Capacity Silicon Anode for Li-Ion Batteries. Mater. Lett. 2020, 273, 127918. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, Y.K.; Wang, Y.; Lee, H.; Choi, J.W. A “Sticky” Mucin-Inspired DNA-Polysaccharide Binder for Silicon and Silicon–Graphite Blended Anodes in Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1707594. [Google Scholar] [CrossRef]
- Avcı Yayla, I.İ.; Yuca, N.; Sezer, E.; Ustamehmetoğlu, B. Colloidal Polypyrrole as Binder for Silicon Anode in Lithium Ion Batteries. Energy Storage 2022, 4, e338. [Google Scholar] [CrossRef]
- Choi, S.; Kwon, T.; Coskun, A.; Choi, J.W. Highly Elastic Binders Integrating Polyrotaxanes for Silicon Microparticle Anodes in Lithium Ion Batteries. Science 2017, 357, 279–283. [Google Scholar] [CrossRef]
- Kıgılcım, A.C.; Cetintasoglu, M.E.; Tokur, M.; Taskin, O.S.; Bulut, E.; Güzel, E. Versatile Spiro-Fluorene-Based Polymer Binder for Li-Ion Batteries. ACS Appl. Polym. Mater. 2025, 7, 2708–2715. [Google Scholar] [CrossRef]
- Taskin, O.S.; Yuca, N. Polymer Blend Nanocomposites for Battery Applications. In Polymer Blend Nanocomposites for Energy Storage Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 453–478. [Google Scholar]
- Tabanli, S.; Gelir, A.; Yilmaz, Y. Polyacrylamide Hydrogel as an Electrolyte for Oxidation-Based Organic Rectifiers. Polym. Eng. Sci. 2015, 55, 406–413. [Google Scholar] [CrossRef]
- Yuca, N.; Taskin, O.S.; Guney, E.; García-Alonso, J.; Maestre, D.; Méndez, B. Multifunctionalized Conductive Polymers for Self-Healing Silicon Anodes in Li-Ion Batteries. ACS Omega 2025, 10, 33607–33618. [Google Scholar] [CrossRef] [PubMed]
- Yuca, N.; Kalafat, I.; Guney, E.; Cetin, B.; Taskin, O.S. Self-Healing Systems in Silicon Anodes for Li-Ion Batteries. Materials 2022, 15, 2392. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Chen, Z.; McDowell, M.T.; Cui, Y.; Bao, Z. Self-Healing Chemistry Enables the Stable Operation of Silicon Microparticle Anodes for High-Energy Lithium-Ion Batteries. Nat. Chem. 2013, 5, 1042–1048. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Lopez, J.; Lu, Z.; Cui, Y.; Bao, Z. High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder. Adv. Energy Mater. 2015, 5, 1401826. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Y.; Chen, Y.; Huang, J.; Zhang, T.; Zeng, H.; Wang, C.; Liu, G.; Deng, Y. A Quadruple-Hydrogen-Bonded Supramolecular Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries. Small 2018, 14, 1801189. [Google Scholar] [CrossRef]
- Sun, Y.; Lopez, J.; Lee, H.-W.; Liu, N.; Zheng, G.; Wu, C.-L.; Sun, J.; Liu, W.; Chung, J.W.; Bao, Z. A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self-Healing Elastic Polymer. Adv. Mater. 2016, 28, 2455–2461. [Google Scholar] [CrossRef]
- García, D.M.; Escobar, J.L.; Bada, N.; Casquero, J.; Hernáez, E.; Katime, I. Synthesis and Characterization of Poly(Methacrylic Acid) Hydrogels for Metoclopramide Delivery. Eur. Polym. J. 2004, 40, 1637–1643. [Google Scholar] [CrossRef]
- Xu, X.-D.; Chen, C.-S.; Wang, Z.-C.; Wang, G.-R.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X. “Click” Chemistry for in Situ Formation of Thermoresponsive P(NIPAAm-Co-HEMA)-Based Hydrogels. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 5263–5277. [Google Scholar] [CrossRef]
- Lin-Gibson, S.; Bencherif, S.; Cooper, J.A.; Wetzel, S.J.; Antonucci, J.M.; Vogel, B.M.; Horkay, F.; Washburn, N.R. Synthesis and Characterization of PEG Dimethacrylates and Their Hydrogels. Biomacromolecules 2004, 5, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Song, M.; He, Z.; Zhang, T. Synthesis and Structural Characterization of Methacrylic Acid/Octadecyl Acrylate-Graft-Poly(Methylhydrosiloxane) by Hydrosilylation. J. Appl. Polym. Sci. 2008, 107, 3773–3780. [Google Scholar] [CrossRef]
- Chapman, A.J.; Billingham, N.C. Preparation and (13C)NMR Spectroscopy of Stereoregular Poly(Methacrylic Acid). Eur. Polym. J. 1980, 16, 21–24. [Google Scholar] [CrossRef]
- O’Leary, K.; Paul, D.R. Copolymers of Poly(n-Alkyl Acrylates): Synthesis, Characterization, and Monomer Reactivity Ratios. Polymer 2004, 45, 6575–6585. [Google Scholar] [CrossRef]
- Haris, M.; Kathiresan, S.; Mohan, S. FT-IR and FT-Raman Spectra and Normal Coordinate Analysis of Poly Methyl Methacrylate. Der Pharma Chem. 2010, 2, 316–323. [Google Scholar]
- Olukman Şahin, M.; Demirbilek Bucak, C. Hydrophobically Associated Poly(Acrylamide/Octadecyl Acrylate)-Carboxymethyl Cellulose Hydrogels: Synthesis, Characterization, and Shape Memory Ability. J. Polym. Environ. 2023, 31, 3650–3663. [Google Scholar] [CrossRef]
- Perova, T.S.; Vij, J.K.; Xu, H. Fourier Transform Infrared Study of Poly (2-Hydroxyethyl Methacrylate) PHEMA. Colloid Polym. Sci. 1997, 275, 323–332. [Google Scholar] [CrossRef]
- Sundararajan, S.; Samui, A.B.; Kulkarni, P.S. Synthesis and Characterization of Poly(Ethylene Glycol) Acrylate (PEGA) Copolymers for Application as Polymeric Phase Change Materials (PCMs). React. Funct. Polym. 2018, 130, 43–50. [Google Scholar] [CrossRef]
- Ferriol, M.; Gentilhomme, A.; Cochez, M.; Oget, N.; Mieloszynski, J.L. Thermal Degradation of Poly (Methyl Methacrylate)(PMMA): Modelling of DTG and TG Curves. Polym. Degrad. Stab. 2003, 79, 271–281. [Google Scholar] [CrossRef]
- Price, D.; Pyrah, K.; Hull, T.R.; Milnes, G.J.; Ebdon, J.R.; Hunt, B.J.; Joseph, P. Flame Retardance of Poly(Methyl Methacrylate) Modified with Phosphorus-Containing Compounds. Polym. Degrad. Stab. 2002, 77, 227–233. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, S.; Ying, H.; Han, W. Facile Preparation of Low-Cost Multifunctional Porous Binder for Silicon Anodes in Lithium-Ion Batteries. Electrochim. Acta 2022, 413, 140187. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, X.; Yu, G. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Acc. Chem. Res. 2017, 50, 2642–2652. [Google Scholar] [CrossRef]
- Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J.S. Structured Silicon Anodes for Lithium Battery Applications. Electrochem. Solid-State Lett. 2003, 6, A75. [Google Scholar] [CrossRef]
- Chen, L.B.; Xie, J.Y.; Yu, H.C.; Wang, T.H. An Amorphous Si Thin Film Anode with High Capacity and Long Cycling Life for Lithium Ion Batteries. J. Appl. Electrochem. 2009, 39, 1157–1162. [Google Scholar] [CrossRef]
- Schroder, K.W.; Celio, H.; Webb, L.J.; Stevenson, K.J. Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions. J. Phys. Chem. C 2012, 116, 19737–19747. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Cheng, Y.-T. High Capacity Silicon Electrodes with Nafion as Binders for Lithium-Ion Batteries. J. Electrochem. Soc. 2016, 163, A401–A405. [Google Scholar] [CrossRef]
- Yuca, N.; Ozada, C.; Taskin, O.S. Poly (Acrylic Acid)-Modified Silicon as an Active Material for Anodes in Advancing Lithium-Ion Battery Performance. Electrochim. Acta 2025, 518, 145804. [Google Scholar] [CrossRef]
- Ratynski, M.; Hamankiewiecz, B.; Krajewski, M.; Boczar, M.; Buchberger, D.A.; Czerwinski, A. Electrochemical Impedance Spectroscopy Characterization of Silicon-Based Electrodes for Li-Ion Batteries. Electrocatalysis 2020, 11, 160–169. [Google Scholar] [CrossRef]
- Paloukis, F.; Elmasides, C.; Farmakis, F.; Selinis, P.; Neophytides, S.G.; Georgoulas, N. Electrochemical Impedance Spectroscopy Study in Micro-Grain Structured Amorphous Silicon Anodes for Lithium-Ion Batteries. J. Power Sources 2016, 331, 285–292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avcı Yayla, I.İ.; Taskin, O.S.; Yuca, N. Design, Synthesis, and Characterization of a Novel Tetra-Block Copolymer for High-Performance Self-Healing Batteries. Polymers 2025, 17, 2414. https://doi.org/10.3390/polym17172414
Avcı Yayla Iİ, Taskin OS, Yuca N. Design, Synthesis, and Characterization of a Novel Tetra-Block Copolymer for High-Performance Self-Healing Batteries. Polymers. 2025; 17(17):2414. https://doi.org/10.3390/polym17172414
Chicago/Turabian StyleAvcı Yayla, Işık İpek, Omer Suat Taskin, and Neslihan Yuca. 2025. "Design, Synthesis, and Characterization of a Novel Tetra-Block Copolymer for High-Performance Self-Healing Batteries" Polymers 17, no. 17: 2414. https://doi.org/10.3390/polym17172414
APA StyleAvcı Yayla, I. İ., Taskin, O. S., & Yuca, N. (2025). Design, Synthesis, and Characterization of a Novel Tetra-Block Copolymer for High-Performance Self-Healing Batteries. Polymers, 17(17), 2414. https://doi.org/10.3390/polym17172414