Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (934)

Search Parameters:
Keywords = electron beam energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 917 KB  
Review
A Review of the Alanine Electron Paramagnetic Resonance Dosimetry Method as a Dose Verification Tool for Low-Dose Electron Beam Applications: Implications on Flash Radiotherapy
by Babedi Sebinanyane, Marta Walo, Gregory Campbell Hillhouse, Chamunorwa Oscar Kureba and Urszula Gryczka
Appl. Sci. 2025, 15(20), 10939; https://doi.org/10.3390/app152010939 (registering DOI) - 11 Oct 2025
Abstract
Alanine dosimetry based on Electron Paramagnetic Resonance (EPR) spectroscopy has been a reliable reference and transfer dosimetry method in high-dose applications, valued for its high precision, accuracy and long-term stability. Additional characteristics, such as dose-rate independence up to 1010 Gy/s under electron [...] Read more.
Alanine dosimetry based on Electron Paramagnetic Resonance (EPR) spectroscopy has been a reliable reference and transfer dosimetry method in high-dose applications, valued for its high precision, accuracy and long-term stability. Additional characteristics, such as dose-rate independence up to 1010 Gy/s under electron beam (e-beam) irradiation, electron energy independence and tissue equivalence, position alanine EPR as a promising candidate to address dosimetric challenges arising in e-beam Flash Radiotherapy (RT), where radiation energy is delivered at Ultra-High Dose-Rates (UHDR) ≥ 40 Gy/s. At such dose-rates, reliable real-time monitoring dosimeters such as ionization chambers in conventional RT, suffer from ion recombination, compromising accuracy in dose determination. Several studies are currently focused on developing real-time beam monitoring systems dedicated specifically for e-beam Flash RT. This creates a need for standardized reference dosimetry methods to validate beam parameters determined by these systems under investigation. This review provides an overview of the potential and limitations of the alanine EPR dosimetry method for control, validation and verification of e-beam Flash RT beam parameters at doses less than 10 Gy, where the method has shown low sensitivity and increased uncertainty. It further discusses strategies to optimize alanine EPR measurements to enhance sensitivity and accuracy at these dose levels. Improved measurement procedures will ensure reliable and accurate e-beam Flash RT accelerator commissioning, performance checks, patient safety and treatment efficacy across all therapeutic dose ranges. Full article
(This article belongs to the Section Applied Physics General)
19 pages, 4096 KB  
Review
Review of VHEE Beam Energy Evolution for FLASH Radiation Therapy Under Ultra-High Dose Rate (UHDR) Dosimetry
by Nikolaos Gazis and Evangelos Gazis
Quantum Beam Sci. 2025, 9(4), 29; https://doi.org/10.3390/qubs9040029 - 9 Oct 2025
Viewed by 29
Abstract
Very-high-energy electron (VHEE) beams, ranging from 50 to 300 or 400 MeV, are the subject of intense research investigation, with considerable interest concerning applications in radiation therapy due to their accurate energy deposition into large and deep-seated tissues, sharp beam edges, high sparing [...] Read more.
Very-high-energy electron (VHEE) beams, ranging from 50 to 300 or 400 MeV, are the subject of intense research investigation, with considerable interest concerning applications in radiation therapy due to their accurate energy deposition into large and deep-seated tissues, sharp beam edges, high sparing properties, and minimal radiation effects on normal tissues. The very-high-energy electron beam, which ranges from 50 to 400 MeV, and Ultra-High-Energy Electron beams up to 1–2 GeV, are considered extremely effective for human tumor therapy while avoiding the spatial requirements and cost of proton and heavy ion facilities. Many research laboratories have developed advanced testing infrastructures with VHEE beams in Europe, the USA, Japan, and other countries. These facilities aim to accelerate the transition to clinical application, following extensive simulations for beam transport that support preclinical trials and imminent clinical deployment. However, the clinical implementation of VHEE for FLASH radiation therapy requires advances in several areas, including the development of compact, stable, and efficient accelerators; the definition of sophisticated treatment plans; and the establishment of clinically validated protocols. In addition, the perspective of VHEE for accessing ultra-high dose rate (UHDR) dosimetry presents a promising procedure for the practical integration of FLASH radiotherapy for deep tumors, enhancing normal tissue sparing while maintaining the inherent dosimetry advantages. However, it has been proven that a strong effort is necessary to improve the main operational accelerator conditions, ensuring a stable beam over time and across space, as well as compact infrastructure to support the clinical implementation of VHEE for FLASH cancer treatment. VHEE-accessing ultra-high dose rate (UHDR) perspective dosimetry is integrated with FLASH radiotherapy and well-prepared cancer treatment tools that provide an advantage in modern oncology regimes. This study explores technological progress and the evolution of electron accelerator beam energy technology, as simulated by the ASTRA code, for developing VHEE and UHEE beams aimed at medical applications. FLUKA code simulations of electron beam provide dose distribution plots and the range for various energies inside the phantom of PMMA. Full article
(This article belongs to the Section Instrumentation and Facilities)
Show Figures

Figure 1

29 pages, 2258 KB  
Review
Powder Bed Fabrication of Copper: A Comprehensive Literature Review
by Vi Ho, Leila Ladani, Jafar Razmi, Samira Gruber, Anthony Bruce Murphy, Cherry Chen, Daniel East and Elena Lopez
Metals 2025, 15(10), 1114; https://doi.org/10.3390/met15101114 - 8 Oct 2025
Viewed by 251
Abstract
Powder bed fusion of copper has been extensively investigated using both laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) additive manufacturing technologies. Each technique offers unique benefits as well as specific limitations. Near-infrared (NIR) laser-based LPBF is widely accessible; however, the high reflectivity of copper [...] Read more.
Powder bed fusion of copper has been extensively investigated using both laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) additive manufacturing technologies. Each technique offers unique benefits as well as specific limitations. Near-infrared (NIR) laser-based LPBF is widely accessible; however, the high reflectivity of copper limits energy absorption, thereby resulting in a narrow processing window. Although optimized parameters can yield relative densities above 97%, issues such as keyhole porosity, incomplete melting, and anisotropy remain concerns. Green lasers, with higher absorptivity in copper, offer broader process windows and enable more consistent fabrication of high-density parts with superior electrical conductivity, often reaching or exceeding 99% relative density and 100% International Annealed Copper Standard (IACS). Mechanical properties, including tensile and yield strength, are also improved, though challenges remain in surface finish and geometrical resolution. In contrast, Electron Beam Powder Bed Fusion (EB-PBF) uses high-energy electron beams in a vacuum, eliminating oxidation and leveraging copper’s high conductivity to achieve high energy absorption at lower volumetric energy densities (~80 J/mm3). This results in consistently high relative densities (>99.5%) and excellent electrical and thermal conductivity, with additional benefits including faster scanning speeds and in situ monitoring capabilities. However, EB-PBF faces its own limitations, such as surface roughness and powder smoking. This paper provides a comprehensive review of the current state of laser-based (PBF-LB/M) and electron beam-based (PBF-EB/M) powder bed fusion processes for the additive manufacturing of copper, summarizing key trends, material properties, and process innovations. Both approaches continue to evolve, with ongoing research aimed at refining these technologies to enable the reliable and efficient additive manufacturing of high-performance copper components. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

18 pages, 3355 KB  
Article
Characterizations of Semiconductive W-Doped Ga2O3 Thin Films and Application in Heterojunction Diode Fabrication
by Chia-Te Liao, Yi-Wen Wang, Cheng-Fu Yang and Kao-Wei Min
Inorganics 2025, 13(10), 329; https://doi.org/10.3390/inorganics13100329 - 1 Oct 2025
Viewed by 216
Abstract
In this study, high-conductivity W-doped Ga2O3 thin films were successfully fabricated by directly depositing a composition of Ga2O3 with 10.7 at% WO3 (W:Ga = 12:100) using electron beam evaporation. The resulting thin films were found to [...] Read more.
In this study, high-conductivity W-doped Ga2O3 thin films were successfully fabricated by directly depositing a composition of Ga2O3 with 10.7 at% WO3 (W:Ga = 12:100) using electron beam evaporation. The resulting thin films were found to be amorphous. Due to the ohmic contact behavior observed between the W-doped Ga2O3 film and platinum (Pt), Pt was used as the contact electrode. Current-voltage (J-V) measurements of the W-doped Ga2O3 thin films demonstrated that the samples exhibited significant current density even without any post-deposition annealing treatment. To further validate the excellent charge transport characteristics, Hall effect measurements were conducted. Compared to undoped Ga2O3 thin films, which showed non-conductive characteristics, the W-doped thin films showed an increased carrier concentration and enhanced electron mobility, along with a substantial decrease in resistivity. The measured Hall coefficient of the W-doped Ga2O3 thin films was negative, indicating that these thin films were n-type semiconductors. Energy-Dispersive X-ray Spectroscopy was employed to verify the elemental ratios of Ga, O, and W in the W-doped Ga2O3 thin films, while X-ray photoelectron spectroscopy analysis further confirmed these ratios and demonstrated their variation with the depth of the deposited thin films. Furthermore, the W-doped Ga2O3 thin films were deposited onto both p-type and heavily doped p+-type silicon (Si) substrates to fabricate heterojunction diodes. All resulting devices exhibited good rectifying behavior, highlighting the promising potential of W-doped Ga2O3 thin films for use in rectifying electronic components. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

17 pages, 5980 KB  
Article
Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing
by Xiaoyu Sun, Haojie Zheng, Qiannan Jia, Limin Qi, Zhiqi Zhang, Lijing Zhong, Wei Yan, Jianrong Qiu and Min Qiu
Photonics 2025, 12(10), 973; https://doi.org/10.3390/photonics12100973 - 30 Sep 2025
Viewed by 266
Abstract
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light [...] Read more.
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light energy at the nanoscale while simultaneously regulating intense photo modifications. In this study, we report the controllable growth of long-distance, high-straightness, and high-parallelism multifilament structures in SiC using ultrafast laser processing. The mechanism is the formation of femtosecond multifilaments through the nonlinear effects of clamping equilibrium, which allow highly confined light to propagate without diffraction in parallel channels, further inducing high-aspect-ratio nanostripe-like photomodifications. By employing an elliptical Gaussian beam—rather than a circular one—and optimizing pulse durations to stabilize multifilaments with regular positional distributions, the induced multifilament structures can reach a length of approximately 90 μm with a minimum linewidth of only 28 nm, resulting in an aspect ratio of over 3200:1. Raman tests indicate that the photomodified regions consist of amorphous SiC, amorphous silicon, and amorphous carbon, and photoluminescence tests reveal that silicon vacancy color centers could be induced in areas with lower light power density. By leveraging femtosecond multifilaments for diffraction-less light confinement, this work proposes an effective method for manufacturing deep-subwavelength, high-aspect-ratio nanostructures in SiC. Full article
Show Figures

Figure 1

11 pages, 1765 KB  
Article
Viscosity Analysis of Electron-Beam Degraded Gellan in Dilute Aqueous Solution
by Fathi Elashhab, Lobna Sheha, Nada Elzawi and Abdelsallam E. A. Youssef
Physchem 2025, 5(4), 40; https://doi.org/10.3390/physchem5040040 - 30 Sep 2025
Viewed by 196
Abstract
Gellan gum (Gellan), a versatile polysaccharide applied in gel formation and prebiotic formulations, is often processed to tailor its molecular properties. Previous studies employed gamma irradiation and chemical hydrolysis, though without addressing systematic scaling behavior. This study investigates the structural and conformational modifications [...] Read more.
Gellan gum (Gellan), a versatile polysaccharide applied in gel formation and prebiotic formulations, is often processed to tailor its molecular properties. Previous studies employed gamma irradiation and chemical hydrolysis, though without addressing systematic scaling behavior. This study investigates the structural and conformational modifications of Gellan in dilute aqueous salt solutions using a safer and eco-friendly approach: atmospheric low-dose electron beam (e-beam) degradation coupled with viscosity analysis. Native and E-beam-treated Gellan samples (0.05 g/cm3 in 0.1 M KCl) were examined by relative viscosity at varying temperatures, with intrinsic viscosity and molar mass determined via Solomon–Ciuta and Mark–Houwink relations. Molar mass degradation followed first-order kinetics, yielding rate constants and degradation lifetimes. Structural parameters, including radius of gyration and second virial coefficient, produced scaling coefficients of 0.62 and 0.15, consistent with perturbed coil conformations in a good solvent. The shape factor confirmed preservation of an ideal random coil structure despite irradiation. Conformational flexibility was further analyzed using theoretical models. Transition state theory (TST) revealed that e-beam radiation lowered molar mass and activation energy but raised activation entropy, implying reduced flexibility alongside enhanced solvent interactions. The freely rotating chain (FRC) model estimated end-to-end distance (Rθ) and characteristic ratio (C), while the worm-like chain (WLC) model quantified persistence length (lp). Results indicated decreased Rθ, increased lp, and largely unchanged C, suggesting diminished chain flexibility without significant deviation from ideal coil behavior. Overall, this work provides new insights into Gellan’s scaling laws and flexibility under aerobic low-dose E-beam irradiation, with relevance for bioactive polysaccharide applications. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

16 pages, 4578 KB  
Article
Thermal Stability of Color Centers in Lithium Fluoride Crystals Irradiated with Electrons and N, O, Kr, U Ions
by Zhadra Malikova, Zhakyp T. Karipbayev, Abdirash Akilbekov, Alma Dauletbekova, Anatoli I. Popov, Vladimir N. Kuzovkov, Ainash Abdrakhmetova, Alyona Russakova and Muratbek Baizhumanov
Materials 2025, 18(19), 4441; https://doi.org/10.3390/ma18194441 - 23 Sep 2025
Viewed by 739
Abstract
Lithium fluoride (LiF) crystals are widely employed both as optical windows transparent in the ultraviolet spectral region and as efficient personal dosimeters, with their application scope recently expanding into lithium-ion technologies. Moreover, as an alkali halide crystal (AHC), LiF serves as a model [...] Read more.
Lithium fluoride (LiF) crystals are widely employed both as optical windows transparent in the ultraviolet spectral region and as efficient personal dosimeters, with their application scope recently expanding into lithium-ion technologies. Moreover, as an alkali halide crystal (AHC), LiF serves as a model system for studying and simulating radiation effects in solids. This work identifies radiation-induced defects formed in lithium fluoride upon irradiation with swift heavy ion beams (N, O, Kr, U) and intense pulsed electron beams, investigates their thermal stability, and performs computer modeling of annealing processes. The theoretical analysis of existing experimental kinetics for F-centers induced by electron and heavy ion irradiation reveals considerable differences in the activation energies for interstitial migration. A strong correlation between the activation energy Ea and the pre-exponential factor X(Ea) is observed; notably, X(Ea) is no longer constant but closely matches the potential function Ea. Indeed, with increasing irradiation dose, both the migration energy Ea and pre-exponential factor X decrease simultaneously, leading to an effective increase in the defect diffusion rate. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

17 pages, 10023 KB  
Article
Research on Hybrid Blue Diode-Fiber Laser Welding Process of T2 Copper
by Xiangkuan Wu, Na Qi, Shengxiang Liu, Qiqi Lv, Qian Fu, Yue Kang, Min Jin and Miaosen Yang
Metals 2025, 15(9), 1058; https://doi.org/10.3390/met15091058 - 22 Sep 2025
Viewed by 452
Abstract
This research proposes a non-penetration lap welding process for joining T2 copper power module terminals in high-frequency and high-power electronic applications, using a hybrid laser system combining a 445 nm blue diode laser and a 1080 nm fiber laser. The composite laser beam, [...] Read more.
This research proposes a non-penetration lap welding process for joining T2 copper power module terminals in high-frequency and high-power electronic applications, using a hybrid laser system combining a 445 nm blue diode laser and a 1080 nm fiber laser. The composite laser beam, formed by coupling a circular blue laser beam with a spot-shaped fiber laser beam, was oscillated along circular, sinusoidal, and 8-shaped trajectories to control weld geometry and joint quality. Results indicate that all trajectories produced U-shaped weld cross-sections with smooth toe transitions and good surface quality. Specifically, the circular trajectory provided uniform energy distribution and stable weld formation; the 8-shaped trajectory achieved a balanced width-to-depth ratio; and the sinusoidal trajectory exhibited sensitivity to welding speed, often resulting in uneven fusion width. Increased welding speed promoted grain refinement, but excessive speed led to porosity and poor surface quality in both 8-shaped and sinusoidal trajectories. Oscillating laser welding facilitated equiaxed grain formation, with the circular and 8-shaped trajectories yielding more uniform microstructures. The circular trajectory maintained consistent weld dimensions and hardness distribution, while the 8-shaped trajectory exhibited superior tensile strength. This work highlights the potential of circular and 8-shaped trajectories in hybrid laser welding for regulating weld microstructure, enhancing mechanical performance and ensuring weld stability. Full article
(This article belongs to the Special Issue Advanced Laser Welding and Joining of Metallic Materials)
Show Figures

Figure 1

12 pages, 2586 KB  
Article
Development of Array-Type Secondary Electron Emission Monitor Toward Single-Shot Measurement of Extraction Efficiency of FEL Oscillators
by Zhuang Bi, Kotaro Tanaka, Heishun Zen and Hideaki Ohgaki
Particles 2025, 8(3), 81; https://doi.org/10.3390/particles8030081 - 19 Sep 2025
Viewed by 368
Abstract
To enable the single-shot measurement of extraction efficiency, a key parameter of an FEL oscillator, we developed an array-type secondary electron emission monitor capable of measuring the temporal evolution of the electron beam energy distribution in a macro-pulse at KU-FEL. The monitor consists [...] Read more.
To enable the single-shot measurement of extraction efficiency, a key parameter of an FEL oscillator, we developed an array-type secondary electron emission monitor capable of measuring the temporal evolution of the electron beam energy distribution in a macro-pulse at KU-FEL. The monitor consists of 24 ribbon-shaped electrodes and 2 shielding electrodes, and it is positioned after the energy analyzer magnet and just before a beam dump. The beam energy evolutions in a macro-pulse with and without FEL lasing were measured in a single shot with approximately 100 ns temporal resolution. From the results obtained, the extraction efficiency of FEL oscillators can be evaluated. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

15 pages, 4930 KB  
Article
Use of CR-39 Dosimeters for the Imaging of Neutron Beam Profiles in the 100 keV–10 MeV Energy Range
by Margherita Simoni, Leonardo Baldassarre, Carlo Cazzaniga, Laura Fazi, Mattia Gaboardi, Leandro Gemmiti, Maria Kastriotou, Matthew Krzystyniak, Anna Marsicano, Marco Martellucci, Triestino Minniti, Anna Prioriello, Roberto Senesi, Valentin Suteica and Giovanni Romanelli
Sensors 2025, 25(18), 5865; https://doi.org/10.3390/s25185865 - 19 Sep 2025
Viewed by 366
Abstract
We provide a beam shape characterization of the VESUVIO spectrometer, at the ISIS Neutron and Muon Source, employing CR-39 solid-state nuclear track detectors and combining techniques including optical and electron microscopy, as well as Monte Carlo transport simulations. In particular, we show, through [...] Read more.
We provide a beam shape characterization of the VESUVIO spectrometer, at the ISIS Neutron and Muon Source, employing CR-39 solid-state nuclear track detectors and combining techniques including optical and electron microscopy, as well as Monte Carlo transport simulations. In particular, we show, through comparison with irradiation with 14 MeV neutrons at the NILE Facility at ISIS, that the majority of defects on the etched surface of the dosimeters irradiated on VESUVIO were induced by neutrons with energies between 100 keV and 10 MeV. Our results were compared to previous characterizations of the VESUVIO beam shape performed in either the thermal or fast energy ranges, and we conclude that the VESUVIO beam has a constant shape from thermal-neutron energies up to 10 MeV, composed of an umbra (intensity above 90% of the maximum) with radius 1.1 cm, and surrounded by a penumbra (intensity above 1% of the maximum) that extends up to 2.5 cm. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

30 pages, 10791 KB  
Review
Research Progress in Carbon Nanotube-Based Cold Cathode Electron Guns
by Jiupeng Li, Yu Tu, Dewei Ma and Yun Yang
Nanomaterials 2025, 15(18), 1403; https://doi.org/10.3390/nano15181403 - 12 Sep 2025
Viewed by 592
Abstract
Field emission (FE) cold-cathodes have some important characteristics, including instant turn-on, room temperature operation, miniaturization, low power consumption, and nonlinearity. As emitters, Carbon nanotubes (CNTs) exhibit a high field enhancement factor, low turn-on voltage, high current density, high thermal conductivity, and temporal stability. [...] Read more.
Field emission (FE) cold-cathodes have some important characteristics, including instant turn-on, room temperature operation, miniaturization, low power consumption, and nonlinearity. As emitters, Carbon nanotubes (CNTs) exhibit a high field enhancement factor, low turn-on voltage, high current density, high thermal conductivity, and temporal stability. These properties make them highly suitable for applications in FE cold-cathodes. In addition, Carbon nanotube (CNT) cold cathodes have specialized applications in electron beams, which are modulated by high-frequency electric fields and exhibit low energy dispersion. There have been substantial studies on CNT-based cold cathode electron guns with diverse structural configurations. These studies have laid the foundation for the applications of microwave vacuum electron devices, X-ray equipments, flat-panel displays, and scanning electron microscopes. The review primarily introduces cold cathode electron guns based on CNT emitters with diverse morphologies, including disordered CNTs, aligned CNTs, CNT paste, and other CNTs with special surface morphologies. Additionally, the research results of microwave electron guns based on CNT cathodes are also mentioned. Finally, the problems that need to be resolved in the practical applications of CNT cold cathode electron guns are summarized, and some suggestions for future development are provided. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Graphical abstract

13 pages, 3942 KB  
Article
Design of a W-Band Low-Voltage TWT Utilizing a Spoof Surface Plasmon Polariton Slow-Wave Structure and Dual-Sheet Beam
by Gangxiong Wu, Ruirui Jiang and Jin Shi
Sensors 2025, 25(18), 5641; https://doi.org/10.3390/s25185641 - 10 Sep 2025
Viewed by 391
Abstract
This paper presents a W-band low-voltage traveling-wave tube (TWT) incorporating a spoof surface plasmon polariton (SSPP) slow-wave structure (SWS) and a dual-sheet beam. The SSPP-based SWS adopts a periodic double-F-groove configuration, which provides strong field localization, increases the interaction impedance, and reduces the [...] Read more.
This paper presents a W-band low-voltage traveling-wave tube (TWT) incorporating a spoof surface plasmon polariton (SSPP) slow-wave structure (SWS) and a dual-sheet beam. The SSPP-based SWS adopts a periodic double-F-groove configuration, which provides strong field localization, increases the interaction impedance, and reduces the phase velocity, thereby enabling a low synchronization voltage. Owing to its symmetric open geometry, the SWS naturally forms a dual-sheet beam tunnel, which enhances the effective beam current without increasing the aperture size. Eigenmode calculations indicate that, within the 92–97 GHz band, the normalized phase velocity is between 0.198 and 0.208, and the interaction impedance exceeds 2.65 Ω. Moreover, an energy-coupling structure was developed to ensure efficient signal transmission. Three-dimensional particle-in-cell (PIC) simulations predict a peak output power of 366.1 W and an electronic efficiency of 6.15% at 95.5 GHz for a 2 × 250 mA dual-sheet beam at 11.9 kV, with stable amplification and without self-oscillation observed. The proposed low-voltage, high-efficiency W-band TWT offers a manufacturable and easily integrable solution for next-generation millimeter-wave systems, supporting high-capacity wireless backhaul, airborne communication, radar imaging, and sensing platforms where compactness and reduced power-supply demands are critical. Full article
(This article belongs to the Special Issue Recent Development of Millimeter-Wave Technologies)
Show Figures

Figure 1

15 pages, 13719 KB  
Article
Spot Melting Strategy for Contour Melting in Electron Beam Powder Bed Fusion
by Tobias Kupfer, Lukas Spano, Sebastian Pohl, Carolin Körner and Matthias Markl
J. Manuf. Mater. Process. 2025, 9(9), 303; https://doi.org/10.3390/jmmp9090303 - 4 Sep 2025
Viewed by 600
Abstract
Spot melting is an emerging alternative to traditional line melting in electron beam powder bed fusion, dividing a layer into thousands of individual spots. This method allows for an almost infinite number of spot arrangements and spot melting sequences to tailor material and [...] Read more.
Spot melting is an emerging alternative to traditional line melting in electron beam powder bed fusion, dividing a layer into thousands of individual spots. This method allows for an almost infinite number of spot arrangements and spot melting sequences to tailor material and part properties. To enhance the productivity of spot melting, the number of spots can be reduced by increasing the beam diameter. However, this results in rough surfaces due to the staircase effect. The classical approach to counteract these effects is to melt a contour that surrounds the infill area. Creating effective contours is challenging because the melted area ought to cover the artifacts from the staircase effect and avoid porosity in the transition area between the infill and contour, all while minimizing additional energy and melt time. In this work, we propose an algorithm for generating a spot melting sequence for contour lines surrounding the infill area. Additionally, we compare three different approaches for combining the spot melting of infill and contour areas, each utilizing a combination of large infill spots and small contour spots. The quality of the contours is evaluated based on optical inspection as well as the porosity between infill and contour using electron optical images, balanced against the additional energy input. The most suitable approach is used to build a complex brake caliper. Full article
(This article belongs to the Special Issue Advances in Powder Bed Fusion Technologies)
Show Figures

Graphical abstract

13 pages, 3614 KB  
Article
Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification
by Xuanjing Zhang, Xinqi Wang, Lei Gao, Yidong Wu, Jianing Xue and Xidong Hui
Metals 2025, 15(9), 982; https://doi.org/10.3390/met15090982 - 2 Sep 2025
Viewed by 539
Abstract
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This [...] Read more.
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This study introduces an innovative purification method combining droplet electron-beam melting (EBM) with centrifugal directional solidification. Through this advanced EBM technique, we successfully produced ultrapure DZ125 superalloy with nitrogen content reduced below 5 ppm and total O + N + S content below 10 ppm. Most significantly, the process nearly eliminated Hf oxides from the reverts, meeting the stringent purity standards for DZ125 superalloy. We conducted a comprehensive analysis of inclusion morphology and composition in three distinct regions: the top slag layer, final solidification zone, and interior section of the ingot processed at varying EBM power levels. Our findings reveal that MC-type carbides at the slag–crucible interface were formed. There are HfO2, TaC, and Al2O3 in the final solidification zone, with notable encapsulation of HfO2 particulates within Al2O3 particles; and few HfO2 and Al2O3 inclusions exist in the ingot interior. It is also found that increasing EBM power from 36 kW to 46 kW significantly improved impurity removal efficiency, as evidenced by substantial reductions in both inclusion quantity and size. This enhanced purification stems from two primary mechanisms: (1) flotation of inclusions during EBM melting, facilitated by Marangoni convection, droplet stirring effects, and centrifugal forces generated by ingot rotation; and (2) decomposition of stable oxides enabled by the high-energy density characteristic of EBM and high-vacuum processing environment. This combined approach demonstrates superior capability in overcoming the limitations of traditional refining methods, particularly for challenging Hf oxide removal, while establishing an effective pathway for superalloy revert recycling. Full article
Show Figures

Figure 1

15 pages, 4427 KB  
Article
AlScN Thin Films for the Piezoelectric Transduction of Suspended Microchannel Resonators
by Yara Abdelaal, Marco Liffredo and Luis Guillermo Villanueva
Sensors 2025, 25(17), 5370; https://doi.org/10.3390/s25175370 - 31 Aug 2025
Viewed by 916
Abstract
Suspended microchannel resonators (SMRs) are powerful tools for mass, density, and viscosity sensing. Among various transduction methods, full piezoelectric transduction offers key advantages, including on-chip integration, low energy dissipation, and linear response. This work explores sub-200 nm Al0.6Sc0.4N thin [...] Read more.
Suspended microchannel resonators (SMRs) are powerful tools for mass, density, and viscosity sensing. Among various transduction methods, full piezoelectric transduction offers key advantages, including on-chip integration, low energy dissipation, and linear response. This work explores sub-200 nm Al0.6Sc0.4N thin films for SMR transduction, benchmarking them against their well-established AlN predecessor. By integrating the piezoelectric stack into low-stress silicon nitride (ls-SiNx) beam resonators, we investigate the impact of bottom electrode design, photoresist removal prior to deposition, and deposition bias on film quality. Characterization includes X-ray diffraction (XRD), scanning electron microscopy (SEM), d31 piezoelectric coefficient, relative dielectric permittivity, and breakdown field measurements. Results illustrate the impacts of the studied parameters and demonstrate a fourfold increase in d31, compared to AlN, confirming the strong potential of Al0.6Sc0.4N for high-performance SMR transduction. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Graphical abstract

Back to TopTop