Precursory Phenomena Prior to Earthquakes (2nd Edition)

A special issue of Geosciences (ISSN 2076-3263). This special issue belongs to the section "Natural Hazards".

Deadline for manuscript submissions: closed (25 March 2025) | Viewed by 5937

Special Issue Editor


E-Mail Website
Guest Editor
Department of Industrial Design and Production Engineering, University of West Attica, Petrou Ralli & Thivon 250, GR-122 44 Aigaleo, Greece
Interests: radon; radon progeny; radon in soil; kHz-MHz electromagnetic radiation; fractal analysis; fractal dimension; long memory; Hurst exponent; DFA; symbolic dynamics; R/S analysis; entropy; Tsallis entropy; earthquakes; pre-seismic precursors; ionizing radiation physics; radiation dosimetry; radiation exposure; radiation protection; X-rays
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Geosciences aims to gather high-quality original research articles, reviews, and technical notes on the topic of precursory phenomena that occur prior to earthquakes.

Several types of emissions are detected prior to earthquakes, which provide a potential data source from which seismic predictions can be made. Recent research suggests that specific pre-seismic activity can be directly related to specific earthquakes, although this is still an open issue. It is still unclear how pre-seismic emissions and subsequent earthquake events can be linked with accuracy. Known precursors include the electromagnetic radiation of a wide frequency range from ultra-low frequencies (ULFs) between 0.001 and 1 Hz, low frequencies (LFs) between 1 and 10 kHz, and high frequencies (HFs) between 40 and 60 MHz to very high frequencies (VHFs) up to 300 MHz. Enhanced radon gas emissions before earthquakes also count as significant precursors, and have an equally long history and surrounding debate in association with seismic activity. The pre-earthquake activity of radon gas and progeny has been observed in the atmosphere, surface water, groundwater, and underground water, and in soil gas, thermal spas, active faults, volcanic processes, and other seismotectonic environments. Related research also includes observations of several trace gases, e.g., CO2 in active faults, satellite measurements, and remote sensing techniques, surface mapping, and other earthquake activity observations and studies. The research field adopts diverging types of methodological approaches, such as those related to the stochastic and statistical behavior of earthquake-related systems, fractals, long memory, fractal dimension, Hurst exponents, entropy, symbolic dynamics, DFA and MFDFA, R/S analysis, spectral analysis, Fourier analysis and wavelets, signal analysis, and signal processing. All the above topics are indicative of the phenomenon.

The problem of earthquake prediction is a significant challenge among the scientific community, with several reported attempts to resolve issues related to the discovery of credible and unambiguous pre-earthquake precursors, especially for strong and catastrophic earthquakes. The whole study area is multifaceted and involves several types of measurements and analysis methods. For the above reasons, I would like to invite you to submit recent articles, experimental research papers, and case studies, with respect to the topics described above. Papers on the interconnection of the above topics are strongly encouraged.

I invite you to submit a short abstract outlining the purpose of the research and the principal results obtained, in order to verify at an early stage whether the contribution you intend to submit fits with the objectives of this Special Issue.

The publications in the first volume, which we believe may be of interest to you, can be found here: https://www.mdpi.com/journal/geosciences/special_issues/AYN08Z815H.

Prof. Dr. Dimitrios Nikolopoulos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electromagnetism
  • radon
  • earthquakes
  • remote sensing
  • design of experiments
  • data analysis: algorithms and implementation
  • data management
  • modeling and simulation
  • satellite measurements
  • self-organized systems
  • non-linear dynamics and chaos
  • fractals
  • seismic source mechanisms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2086 KiB  
Article
Seismogenic Effects in Variation of the ULF/VLF Emission in a Complex Study of the Lithosphere–Ionosphere Coupling Before an M6.1 Earthquake in the Region of Northern Tien Shan
by Nazyf Salikhov, Alexander Shepetov, Galina Pak, Serik Nurakynov, Vladimir Ryabov and Valery Zhukov
Geosciences 2025, 15(6), 203; https://doi.org/10.3390/geosciences15060203 - 1 Jun 2025
Viewed by 162
Abstract
A complex study was performed of the disturbances in geophysics parameters that were observed during a short-term period of earthquake preparation. On 4 March 2024, an M6.1 earthquake (N 42.93, E 76.966) occurred with the epicenter 12.2 km apart from the complex [...] Read more.
A complex study was performed of the disturbances in geophysics parameters that were observed during a short-term period of earthquake preparation. On 4 March 2024, an M6.1 earthquake (N 42.93, E 76.966) occurred with the epicenter 12.2 km apart from the complex of geophysical monitoring. Preparation of the earthquake we detected in real time, 8 days prior to the main shock, when a characteristic cove-like decrease appeared in the gamma-ray flux measured 100 m below the surface of the ground, which observation indicated an approaching earthquake with high probability. Besides the gamma-ray flux, anomalies connected with the earthquake preparation were studied in the variation of the Earth’s natural pulsed electromagnetic field (ENPEMF) at very low frequencies (VLF) f=7.5 kHz and f=10.0 kHz and at ultra-low frequency (ULF) in the range of 0.001–20 Hz, as well as in the shift of Doppler frequency (DFS) of the ionospheric signal. A drop detected in DFS agrees well with the decrease in gamma radiation background. A sequence of disturbance appearance was revealed, first in the variations of ENPEMF in the VLF band and of the subsurface gamma-ray flux, both of which reflect the activation dynamic of tectonic processes in the lithosphere, and next in the variation of DFS. Two types of earthquake-connected effects may be responsible for the transmission of the perturbation from the lithosphere into the ionosphere: the ionizing gamma-ray flux and the ULF/VLF emission, as direct radiation from the nearby earthquake source. In the article, we emphasize the role of medium ionization in the propagation of seismogenic effects as a channel for realizing the lithosphere–ionosphere coupling. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes (2nd Edition))
Show Figures

Figure 1

19 pages, 5233 KiB  
Article
Two-Stage Systematic Forecasting of Earthquakes
by Valery Gitis and Alexander Derendyaev
Geosciences 2025, 15(5), 170; https://doi.org/10.3390/geosciences15050170 - 11 May 2025
Viewed by 243
Abstract
Earthquakes cause enormous social and economic damage. Consequently, the seismic process requires regular monitoring and systematic forecasting of strong earthquakes. This study introduces an enhanced iteration of the method of the minimum area of alarm (MMAA), refined to advance earthquake forecasting technology closer [...] Read more.
Earthquakes cause enormous social and economic damage. Consequently, the seismic process requires regular monitoring and systematic forecasting of strong earthquakes. This study introduces an enhanced iteration of the method of the minimum area of alarm (MMAA), refined to advance earthquake forecasting technology closer to its practical application. In the new version, a forecast is considered successful when all target earthquake epicenters within a specified time interval are contained within predefined alarm zones. Our updated algorithm optimizes the probability of successfully detecting earthquakes across forecast cycles and the probability for subsequent periods. A case study from the Kamchatka region demonstrates the practical application of this systematic forecasting approach. We propose that this computational technology can serve as an operational tool for generating early warnings of potential seismic hazards, and a research platform for conducting detailed investigations of precursor phenomena. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes (2nd Edition))
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 2254 KiB  
Review
Seismicity Precursors and Their Practical Account
by Vasilis Tritakis
Geosciences 2025, 15(4), 147; https://doi.org/10.3390/geosciences15040147 - 14 Apr 2025
Viewed by 420
Abstract
Earthquakes (EQs) are the most unpredictable and damaging natural disasters. Over the last hundred years, the scientific community has been engaged in an intense endeavor to attain a confident and secure method of seismic activity forecasting. So far, despite these efforts, no fully [...] Read more.
Earthquakes (EQs) are the most unpredictable and damaging natural disasters. Over the last hundred years, the scientific community has been engaged in an intense endeavor to attain a confident and secure method of seismic activity forecasting. So far, despite these efforts, no fully validated method for predicting EQs has been established. However, research over the last thirty years has documented a substantial number of seismic precursor phenomena, the correct evaluation and application of which may pave the way for the development of a reliable EQ prediction method in the near future. Most documented seismic precursors belong to the rapidly evolving field of electro-seismology, while a smaller subset falls within the traditional domain of classical seismology and geophysics. This article aims to compile, classify, and assess the most well-documented precursors while also proposing a preliminary framework for their more effective application. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes (2nd Edition))
Show Figures

Figure 1

42 pages, 631 KiB  
Review
Electromagnetic and Radon Earthquake Precursors
by Dimitrios Nikolopoulos, Demetrios Cantzos, Aftab Alam, Stavros Dimopoulos and Ermioni Petraki
Geosciences 2024, 14(10), 271; https://doi.org/10.3390/geosciences14100271 - 14 Oct 2024
Cited by 6 | Viewed by 3807
Abstract
Earthquake forecasting is arguably one of the most challenging tasks in Earth sciences owing to the high complexity of the earthquake process. Over the past 40 years, there has been a plethora of work on finding credible, consistent and accurate earthquake precursors. This [...] Read more.
Earthquake forecasting is arguably one of the most challenging tasks in Earth sciences owing to the high complexity of the earthquake process. Over the past 40 years, there has been a plethora of work on finding credible, consistent and accurate earthquake precursors. This paper is a cumulative survey on earthquake precursor research, arranged into two broad categories: electromagnetic precursors and radon precursors. In the first category, methods related to measuring electromagnetic radiation in a wide frequency range, i.e., from a few Hz to several MHz, are presented. Precursors based on optical and radar imaging acquired by spaceborne sensors are also considered, in the broad sense, as electromagnetic. In the second category, concentration measurements of radon gas found in soil and air, or even in ground water after being dissolved, form the basis of radon activity precursors. Well-established mathematical techniques for analysing data derived from electromagnetic radiation and radon concentration measurements are also described with an emphasis on fractal methods. Finally, physical models of earthquake generation and propagation aiming at interpreting the foundation of the aforementioned seismic precursors, are investigated. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes (2nd Edition))
Back to TopTop