Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Morphology and Composition of Slag on Ingot Top
3.2. Surface Morphology and Composition Analysis of the Ingot Final Solidification Zone
3.3. Cross-Sectional View and Composition Analysis of the Final Solidification Zone
3.4. Oxides and Impurity Elements in the Middle Region of the Ingot
3.5. Mechanism of Oxide Removal from DZ125 Revert Material
4. Conclusions
- (1)
- After EBM of DZ125 revert material, the morphology and composition of the slag at the top of the ingot were analyzed. Volatilization of major alloying elements occurred, while MC-type carbides (TaC and HfC) formed at the interface between the slag and crucible. The final solidification zone of the ingot contained oxides such as HfO2, TaC, and Al2O3, with HfO2 encapsulating Al2O3 particles, indicating that inclusions in the melt migrated to the ingot surface during melting.
- (2)
- Inclusions in the ingot were primarily HfO2 and Al2O3. As the EBM power increased, both the quantity and size of inclusions decreased, accompanied by reduced concentrations of interstitial impurities (O, N, S).
- (3)
- Oxide inclusions were removed via two primary mechanisms: flotation and dissolution. Marangoni convection, droplet stirring, and centrifugal forces induced by the rotating ingot facilitated inclusion migration. Collision and agglomeration of inclusions occurred, with HfO2 aggregating around less dense Al2O3 particles, promoting their flotation, due to buoyancy. Additionally, the high-temperature, high-energy, and high-vacuum environment of EBM enabled the decomposition of HfO2 and Al2O3, further enhancing inclusion removal.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Long, H.B.; Mao, S.C.; Liu, Y.N.; Zhang, Z.; Han, X.D. Microstructural and compositional design of Ni-based single crystalline superalloysd—A review. J. Alloys Compd. 2018, 743, 203–220. [Google Scholar] [CrossRef]
- Theska, F.; Street, S.R.; Lison-Pick, M.; Primig, S. Grain boundary microstructure-property relationships in the cast & wrought Ni-based superalloy Ren’e 41 with boron and carbon additions. Acta Mater. 2023, 258, 11. [Google Scholar]
- Wu, Y.T.; Li, C.; Xia, X.C.; Liang, H.Y.; Qi, Q.Q.; Liu, Y.C. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ′-strengthened superalloys. J. Mater. Sci. Technol. 2021, 67, 95–104. [Google Scholar] [CrossRef]
- Dong, G.Y.; Yiliti, Y.; Liu, X.Y.; You, X.G.; Han, W.J.; Dong, L.Y.; Chang, K.; Zhou, H.J.; Li, P.T.; Wang, Y.N. Mechanisms for removing impurities in a single crystal superalloy by electron beam drip melting. J. Mater. Res. Technol.-Jmr&T 2024, 28, 13. [Google Scholar]
- Farahani, H.; Melali, P.; Divandari, M. Study the Effects of Casting Revert-Virgin Alloy with Different Portion of Return (Revert) Materials on Microstructure, Mechanical Properties, and Creep Resistance of Inconel 713LC. Int. J. Met. 2025, 19, 432–444. [Google Scholar] [CrossRef]
- Yang, Y.H.; Yu, J.J.; Sun, X.F.; Jin, T.; Guan, H.R.; Hu, Z.Q. Effect of revert addition on microstructure and mechanical properties of M951 Ni-base superalloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2012, 532, 6–12. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, J.S.; Zhao, P.; Chen, Z.X.; Jiang, Z.Y.; Liu, Q.; Yang, S.F. Microstructure and high temperature tribological behavior of nickel-based superalloy with addition of revert. J. Mater. Res. Technol.-Jmr&T 2024, 33, 1934–1945. [Google Scholar]
- Hu, Y.B.; Zhang, L.; Cheng, C.Q.; Zhao, P.T.; Guo, G.P.; Zhao, J. Oxidation Behavior of the Nickel-Based Superalloy DZ125 at 980 °C. Acta Metall. Sin.-Engl. Lett. 2017, 30, 857–862. [Google Scholar] [CrossRef]
- Sun, H.F.; Tian, S.G.; Tian, N.; Yu, H.C.; Meng, X.L. Microstructure heterogeneity and creep damage of DZ125 nickel-based superalloy. Prog. Nat. Sci. 2014, 24, 266–273. [Google Scholar] [CrossRef]
- Wang, C.S.; Zhang, J.; Liu, L.; Fu, H.Z. Microstructure evolution of directionally solidified DZ125 superalloy with melt superheating treatment. J. Alloys Compd. 2010, 508, 440–445. [Google Scholar] [CrossRef]
- Wang, S.F.; Ditta, A.; Xu, Y.; Zhang, Z. Effect of microstructures restoration on high temperature fatigue behavior of DZ125 superalloy. Prog. Nat. Sci. 2021, 31, 633–640. [Google Scholar] [CrossRef]
- Otubo, J.; Rigo, O.D.; Neto, C.M.; Mei, P.R. The effects of vacuum induction melting and electron beam melting techniques on the purity of NiTi shape memory alloys. Mater. Sci. Eng. A 2006, 438–440, 679–682. [Google Scholar] [CrossRef]
- Kalinyuk, A.N.; Trigub, N.P.; Zamkov, V.N.; Ivasishin, O.M.; Markovsky, P.E.; Teliovich, R.V.; Semiatin, S.L. Microstructure, texture, and mechanical properties of electron-beam melted Ti–6Al–4V. Mater. Sci. Eng. A 2003, 346, 178–188. [Google Scholar] [CrossRef]
- Li, B.K.; Huang, X.C.; Liu, Z.Q.; Zhao, F.S.Q.; Yi, L.; Wang, Y.N. Characteristics and evolution of advanced modern electroslag remelting technologies. Iron Steel 2022, 57, 1–11. [Google Scholar]
- Haruna, Y.; Mitchell, A.; Schmaltz, A.J. Some Observations on the Recycling of Superalloys by the EBCHM Process. High Temp. Mater. Process. 1995, 14, 173–191. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Y.; Wang, D.G.; You, X.G.; Chen, Z.; Bai, R.S.; Qiang, J.B. Effect of electron beam melt superheating treatment on DZ125 alloy. J. Mater. Res. Technol.-Jmr&T 2023, 24, 6088–6106. [Google Scholar]
- Vutova, K.; Vassileva, V.; Koleva, E.; Georgieva, E.; Mladenov, G.; Mollov, D.; Kardjiev, M. Investigation of electron beam melting and refining of titanium and tantalum scrap. J. Mater. Process. Technol. 2010, 210, 1089–1094. [Google Scholar] [CrossRef]
- Yiliti, Y.; Dong, G.Y.; Liu, X.Y.; You, X.G.; Han, W.J.; Dong, L.Y.; Zhao, Y.Q.; Yi, L.; Wang, Y.N. The high temperature oxidation behavior of a superalloy prepared by vacuum induction melting and electron beam smelting: A comparative study. J. Mater. Res. Technol.-Jmr&T 2023, 25, 6977–6991. [Google Scholar]
- Dong, G.Y.; You, X.G.; Dong, L.Y.; Yiliti, Y.; Xu, Z.H.; Zhou, H.J.; Wang, Y.N.; Tan, Y. The inclusion removal behavior during electron beam smelting of DD98M alloy. J. Mater. Res. Technol.-Jmr&T 2022, 20, 4297–4305. [Google Scholar]
- Niu, S.; You, Q.; You, X.; Shi, S.; Wang, Y.; Tan, Y. Mechanism of impurities reduction and evaporation of alloying elements for a multi-elements Ni-based superalloy during electron beam remelting. Vacuum 2018, 156, 345–350. [Google Scholar] [CrossRef]
- Lee, P.D.; Quested, P.N.; McLean, M. Modelling of Marangoni effects in electron beam melting. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 1998, 356, 1027–1043. [Google Scholar] [CrossRef]
- Niu, S.; Yin, K.; You, Q.; You, X.; Wang, Y.; Tan, Y. The alloying elements dispersion and its mechanisms in a Ni-based superalloy during electron beam remelting. Vacuum 2019, 166, 107–113. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Y.; Zhao, J.; Dong, G.; Li, P.; Qiang, J. Technical research on recycling waste blades of single crystal superalloy through ultrasonic alkali cleaning combined with electron beam smelting. Sep. Purif. Technol. 2024, 331, 125585. [Google Scholar] [CrossRef]
- Ferguson, J.B.; Schultz, B.F.; Rohatgi, P.K.; Kim, C.-S. Impact of Brownian motion on the particle settling in molten metals. Met. Mater. Int. 2014, 20, 747–755. [Google Scholar] [CrossRef]
- Lei, H.; He, J. Nucleation and Growth Kinetics of MgO in Molten Steel. J. Mater. Sci. Technol. 2012, 28, 642–646. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, L.; Luan, Y.; Chen, X.; Qu, X. Investigation of Inclusion Agglomeration and Flotation During Levitation Melting of Ni-Based Superalloy in a Cold Crucible. JOM 2020, 72, 3247–3255. [Google Scholar] [CrossRef]
- Liu, N.; Liu, F.; Yang, W.; Chen, Z.; Yang, G.C. Movement of minor phase in undercooled immiscible Fe–Co–Cu alloys. J. Alloys Compd. 2013, 551, 323–326. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, G.; He, X.; Li, S.; Ning, W.; Wang, X. Phase separated characteristics affected by cooling rate of immiscible Cu-Cr alloy by laser surface melting. J. Alloys Compd. 2019, 772, 209–217. [Google Scholar] [CrossRef]
- Ba, Q.; Liu, X.; Yang, Y.; Wang, W. Motion behavior and removal mechanism of inclusions during negative pressure continuous casting process. J. Mater. Sci. 2022, 57, 21502–21518. [Google Scholar] [CrossRef]
- Chang, K.; Tan, Y.; Bai, R.; Dong, G.; Li, P.; Liu, Y.; Yuan, H.; Wang, Y. Research on directional solidification combined with electron beam melting and refining for recycling of FGH4096 alloy scraps. Sep. Purif. Technol. 2024, 351, 127874. [Google Scholar] [CrossRef]
Ni | C | Cr | Co | W | Mo | Ta | Al | Ti | Hf | B |
---|---|---|---|---|---|---|---|---|---|---|
Bal | 0.105 | 8.77 | 9.89 | 6.89 | 2.06 | 4.09 | 5.01 | 1.19 | 1.62 | 0.015 |
Matrix and Impurities | C | O | Al | Mo | Ti | Cr | Co | Ni | Hf | Ta | W |
---|---|---|---|---|---|---|---|---|---|---|---|
A | - | 19.23 | 2.50 | - | - | 49.83 | 6.48 | 21.96 | - | - | - |
B | - | 19.90 | 2.59 | - | - | 51.33 | 5.93 | 20.25 | - | - | - |
C | 1.16 | 2.88 | 1.39 | 3.26 | 4.69 | 6.34 | 41.39 | 10.73 | 25.96 | 2.20 | |
D | 6.05 | - | 0.78 | 0.51 | 6.12 | 0.83 | 1.62 | 7.21 | 22.95 | 50.24 | 3.69 |
Elements | Hf | O | Al | Mo | Ti | Cr | Ni | Ta | W | C |
---|---|---|---|---|---|---|---|---|---|---|
HfO2 | 83.47 | 16.53 | - | - | - | - | - | - | - | |
Al2O3 | - | 46.29 | 53.71 | - | - | - | - | - | - | |
MC | 9.05 | - | - | 2.41 | 9.02 | 1.23 | 3.12 | 54.44 | 9.02 | 11.71 |
Surface Material | Hf | O | Al | Ti | Cr | Ni | W | C | Co |
---|---|---|---|---|---|---|---|---|---|
HfO2 | 83.92 | 14.20 | - | 0.03 | 0.01 | 0.53 | 0.16 | 1.11 | 0.04 |
Al2O3 | - | 50.14 | 49.86 | - | - | - | - | - | - |
Sample Location | Core | Half Radius | Edge Regions | Number | |||
---|---|---|---|---|---|---|---|
Number | Size (μm) | Number | Size (μm) | Number | Size (μm) | ||
As-cast ingot | 6 | 50~500 | 4 | 50~150 | 1 | 500 | 11 |
36 kW—upper | 0 | / | 1 | 100 | 2 | 100 | 6 |
36 kW—middle | 0 | / | 0 | / | 2 | 200 | 6 |
36 kW—lower | 0 | / | 1 | 300 | 0 | / | 6 |
40 kW—upper | 3 | 200 | 2 | 200 | 0 | / | 5 |
40 kW—lower | 0 | / | 0 | / | 0 | / | 5 |
46 kW—upper | 0 | / | 0 | / | 0 | / | 2 |
46 kW—lower | 0 | / | 1 | 100 | 1 | 100 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, X.; Gao, L.; Wu, Y.; Xue, J.; Hui, X. Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification. Metals 2025, 15, 982. https://doi.org/10.3390/met15090982
Zhang X, Wang X, Gao L, Wu Y, Xue J, Hui X. Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification. Metals. 2025; 15(9):982. https://doi.org/10.3390/met15090982
Chicago/Turabian StyleZhang, Xuanjing, Xinqi Wang, Lei Gao, Yidong Wu, Jianing Xue, and Xidong Hui. 2025. "Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification" Metals 15, no. 9: 982. https://doi.org/10.3390/met15090982
APA StyleZhang, X., Wang, X., Gao, L., Wu, Y., Xue, J., & Hui, X. (2025). Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification. Metals, 15(9), 982. https://doi.org/10.3390/met15090982