Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = electromagnetic wave interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3170 KB  
Review
Contribution of Microwave Irradiation in the Synthesis of Inorganic Compounds: An Italian Approach
by Cristina Leonelli, Elena Colombini and Cecilia Mortalò
Inorganics 2025, 13(12), 410; https://doi.org/10.3390/inorganics13120410 - 16 Dec 2025
Viewed by 331
Abstract
Microwave heating has a good number of advantages in the synthesis of inorganic compounds when opportunely exploited. A deep knowledge of the interaction of the electromagnetic waves and matter is necessary to optimize irradiation of the reactor vessel so as to obtain homogeneous [...] Read more.
Microwave heating has a good number of advantages in the synthesis of inorganic compounds when opportunely exploited. A deep knowledge of the interaction of the electromagnetic waves and matter is necessary to optimize irradiation of the reactor vessel so as to obtain homogeneous heating for homogeneous nucleation and growth of particles, localized heating of starting self-sustained high-temperature synthesis, and generation of a superfast heating and cooling profile to obtain metastable crystals. Case studies of pure oxides, mixed oxides, composites, phosphates, zeolites, and high-entropy alloys are discussed in the international frame of the academic and industrial research covering the last 20 years of microwave chemistry where Italian researchers covered a relevant role. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Italy)
Show Figures

Figure 1

12 pages, 354 KB  
Article
The Dirac Equation in a Linear Potential and Quantized Electromagnetic Field: Spin–Rest Entanglement
by Yassine Chargui and Sultan Al-Harbi
Quantum Rep. 2025, 7(4), 63; https://doi.org/10.3390/quantum7040063 - 12 Dec 2025
Viewed by 251
Abstract
We derive the exact eigenfunctions and energy equation for a Dirac particle in a monochromatic quantized electromagnetic plane wave and a confining scalar linear potential. It is shown that the system’s energy spectrum exhibits a forbidden region that vanishes when the particle–field interaction [...] Read more.
We derive the exact eigenfunctions and energy equation for a Dirac particle in a monochromatic quantized electromagnetic plane wave and a confining scalar linear potential. It is shown that the system’s energy spectrum exhibits a forbidden region that vanishes when the particle–field interaction is switched off. We then analyze the effect of particle–field coupling on quantum entanglement between the particle’s spin and the remaining degrees of freedom. Our results show that the profile of the spin–rest entanglement, measured by negativity and Von Neumann entropy, follows the energy profile of the state: it is monotonic when the energy is monotonic, and non-monotonic otherwise. These results may provide insights into quantum correlations in Dirac-like systems describing low-energy excitations of graphene and trapped ions. Full article
Show Figures

Figure 1

20 pages, 3456 KB  
Article
RBF-Based Meshless Collocation Method for Time-Fractional Interface Problems with Highly Discontinuous Coefficients
by Faisal Bilal, Muhammad Asif, Mehnaz Shakeel and Ioan-Lucian Popa
Math. Comput. Appl. 2025, 30(6), 133; https://doi.org/10.3390/mca30060133 - 5 Dec 2025
Viewed by 342
Abstract
Time-fractional interface problems arise in systems where interacting materials exhibit memory effects or anomalous diffusion. These models provide a more realistic description of physical processes than classical formulations and appear in heat conduction, fluid flow, porous media diffusion, and electromagnetic wave propagation. However, [...] Read more.
Time-fractional interface problems arise in systems where interacting materials exhibit memory effects or anomalous diffusion. These models provide a more realistic description of physical processes than classical formulations and appear in heat conduction, fluid flow, porous media diffusion, and electromagnetic wave propagation. However, the presence of complex interfaces and the nonlocal nature of fractional derivatives makes their numerical treatment challenging. This article presents a numerical scheme that combines radial basis functions (RBFs) with the finite difference method (FDM) to solve time-fractional partial differential equations involving interfaces. The proposed approach applies to both linear and nonlinear models with constant or variable coefficients. Spatial derivatives are approximated using RBFs, while the Caputo definition is employed for the time-fractional term. First-order time derivatives are discretized using the FDM. Linear systems are solved via Gaussian elimination, and for nonlinear problems, two linearization strategies, a quasi-Newton method and a splitting technique, are implemented to improve efficiency and accuracy. The method’s performance is assessed using maximum absolute and root mean square errors across various grid resolutions. Numerical experiments demonstrate that the scheme effectively resolves sharp gradients and discontinuities while maintaining stability. Overall, the results confirm the robustness, accuracy, and broad applicability of the proposed technique. Full article
(This article belongs to the Special Issue Radial Basis Functions)
Show Figures

Figure 1

32 pages, 22810 KB  
Article
Research on Forest Fire Smoke and Cloud Separation Method Based on Fisher Discriminant Analysis
by Jiayi Zhang, Jun Pan, Yehan Sun, Lijun Jiang and Kaifeng Liu
Remote Sens. 2025, 17(23), 3880; https://doi.org/10.3390/rs17233880 - 29 Nov 2025
Viewed by 316
Abstract
In remote sensing monitoring of forest fires, smoke and clouds exhibit similar spectral characteristics in satellite imagery, which can easily lead to clouds being misjudged as smoke. This incorrect discrimination may result in missed detections or false alarms of fire points. The precise [...] Read more.
In remote sensing monitoring of forest fires, smoke and clouds exhibit similar spectral characteristics in satellite imagery, which can easily lead to clouds being misjudged as smoke. This incorrect discrimination may result in missed detections or false alarms of fire points. The precise differentiation of smoke and clouds has become increasingly challenging, significantly limiting the ability to accurately identify fires in their early stages. Additionally, electromagnetic waves penetrating the smoke and clouds interact with the underlying surface, which interferes with the effective separation of smoke and clouds. In response to the aforementioned issues, this paper systematically studies the impact mechanism of different underlying surfaces on the spectral response of smoke and clouds. We constructed a dataset using sample collection and gradation methods. It contains smoke at varying concentrations and clouds of different thicknesses over three typical underlying surfaces: vegetation, soil, and water. Based on the analysis of spectral characteristics, analysis of variance (ANOVA) was applied to screen sensitive bands suitable for the separation of smoke and clouds. Furthermore, considering the distribution characteristics of smoke and cloud samples in spectral space, single-band threshold models, visible-band index (VBI) models, ratio index models, and Fisher smoke and cloud recognition index (FSCRI) models were developed for three typical underlying surfaces. The validation results demonstrate that the FSCRI models significantly outperform other models in terms of both robustness and accuracy. Their recognition accuracy rates for smoke and clouds in the underlying surfaces of vegetation, soil and water reached 95.5%, 93.5% and 99%, respectively. The proposed method effectively suppresses cloud interference to improve smoke and cloud separation. This capability enables more accurate early detection of forest fires and localization of their sources. Full article
Show Figures

Figure 1

40 pages, 9996 KB  
Review
Optical Spin Angular Momentum: Properties, Topologies, Detection and Applications
by Shucen Liu, Xi Xie, Peng Shi and Yijie Shen
Nanomaterials 2025, 15(23), 1798; https://doi.org/10.3390/nano15231798 - 28 Nov 2025
Viewed by 696
Abstract
Spin angular momentum is a fundamental dynamical property of elementary particles and fields, playing a critical role in light–matter interactions. In optical studies, the optical spin angular momentum is closely linked to circular polarization. Research on the interaction between optical spin and matter [...] Read more.
Spin angular momentum is a fundamental dynamical property of elementary particles and fields, playing a critical role in light–matter interactions. In optical studies, the optical spin angular momentum is closely linked to circular polarization. Research on the interaction between optical spin and matter or structures has led to numerous novel optical phenomena and applications, giving rise to the emerging field of spin optics. Historically, researchers primarily focused on longitudinal optical spin aligned parallel to the mean wavevector. In recent years, investigations into the spin–orbit coupling properties of confined fields—such as focused beams, guided waves, and evanescent waves—have revealed a new class of optical spin oriented perpendicular to the mean wavevector, referred to as optical transverse spin. In the optical near-field, such transverse spins arise from spatial variations in the momentum density of confined electromagnetic waves, where strong coupling between spin and orbital angular momenta leads to various topological spin structures and properties. Several reviews on optical transverse spin have been published in recent years, systematically introducing its fundamental concepts and the configurations that generate it. In this review, we detail recent advances in spin optics from three perspectives: theory, experimental techniques, and applications, with a particular emphasis on the fundamental physics of transverse spin and the resulting topological structures and characteristics. The conceptual and theoretical framework of spin optics is expected to significantly support further exploration of optical spin-based applications in fields such as optics imaging, topological photonics, metrology, and quantum technologies. Furthermore, these principles can be extended to general classical wave systems, including fluidic, acoustic, and gravitational waves. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photonics, Plasmonics and Metasurfaces)
Show Figures

Figure 1

15 pages, 3619 KB  
Proceeding Paper
Experimental Study of the Interaction of UHF Electromagnetic Waves with Fuel-Contaminated Water
by Kevin Iza Arteaga, Gabriel Palma Batallas, Pablo Lupera Morillo and Darwin Flores Osorio
Eng. Proc. 2025, 115(1), 11; https://doi.org/10.3390/engproc2025115011 - 15 Nov 2025
Viewed by 335
Abstract
This work presents an experimental study of the electromagnetic behavior of water and its interaction with gasoline in the frequency range of 1.9 to 2.6 GHz, corresponding to the UHF band. This interval lies within the dielectric relaxation region of water, where significant [...] Read more.
This work presents an experimental study of the electromagnetic behavior of water and its interaction with gasoline in the frequency range of 1.9 to 2.6 GHz, corresponding to the UHF band. This interval lies within the dielectric relaxation region of water, where significant absorption and reflection phenomena occur. The results show qualitative differences in the electromagnetic responses of water, gasoline, and their mixtures, particularly in the stability of amplitudes and phase variability. The mixtures exhibit an intermediate behavior between the pure liquids, highlighting the direct influence of the dielectric properties of the medium on the reflected signal. Furthermore, it was identified that the band between 2400 and 2550 MHz presents a more predictable amplitude response, making it a promising frequency range for the non-invasive detection of gasoline as a contaminant in aquatic environments. Full article
(This article belongs to the Proceedings of The XXXIII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

23 pages, 1934 KB  
Review
High-Dimensional Numerical Methods for Nonlocal Models
by Yujing Jia, Dongbo Wang and Xu Guo
Mathematics 2025, 13(21), 3512; https://doi.org/10.3390/math13213512 - 2 Nov 2025
Viewed by 699
Abstract
Nonlocal models offer a unified framework for describing long-range spatial interactions and temporal memory effects. The review briefly outlines several representative physical problems, including anomalous diffusion, material fracture, viscoelastic wave propagation, and electromagnetic scattering, to illustrate the broad applicability of nonlocal systems. However, [...] Read more.
Nonlocal models offer a unified framework for describing long-range spatial interactions and temporal memory effects. The review briefly outlines several representative physical problems, including anomalous diffusion, material fracture, viscoelastic wave propagation, and electromagnetic scattering, to illustrate the broad applicability of nonlocal systems. However, the intrinsic global coupling and historical dependence of these models introduce significant computational challenges, particularly in high-dimensional settings. From the perspective of algorithmic strategies, the review systematically summarizes high-dimensional numerical methods applicable to nonlocal equations, emphasizing core approaches for overcoming the curse of dimensionality, such as structured solution frameworks based on FFT, spectral methods, probabilistic sampling, physics-informed neural networks, and asymptotically compatible schemes. By integrating recent advances and common computational principles, the review establishes a dual “problem review + method review” structure that provides a systematic perspective and valuable reference for the modeling and high-dimensional numerical simulation of nonlocal systems. Full article
(This article belongs to the Special Issue Advances in High-Dimensional Scientific Computing)
Show Figures

Figure 1

18 pages, 10644 KB  
Article
Synergistic Integration of Polypyrrole, Graphene Oxide, and Silver Nanowires into Flexible Polymeric Films for EMI Shielding Applications
by Brankica Gajić, Marija Radoičić, Muhammad Yasir, Warda Saeed, Silvester Bolka, Blaž Nardin, Jelena Potočnik, Danica Bajuk-Bogdanović, Gordana Ćirić-Marjanović, Zoran Šaponjić and Svetlana Jovanović
Molecules 2025, 30(21), 4221; https://doi.org/10.3390/molecules30214221 - 29 Oct 2025
Viewed by 688
Abstract
The remarkable growth of high-frequency electronic systems has raised concerns about electromagnetic interference (EMI), emphasizing the need for lightweight and efficient shielding materials. In this study, ternary composites based on polypyrrole (PPy), graphene oxide (GO), and silver nanowires (AgNWs) were synthesized through chemical [...] Read more.
The remarkable growth of high-frequency electronic systems has raised concerns about electromagnetic interference (EMI), emphasizing the need for lightweight and efficient shielding materials. In this study, ternary composites based on polypyrrole (PPy), graphene oxide (GO), and silver nanowires (AgNWs) were synthesized through chemical oxidative polymerization of pyrrole monomer and embedded into polycaprolactone (PCL) matrices to create flexible films. Structural and morphological analyses confirmed the successful incorporation of all components, with scanning electron microscopy showing granular PPy, sheet-like GO, and fibrous AgNWs, while spectroscopic studies indicated strong interfacial interactions without damaging the PPy backbone. Thermomechanical analysis revealed that GO increased stiffness and defined the glass transition, whereas AgNWs improved toughness and energy dissipation; their combined use resulted in balanced properties. EMI shielding effectiveness (SE) was tested in the X-band (8–12 GHz). Pure PPy exhibited poor shielding ability, while the addition of GO and AgNWs significantly enhanced performance. The highest EMI SE values were observed in PPy/GO–AgNWs composites, with an average SE of 16.05 dB at 20 wt% of the composite in the PCL matrix, equivalent to about 84.4% attenuation of incident waves. These results demonstrate that the synergistic integration of GO and AgNWs into PPy matrices enables the creation of lightweight, flexible films with advanced EMI shielding properties, showing great potential for next-generation electronic and aerospace applications. Full article
(This article belongs to the Special Issue Nanoparticles for Environmental Applications)
Show Figures

Figure 1

18 pages, 2662 KB  
Article
NVH Optimization of Motor Based on Distributed Mathematical Model Under PWM Control
by Kai Zhao, Zhihui Jin and Jian Luo
Energies 2025, 18(20), 5395; https://doi.org/10.3390/en18205395 - 13 Oct 2025
Cited by 1 | Viewed by 612
Abstract
For the combination of finite elements and control circuits, the calculation is complex and time-consuming, making direct optimization impractical. In this paper, a new distributed node and magnetic circuit model is proposed to simulate the spatial and temporal variation of the distributed air-gap [...] Read more.
For the combination of finite elements and control circuits, the calculation is complex and time-consuming, making direct optimization impractical. In this paper, a new distributed node and magnetic circuit model is proposed to simulate the spatial and temporal variation of the distributed air-gap magnetic density with the current and rotor angle and solve the electromagnetic force wave variation. Compared to other distributed flux-linkage models, the proposed model not only considers the radial magnetic path but also connects adjacent magnetic paths tangentially. The inclusion of this tangential path enhances the mutual interaction between magnetic circuits, leading to a more accurate model. Based on the control circuit model, the electromagnetic force wave changes caused by the harmonic currents under various circuits and operating conditions are calculated, the topology is analyzed and optimized to mitigate critical harmonics, the electromagnetic force wave is reduced, and finally, the model accuracy is verified experimentally. While most distributed flux-linkage models are applied to the optimization of motor performance metrics such as the magnetomotive force (MMF), power, and torque, this paper applies the model to the optimization of the magnetic field strength, the harmonic content, and the corresponding noise, vibration, and harshness (NVH), demonstrating a broader range of applications. This method can be coupled with the control circuit to analyze the changes in electromagnetic force waves and quickly optimize them, improving the accuracy and efficiency of research and development. Full article
Show Figures

Figure 1

17 pages, 2364 KB  
Article
Exploring Electromagnetic Density of States Near Plasmonic Material Interfaces
by Rodolfo Cortés-Martínez, Ricardo Téllez-Limón, Cesar E. Garcia-Ortiz, Benjamín R. Jaramillo-Ávila and Gabriel A. Galaviz-Mosqueda
Surfaces 2025, 8(4), 71; https://doi.org/10.3390/surfaces8040071 - 10 Oct 2025
Viewed by 804
Abstract
The electromagnetic density of states (EM-DOS) plays a crucial role in understanding light–matter interactions, especially at metal–dielectric interfaces. This study explores the impact of interface geometry, material properties, and nanostructures on EM-DOS, with a focus on surface plasmon polaritons (SPPs) and evanescent waves. [...] Read more.
The electromagnetic density of states (EM-DOS) plays a crucial role in understanding light–matter interactions, especially at metal–dielectric interfaces. This study explores the impact of interface geometry, material properties, and nanostructures on EM-DOS, with a focus on surface plasmon polaritons (SPPs) and evanescent waves. Using a combination of analytical and numerical methods, the behavior of EM-DOS is analyzed as a function of distance from metal–dielectric interfaces, showing exponential decay with penetration depth. The influence of different metals, including copper, gold, and silver, on EM-DOS is examined. Additionally, the effects of dielectric materials, such as TiO2, PMMA, and Al2O3, on the enhancement of electromagnetic field confinement are discussed. The study also investigates the effect of nanostructures, like nanohole and nanopillar arrays, on EM-DOS by calculating effective permittivity and analyzing the interaction of quantum emitters with these structures. Results show that nanopillar arrays enhance EM-DOS more effectively than nanohole arrays, especially in the visible spectrum. The findings provide insights into optimizing plasmonic devices for applications in sensing, quantum technologies, and energy conversion. Full article
Show Figures

Figure 1

34 pages, 4923 KB  
Review
Recent Developments and Applications of Terahertz Spectroscopy in Food Analysis
by Pengpeng Yu, Chaoping Shen, Wenhui Zhu, Wenya Zhang, Junhui Cheng and Jinxiu Song
Biosensors 2025, 15(10), 677; https://doi.org/10.3390/bios15100677 - 8 Oct 2025
Cited by 1 | Viewed by 2492
Abstract
The terahertz waves are electromagnetic waves with frequencies ranging from 0.1 to 10 THz, exhibiting characteristics of both microwave and infrared, including fingerprint characteristics, coherence, and safety. Due to the weak interactions among most organic macromolecules in substances, the vibrational modes of molecular [...] Read more.
The terahertz waves are electromagnetic waves with frequencies ranging from 0.1 to 10 THz, exhibiting characteristics of both microwave and infrared, including fingerprint characteristics, coherence, and safety. Due to the weak interactions among most organic macromolecules in substances, the vibrational modes of molecular frameworks, as well as dipole rotation and vibration transitions, often correspond to the terahertz spectral region. Consequently, there has been growing interest in applying terahertz technology within the food industry. This review summarizes the fundamental principles of terahertz spectroscopy for substance detection and highlights recent advances and applications in food analysis. Key applications include harmful contaminant detection, component analysis, quality assessment, and adulteration identification. Additionally, this review discusses current challenges in applying terahertz spectroscopy to food analysis, such as strong water absorption, matrix interference, and the lack of comprehensive spectral databases. Finally, the paper outlines future prospects, including the development of lightweight and cost-effective terahertz sources and detectors for on-site analysis, as well as the integration of terahertz spectroscopy with other modern detection technologies to enhance analytical performance. This work aims to serve as a reference for further research and development of terahertz spectroscopy in the food sector. Full article
Show Figures

Figure 1

14 pages, 477 KB  
Article
A Dissipative Phenomenon: The Mechanical Model of the Cosmological Axion Influence
by Ferenc Márkus and Katalin Gambár
Entropy 2025, 27(10), 1036; https://doi.org/10.3390/e27101036 - 2 Oct 2025
Viewed by 431
Abstract
The appearance of a negative mass term in the classical, non-relativistic Klein–Gordon equation deduced from mechanical interactions describes a repulsive interaction. In the case of a traveling wave, this results in an increase in amplitude and a decrease in the wave propagation velocity. [...] Read more.
The appearance of a negative mass term in the classical, non-relativistic Klein–Gordon equation deduced from mechanical interactions describes a repulsive interaction. In the case of a traveling wave, this results in an increase in amplitude and a decrease in the wave propagation velocity. Since this leads to dissipation, it is a symmetry-breaking phenomenon. After the repulsive interaction is eliminated, the system evolves towards the original state. Given that the interactions within the system are conservative, it would be assumed that even the original state is restored. The analysis to be presented shows that a wave with a lower angular frequency than the original one is transformed back to a slightly larger amplitude. This description is a suitable model of the axion effect, during which an electromagnetic wave interacts with a repulsive field and becomes of a continuously lower frequency. Full article
(This article belongs to the Special Issue Dissipative Physical Dynamics)
Show Figures

Figure 1

14 pages, 1673 KB  
Article
Approximate Analytical Approach for Fast Prediction of Microwave Sensor Response: Numerical Analysis and Results
by Antonio Cuccaro, Raffaele Solimene and Sandra Costanzo
Sensors 2025, 25(18), 5683; https://doi.org/10.3390/s25185683 - 11 Sep 2025
Viewed by 597
Abstract
In medical applications, microwave sensors are usually employed to work in direct contact with the human body, therefore requiring an accurate prediction of the electromagnetic interactions with biological tissues. While full-wave simulations can be useful to achieve the above task, they are computationally [...] Read more.
In medical applications, microwave sensors are usually employed to work in direct contact with the human body, therefore requiring an accurate prediction of the electromagnetic interactions with biological tissues. While full-wave simulations can be useful to achieve the above task, they are computationally expensive, especially for iterative sensor optimization. Analytical models may offer a more efficient alternative, but they are often complex, and they must be formulated in a practical way to be useful. As a result, approximate approaches can be advantageous. Traditional approaches, such as plane-wave approximations and transmission-line models, often fail to capture key sensing features. This paper presents an approximate analytical model for standard-aperture sensor configurations to predict the sensor response in terms of the reflection coefficient when placed above a layered medium. The model is based on the assumption that the electromagnetic interaction is primarily governed by the sensor’s dominant mode. Full-wave simulations in the 2–3 GHz frequency range (relevant for medical applications) demonstrate strong agreement with the analytical model, thereby validating its effectiveness as a first-order approximation for sensor–tissue interactions. This provides a reliable and computationally efficient tool to properly manage microwave sensors design in medical applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Graphical abstract

21 pages, 3864 KB  
Article
Sub-MHz EMAR for Non-Contact Thickness Measurement: How Ultrasonic Wave Directivity Affects Accuracy
by Alexander Siegl, David Auer, Bernhard Schweighofer, Andre Hochfellner, Gerald Klösch and Hannes Wegleiter
Sensors 2025, 25(15), 4746; https://doi.org/10.3390/s25154746 - 1 Aug 2025
Cited by 1 | Viewed by 990
Abstract
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus [...] Read more.
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus offering safer and more cost-effective operation. Experiments were conducted on copper blocks approximately 20 mm thick, where a relative thickness accuracy of better than 0.2% is obtained. Regarding this result, the research identifies a critical design principle: Stable thickness resonances and subsequently accurate thickness measurement are achieved when the ratio of ultrasonic wavelength to EMAT track width (λ/w) falls below 1. This minimizes the excitation and interactions with structural eigenmodes, ensuring consistent measurement reliability. To support this, the study introduces a system-based model to simulate the EMAR method. The model provides detailed insights into how wave propagation affects the accuracy of EMAR measurements. Experimental results align well with the simulation outcome and confirm the feasibility of EMAR in the sub-MHz regime without compromising precision. These findings highlight the potential of low-voltage EMAR as a safer, cost-effective, and highly accurate approach for industrial ultrasonic thickness measurements. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

13 pages, 867 KB  
Article
Gravitational Wave Detection with Angular Deviation of Electromagnetic Waves
by John Maher and Arundhati Dasgupta
Universe 2025, 11(8), 244; https://doi.org/10.3390/universe11080244 - 25 Jul 2025
Viewed by 577
Abstract
In this note, we discuss interesting aspects of the interaction of electromagnetic waves (EMW) with gravitational waves (GWs) and how we can use them for GW detection. We show that there is (i) a deviation from the original path of the EMW, as [...] Read more.
In this note, we discuss interesting aspects of the interaction of electromagnetic waves (EMW) with gravitational waves (GWs) and how we can use them for GW detection. We show that there is (i) a deviation from the original path of the EMW, as measured by an angle of the scattered EMW, as well as (ii) a change in frequency. We show that the angular deviation is dependent on the frequency of the initial EMW and GW and suggest the use of MASERS/RASERS instead of LASERS for GW detection. We also briefly examine the influence of the Earth’s rotation and revolution, which can be sources of noise in the measurement of the angular deviation of EMW. Full article
Show Figures

Figure 1

Back to TopTop