Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = electromagnetic disturbances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2028 KiB  
Article
A Hybrid Algorithm for PMLSM Force Ripple Suppression Based on Mechanism Model and Data Model
by Yunlong Yi, Sheng Ma, Bo Zhang and Wei Feng
Energies 2025, 18(15), 4101; https://doi.org/10.3390/en18154101 (registering DOI) - 1 Aug 2025
Abstract
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time [...] Read more.
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time limitations. Therefore, this paper proposes a hybrid modeling framework that integrates the physical mechanism and measured data and realizes the dynamic compensation of the force ripple by constructing a collaborative suppression algorithm. At the mechanistic level, based on electromagnetic field theory and the virtual displacement principle, an analytical model of the core disturbance terms such as the cogging effect and the end effect is established. At the data level, the acceleration sensor is used to collect the dynamic response signal in real time, and the data-driven ripple residual model is constructed by combining frequency domain analysis and parameter fitting. In order to verify the effectiveness of the algorithm, a hardware and software experimental platform including a multi-core processor, high-precision current loop controller, real-time data acquisition module, and motion control unit is built to realize the online calculation and closed-loop injection of the hybrid compensation current. Experiments show that the hybrid framework effectively compensates the unmodeled disturbance through the data model while maintaining the physical interpretability of the mechanistic model, which provides a new idea for motor performance optimization under complex working conditions. Full article
27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 170
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

20 pages, 3844 KiB  
Article
Study on the Fast Transient Process of Primary Equipment Operation in UHV Fixed Series Capacitors Based on PEEC Method
by Baojiang Tian, Kai Xu, Yingying Wang, Pei Guo, Chao Xiao, Wei Han, Yiran Dong and Jingang Wang
Sensors 2025, 25(15), 4662; https://doi.org/10.3390/s25154662 - 27 Jul 2025
Viewed by 317
Abstract
This manuscript proposes a fast transient simulation method based on PEEC to model overvoltage caused by spark gap and disconnecting switch operations in UHV series compensation (FSC). It proposes a simulation method based on the Partial Element Equivalent Circuit (PEEC) for modeling the [...] Read more.
This manuscript proposes a fast transient simulation method based on PEEC to model overvoltage caused by spark gap and disconnecting switch operations in UHV series compensation (FSC). It proposes a simulation method based on the Partial Element Equivalent Circuit (PEEC) for modeling the fast transient processes associated with the operation of primary equipment in UHV FSC. Initially, a multi-conductor system model for both primary and secondary equipment on the cascade platform is developed. Then, the lumped components′ modeling of primary equipment and secondary equipment is added on the basis of multi-conductor model. Through simulation, the rapid transient overvoltage of primary equipment and the electromagnetic disturbance of the secondary system are analyzed. The simulation results provide insights into the distribution of fast transient overvoltage and the transient electromagnetic disturbance along the bus, from the low-voltage bus to the high-potential platform, under various primary equipment operating conditions. These findings provide a basis for theoretical analysis of the layout of sensor devices on platform and the design of electromagnetic shielding for interference-prone systems on platform. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

21 pages, 3802 KiB  
Article
Parameter Identification and Speed Control of a Small-Scale BLDC Motor: Experimental Validation and Real-Time PI Control with Low-Pass Filtering
by Ayman Ibrahim Abouseda, Resat Ozgur Doruk and Ali Amini
Machines 2025, 13(8), 656; https://doi.org/10.3390/machines13080656 - 27 Jul 2025
Viewed by 319
Abstract
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical [...] Read more.
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical and electromagnetic parameters such as the back electromotive force (EMF) constant and rotor inertia were determined experimentally using an AVL dynamometer. The back EMF was obtained by operating the motor as a generator under varying speeds, and inertia was identified using a deceleration method based on the relationship between angular acceleration and torque. The identified parameters were used to construct a transfer function model of the motor, which was implemented in MATLAB/Simulink R2024b and validated against real-time experimental data using sinusoidal and exponential input signals. The comparison between simulated and measured speed responses showed strong agreement, confirming the accuracy of the model. A proportional–integral (PI) controller was developed and implemented for speed regulation, using a low-cost National Instruments (NI) USB-6009 data acquisition (DAQ) and a Kelly controller. A first-order low-pass filter was integrated into the control loop to suppress high-frequency disturbances and improve transient performance. Experimental tests using a stepwise reference speed profile demonstrated accurate tracking, minimal overshoot, and robust operation. Although the modeling and control techniques applied are well known, the novelty of this work lies in its integration of experimental parameter identification, real-time validation, and practical hardware implementation within a unified and replicable framework. This approach provides a solid foundation for further studies involving more advanced or adaptive control strategies for BLDC motors. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

19 pages, 3193 KiB  
Article
Theoretical Analysis and Research on Support Reconstruction Control of Magnetic Bearing with Redundant Structure
by Huaqiang Sun, Zhiqin Liang and Baixin Cheng
Sensors 2025, 25(14), 4517; https://doi.org/10.3390/s25144517 - 21 Jul 2025
Viewed by 247
Abstract
At present, the redundant structures are one of the most effective methods for solving magnetic levitation bearing coil failure. Coil failure causes residual effective magnetic poles to form different support structures and even asymmetrical structures. For the magnetic bearing with redundant structures, how [...] Read more.
At present, the redundant structures are one of the most effective methods for solving magnetic levitation bearing coil failure. Coil failure causes residual effective magnetic poles to form different support structures and even asymmetrical structures. For the magnetic bearing with redundant structures, how to construct the electromagnetic force (EMF) that occurs under different support structures to achieve support reconstruction is the key to realizing fault tolerance control. To reveal the support reconstruction mechanism of magnetic bearing with a redundant structure, firstly, this paper takes a single-degree-of-freedom magnetic suspension body as an example to conduct a linearization theory analysis of the offset current, clarifying the concept of the current distribution matrix (CDM) and its function; then, the nonlinear EMF mode of magnetic bearing with an eight-pole is constructed, and it is linearized by using the theory of bias current linearization. Furthermore, the conditions of no coils fail, the 8th coil fails, and the 6–8th coils fail are considered, and, with the maximum principle function of EMF, the corresponding current matrices are obtained. Meanwhile, based on the CDM, the corresponding magnetic flux densities were calculated, proving that EMF reconstruction can be achieved under the three support structures. Finally, with the CDM and position control law, a fault-tolerant control system was constructed, and the simulation of the magnetic bearing with a redundant structure was carried out. The simulation results reveal the mechanism of support reconstruction with three aspects of rotor displacement, the value and direction of currents that occur in each coil. The simulation results show that, in the 8-pole magnetic bearing, this study can achieve support reconstruction in the case of faults in up to two coils. Under the three working conditions of wireless no coil failure, the 8th coil fails and the 6–8th coils fail, the current distribution strategy was adjusted through the CDM. The instantaneous displacement disturbance during the support reconstruction process was less than 0.28 μm, and the EMF after reconstruction was basically consistent with the expected value. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 3139 KiB  
Article
Sliding Mode Thrust Control Strategy for Electromagnetic Energy-Feeding Shock Absorbers Based on an Improved Gray Wolf Optimizer
by Wenqiang Zhang, Jiayu Lu, Wenqing Ge, Xiaoxuan Xie, Cao Tan and Huichao Zhang
World Electr. Veh. J. 2025, 16(7), 366; https://doi.org/10.3390/wevj16070366 - 2 Jul 2025
Viewed by 195
Abstract
Owing to its high energy efficiency, regenerative capability, and fast dynamic response, the Electromagnetic Energy-Feeding Shock Absorber has found widespread application in automotive suspension control systems. To further improve thrust control precision, this study presents a sliding mode thrust controller designed using an [...] Read more.
Owing to its high energy efficiency, regenerative capability, and fast dynamic response, the Electromagnetic Energy-Feeding Shock Absorber has found widespread application in automotive suspension control systems. To further improve thrust control precision, this study presents a sliding mode thrust controller designed using an improved Gray Wolf Optimization algorithm. Firstly, an improved exponential reaching law is adopted, where a saturation function replaces the traditional sign function to enhance system tracking accuracy and stability. Meanwhile, a position update strategy from the particle swarm optimization (PSO) algorithm is integrated into the gray wolf optimizer (GWO) to improve the global search ability and the balance of local exploitation. Secondly, the improved GWO is combined with sliding mode control to achieve online optimization of controller parameters, ensuring system robustness while suppressing chattering. Finally, comparative analyses and simulation validations are conducted to verify the effectiveness of the proposed controller. Simulation results show that, under step input conditions, the improved GWO reduces the rise time from 0.0034 s to 0.002 s and the steady-state error from 0.4 N to 0.12 N. Under sinusoidal input, the average error is reduced from 0.26 N to 0.12 N. Under noise disturbance, the average deviation is reduced from 2.77 N to 2.14 N. These results demonstrate that the improved GWO not only provides excellent trajectory tracking and control accuracy but also exhibits strong robustness under varying operating conditions and random white noise disturbances. Full article
Show Figures

Figure 1

23 pages, 3333 KiB  
Article
Pulse Compression Probing for Active Islanding Detection
by Nicholas Piaquadio, N. Eva Wu and Morteza Sarailoo
Energies 2025, 18(13), 3354; https://doi.org/10.3390/en18133354 - 26 Jun 2025
Viewed by 257
Abstract
The rapid growth of inverter-based resources (IBRs) has created a need for new islanding detection methodologies to determine whether an IBR has been disconnected from the transmission grid in some manner (islanded) or remains connected to the transmission grid (grid-connected). Active islanding detection [...] Read more.
The rapid growth of inverter-based resources (IBRs) has created a need for new islanding detection methodologies to determine whether an IBR has been disconnected from the transmission grid in some manner (islanded) or remains connected to the transmission grid (grid-connected). Active islanding detection methods inject a signal into the power system to achieve detection. Existing schemes frequently limit consideration to a single node system with one IBR. Schemes tested on multiple IBRs often see interference, with the signals from one IBR disturbing the others, or require intricate communication. Further, several methods destabilize an islanded grid to detect it, preventing a prospective microgrid from remaining in operation while islanded. This work develops an active islanding detection scheme using Pulse Compression Probing (PCP) that is microgrid-compatible and can be used with multiple IBRs without requirement for communication. This active islanding detection scheme can be implemented on existing inverter switching sequences and has a detection time of 167–223 ms, well within the detection time specified by existing standards. The method is verified via electromagnetic transient (EMT) simulation on a modified version of a 34-bus test system. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

14 pages, 3376 KiB  
Article
A Study of Ultra-Thin Surface-Mounted MEMS Fibre-Optic Fabry–Pérot Pressure Sensors for the In Situ Monitoring of Hydrodynamic Pressure on the Hull of Large Amphibious Aircraft
by Tianyi Feng, Xi Chen, Ye Chen, Bin Wu, Fei Xu and Lingcai Huang
Photonics 2025, 12(7), 627; https://doi.org/10.3390/photonics12070627 - 20 Jun 2025
Viewed by 288
Abstract
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their [...] Read more.
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their large size, fragility, intrusiveness, limited range, frequency response limitations, accuracy issues, and low sampling frequency. Fibre-optic sensors’ small size, immunity to electromagnetic interference, and reduced susceptibility to environmental disturbances have led to their progressive development in maritime and aeronautic fields. This research proposes a novel hydrodynamic profile encapsulation method using ultra-thin surface-mounted micro-electromechanical system (MEMS) fibre-optic Fabry–Pérot pressure sensors (total thickness of 1 mm). The proposed sensor exhibits an exceptional linear response and low-temperature sensitivity in hydrostatic calibration tests and shows superior response and detection accuracy in water-entry tests of wedge-shaped bodies. This work exhibits significant potential for the in situ monitoring of hydrodynamic loads during water landing, contributing to the research of large amphibious aircraft. Furthermore, this research demonstrates, for the first time, the proposed surface-mounted pressure sensor in conjunction with a high-speed acquisition system for the in situ monitoring of hydrodynamic pressure on the hull of a large amphibious prototype. Following flight tests, the sensors remained intact throughout multiple high-speed hydrodynamic taxiing events and 12 full water landings, successfully acquiring the complete dataset. The flight test results show that this proposed pressure sensor exhibits superior robustness in extreme environments compared to traditional invasive electrical sensors and can be used for full-scale hydrodynamic load flight tests. Full article
Show Figures

Figure 1

16 pages, 3028 KiB  
Article
Multi-Modal Joint Pulsed Eddy Current Sensor Signal Denoising Method Integrating Inductive Disturbance Mechanism
by Yun Zuo, Gebiao Hu, Fan Gan, Zhiwu Zeng, Zhichi Lin, Xinxun Wang, Ruiqing Xu, Liang Wen, Shubing Hu, Haihong Le, Runze Wu and Jingang Wang
Sensors 2025, 25(12), 3830; https://doi.org/10.3390/s25123830 - 19 Jun 2025
Viewed by 432
Abstract
Pulsed eddy current (PEC) testing technology has been widely used in the field of non-destructive testing of metal grounding structures due to its wide-band excitation and response characteristics. However, multi-source noise in industrial environments can significantly degrade the performance of PEC sensors, thereby [...] Read more.
Pulsed eddy current (PEC) testing technology has been widely used in the field of non-destructive testing of metal grounding structures due to its wide-band excitation and response characteristics. However, multi-source noise in industrial environments can significantly degrade the performance of PEC sensors, thereby limiting their detection accuracy. This study proposes a multi-modal joint pulsed eddy current signal sensor denoising method that integrates the inductive disturbance mechanism. This method constructs the Improved Whale Optimization -Variational Mode Decomposition-Singular Value Decomposition-Wavelet Threshold Denoising (IWOA-VMD-SVD-WTD) fourth-order processing architecture: IWOA adaptively optimizes the VMD essential variables (K, α) and employs the optimized VMD to decompose the perception coefficient (IMF) of the PEC signal. It utilizes the correlation coefficient criterion to filter and identify the primary noise components within the signal, and the SVD-WTD joint denoising model is established to reconstruct each component to remove the noise signal received by the PEC sensor. To ascertain the efficacy of this approach, we compared the IWOA-VMD-SVD-WTD method with other denoising methods under three different noise levels through experiments. The test results show that compared with other VMD-based denoising techniques, the average signal-to-noise ratio (SNR) of the PEC signal received by the receiving coil for 200 noise signals in different noise environments is 24.31 dB, 29.72 dB and 29.64 dB, respectively. The average SNR of the other two denoising techniques in different noise environments is 15.48 dB, 18.87 dB, 18.46 dB and 19.32 dB, 27.13 dB, 26.78 dB, respectively, which is significantly better than other denoising methods. In addition, in practical applications, this method is better than other technologies in denoising PEC signals and successfully achieves noise reduction and signal feature extraction. This study provides a new technical solution for extracting pure and impurity-free PEC signals in complex electromagnetic environments. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 3130 KiB  
Article
Equivalent Modeling of Disconnector Operation Based on Dynamic Arc Characteristics and VFTO Characteristic Analysis
by Bin Liu, Yong Liu, Junjun Xiong, Xiaopin Deng, Zhenyu Guo, Xueyou Zhang, Bingyu Mei and Zhenhua Li
Energies 2025, 18(12), 3045; https://doi.org/10.3390/en18123045 - 9 Jun 2025
Viewed by 353
Abstract
To thoroughly analyze the high-frequency and high-amplitude electromagnetic disturbances generated during disconnector operation, this paper proposes an equivalent modeling approach based on dynamic arc behavior. The model incorporates the resistance, inductance, and capacitance characteristics of the arc and consists of four main modules: [...] Read more.
To thoroughly analyze the high-frequency and high-amplitude electromagnetic disturbances generated during disconnector operation, this paper proposes an equivalent modeling approach based on dynamic arc behavior. The model incorporates the resistance, inductance, and capacitance characteristics of the arc and consists of four main modules: arc reignition, arc extinction, arc resistance control, and switch control. Complete logical coordination among these modules is designed to enhance the model’s performance in terms of dynamic response and modeling accuracy compared to traditional methods. By systematically comparing simulation results with experimental data and conventional model outputs, the effectiveness and reliability of the proposed model in accurately reflecting the operational characteristics of disconnectors are validated. Furthermore, a comparative analysis of transient waveform characteristics from both experiment and simulation is conducted, with key parameters extracted and probability density functions constructed. The results demonstrate the high-precision fitting capability of the model and further reveal the statistical distribution patterns of very fast transient overvoltage single-pulse characteristics. Full article
Show Figures

Figure 1

13 pages, 2190 KiB  
Article
A Novel Electromagnetic Response Measurement System for Continuous Monitoring of Meat Aging
by Dairoku Muramatsu and Yukino Sasaki
Foods 2025, 14(12), 2016; https://doi.org/10.3390/foods14122016 - 6 Jun 2025
Viewed by 475
Abstract
The aging of dry meat enhances its flavor and tenderness; however, continuous internal quality monitoring throughout the aging process is challenging. We developed and validated a novel electromagnetic response measurement system for meat aging that enables continuous bioimpedance monitoring under stable, optimal temperature/humidity [...] Read more.
The aging of dry meat enhances its flavor and tenderness; however, continuous internal quality monitoring throughout the aging process is challenging. We developed and validated a novel electromagnetic response measurement system for meat aging that enables continuous bioimpedance monitoring under stable, optimal temperature/humidity conditions. The system comprises a temperature-controlled dry aging fridge and a newly designed puncture-type semi-rigid coaxial probe, allowing for minimally invasive internal measurements over a broad frequency range. The probe achieved stable measurements across 10 kHz to 10 MHz, and its small diameter (1.25 mm) enabled almost non-destructive internal sensing. Beef and pork samples were monitored over 14 days via multi-channel bioimpedance measurements. After an initial stabilization period, bioimpedance steadily decreased throughout aging. This decline reflected progressive increases in tissue conductivity as cell membranes broke down and intracellular fluids leaked out. High-frequency measurements (e.g., around 10 MHz) were more sensitive to environmental disturbances. Periodic defrost cycles in the chamber caused temporary impedance dips at these frequencies, highlighting the influence of short-term temperature/humidity fluctuations. The system enables long-term continuous measurement without removing samples from the fridge, thus maintaining aging conditions during monitoring. Overall, the system enables the stable, long-term, and multi-channel electromagnetic monitoring of meat quality under optimal aging conditions—a capability not achieved in previous studies. This new method offers a minimally invasive, frequency-resolved approach for assessing meat quality evolution during aging. This advance demonstrates a new approach for tracking meat quality changes during dry aging. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

17 pages, 2086 KiB  
Article
Seismogenic Effects in Variation of the ULF/VLF Emission in a Complex Study of the Lithosphere–Ionosphere Coupling Before an M6.1 Earthquake in the Region of Northern Tien Shan
by Nazyf Salikhov, Alexander Shepetov, Galina Pak, Serik Nurakynov, Vladimir Ryabov and Valery Zhukov
Geosciences 2025, 15(6), 203; https://doi.org/10.3390/geosciences15060203 - 1 Jun 2025
Viewed by 389
Abstract
A complex study was performed of the disturbances in geophysics parameters that were observed during a short-term period of earthquake preparation. On 4 March 2024, an M6.1 earthquake (N 42.93, E 76.966) occurred with the epicenter 12.2 km apart from the complex [...] Read more.
A complex study was performed of the disturbances in geophysics parameters that were observed during a short-term period of earthquake preparation. On 4 March 2024, an M6.1 earthquake (N 42.93, E 76.966) occurred with the epicenter 12.2 km apart from the complex of geophysical monitoring. Preparation of the earthquake we detected in real time, 8 days prior to the main shock, when a characteristic cove-like decrease appeared in the gamma-ray flux measured 100 m below the surface of the ground, which observation indicated an approaching earthquake with high probability. Besides the gamma-ray flux, anomalies connected with the earthquake preparation were studied in the variation of the Earth’s natural pulsed electromagnetic field (ENPEMF) at very low frequencies (VLF) f=7.5 kHz and f=10.0 kHz and at ultra-low frequency (ULF) in the range of 0.001–20 Hz, as well as in the shift of Doppler frequency (DFS) of the ionospheric signal. A drop detected in DFS agrees well with the decrease in gamma radiation background. A sequence of disturbance appearance was revealed, first in the variations of ENPEMF in the VLF band and of the subsurface gamma-ray flux, both of which reflect the activation dynamic of tectonic processes in the lithosphere, and next in the variation of DFS. Two types of earthquake-connected effects may be responsible for the transmission of the perturbation from the lithosphere into the ionosphere: the ionizing gamma-ray flux and the ULF/VLF emission, as direct radiation from the nearby earthquake source. In the article, we emphasize the role of medium ionization in the propagation of seismogenic effects as a channel for realizing the lithosphere–ionosphere coupling. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes (2nd Edition))
Show Figures

Figure 1

22 pages, 33852 KiB  
Article
Research on Actuator Control System Based on Improved MPC
by Qingjian Zhao, Qinghai Zhang, Shuang Zhao, Xiaoqian Zhang, Shilei Lu, Yang Guo, Liqiang Song and Zhengxu Zhao
Actuators 2025, 14(6), 263; https://doi.org/10.3390/act14060263 - 27 May 2025
Viewed by 481
Abstract
To improve the control accuracy and interference resistance of actuator control systems in complex environments, a complete actuator control system solution has been designed. The system uses an STM32 controller as the core processing unit, integrating high-precision position sensors to build a multi-level [...] Read more.
To improve the control accuracy and interference resistance of actuator control systems in complex environments, a complete actuator control system solution has been designed. The system uses an STM32 controller as the core processing unit, integrating high-precision position sensors to build a multi-level control architecture. An improved model predictive control algorithm is proposed, which introduces extended state observers and multi-objective optimization strategies to estimate system states and external disturbances in real-time, achieving precise disturbance compensation. Experimental and test results show that, under electromagnetic interference and mechanical vibration conditions, the system’s stability and robustness are significantly enhanced, with error fluctuations of less than 0.03 mm, dynamic response time of 4.82 s, overshoot of 1.5%, steady-state error of 0.14 mm, and energy consumption reduced by 15%, all better than MPC, fuzzy control, and PID control methods under similar conditions. This research provides a comprehensive solution for hardware design and algorithm optimization in actuator control for industrial automation and precision manufacturing. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

16 pages, 5276 KiB  
Article
Measurements and Analysis of Electromagnetic Compatibility of Railway Rolling Stock with Train Detection Systems Using Track Circuits
by Adam Garczarek and Dorota Stachowiak
Energies 2025, 18(11), 2705; https://doi.org/10.3390/en18112705 - 23 May 2025
Cited by 1 | Viewed by 496
Abstract
One of the main challenges in the operation of electric traction vehicles is ensuring safety and operational reliability. To ensure the safety of railway traffic, vehicles must undergo a series of tests related to the investigation of disturbances generated, among others, in the [...] Read more.
One of the main challenges in the operation of electric traction vehicles is ensuring safety and operational reliability. To ensure the safety of railway traffic, vehicles must undergo a series of tests related to the investigation of disturbances generated, among others, in the return current to the mains. This problem is further complicated by the inability to perform such measurements under laboratory conditions. The implementation of tests under real conditions determines the appearance of additional potential interference sources, from power sources to improper interactions between current collectors and the overhead contact system, and it requires strict compliance with regulatory standards and the implementation of standardized testing procedures. This article presents issues related to the investigation and analysis of the electromagnetic compatibility of rolling stock with train detection systems using track circuits. The aim of these tests is to determine the harmonic components in the traction current in relation to the permissible levels specified in the latest editions of the European Railway Agency—ERA/ERTMS/033281 version 5.0 documents and Annex S-02 to the List of the President of the Office of Rail Transport. The measurement methodology and test procedures are presented in detail with respect to current legal requirements. Full article
(This article belongs to the Special Issue Planning, Operation and Control of Microgrids: 2nd Edition)
Show Figures

Figure 1

22 pages, 22206 KiB  
Article
Research on the Formation Behaviour and Tribological Service Mechanism of Ni-Based Composite Coatings Prepared by Thermal Spraying Assisted with Alternating Current Magnetic Field
by Qingwen Yun, Jun Xiong, Ying Dong, Xi Zhu, Zhiyuan Wang, Fengyuan Bao, Jinyu Li and Yunan Jin
Coatings 2025, 15(5), 496; https://doi.org/10.3390/coatings15050496 - 22 Apr 2025
Viewed by 353
Abstract
In this paper, an alternating current (AC) magnetic field-assisted device was employed to enhance the preparation process of supersonic plasma spraying coatings. The phase structure and mechanical service characteristics of the five types of coatings were tested. The research found that the porosity [...] Read more.
In this paper, an alternating current (AC) magnetic field-assisted device was employed to enhance the preparation process of supersonic plasma spraying coatings. The phase structure and mechanical service characteristics of the five types of coatings were tested. The research found that the porosity of the coating decreased from 3.93% to 1.58%, the hardness increased from 702.88 to 921.12 HV, the bonding strength increased from 26 MPa to 38.3 MPa, and the tribological coefficient decreased from 0.6859 to 0.4670. The mechanism is that the AC magnetic field enhances the internal structure of the coating through electromagnetic stirring, electromagnetic oscillation and other effects. It also stirs the solidification process of the powder particles, improves the melting behaviour of the coating particles at the interface, and enhances the bonding quality of the coating. The improvement of the microstructure and mechanical properties further improves the tribological properties of the coating. At the same time, it is found that the higher the intensity of the AC magnetic field is not necessarily better for the improvement of the coating performance. When the AC magnetic field voltage reaches the peak of the device, the coating formation process is disturbed by the AC magnetic field, and the coating quality formed under the same spraying process is poor. Appropriate control of the AC magnetic field can effectively improve the internal structure and service quality of the coating. This provides a new technical idea and theoretical research basis for the development of advanced equipment surface engineering protection. Full article
Show Figures

Graphical abstract

Back to TopTop