Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = electro-acoustic efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2211 KiB  
Article
Electroacoustic Comparison and Optimization of Low-Power Impulse Sound-Source Needle Series Electrodes
by Xiao Du, Jing Zhou and Xu Gao
Energies 2025, 18(13), 3230; https://doi.org/10.3390/en18133230 - 20 Jun 2025
Viewed by 252
Abstract
The high-power drive of an impulse sound source with drilling makes the system’s life short and difficult to integrate. This report firstly establishes the pulse discharge experimental system and finite element model, and compares and verifies the typical parameters. Second, the study examines [...] Read more.
The high-power drive of an impulse sound source with drilling makes the system’s life short and difficult to integrate. This report firstly establishes the pulse discharge experimental system and finite element model, and compares and verifies the typical parameters. Second, the study examines how the energy storage capacitor’s charging voltage, discharge electrode gap, and liquid environment conductivity influence the electroacoustic performance of needle series electrodes. Subsequently, the optimal electrode configuration is identified under power constraints, yielding electroacoustic parameters and curves suitable for low-power impulsive sound sources. The findings reveal that the needle–plate electrode outperforms others in pre-breakdown duration, peak impulse wave strength, highest sound pressure level, and electroacoustic conversion efficiency. However, its higher power demand can be mitigated by lowering the charging voltage and narrowing the electrode gap. The charging voltage of the power-limited needle–plate electrode is only 3.5 kV, the impulse wave intensity reaches 1.27 MPa, and the peak system power is effectively controlled within 6.66 kW. A stable 288 dB SPL output is maintained up to 1 kHz, and above 250 dB in the wide bandwidth of 1–100 kHz. Needle–plate electrodes provide broadband excitation and high intensity SPL output despite power limitations. Full article
Show Figures

Figure 1

24 pages, 6059 KiB  
Review
Research Progress of Thermoelectric Materials—A Review
by Jun Wang, Yonggao Yin, Chunwen Che and Mengying Cui
Energies 2025, 18(8), 2122; https://doi.org/10.3390/en18082122 - 21 Apr 2025
Cited by 2 | Viewed by 2759
Abstract
Thermoelectric materials are functional materials that directly convert thermal energy into electrical energy or vice versa, and due to their inherent properties, they hold significant potential in the field of energy conversion. In this review, we examine several fundamental strategies aimed at enhancing [...] Read more.
Thermoelectric materials are functional materials that directly convert thermal energy into electrical energy or vice versa, and due to their inherent properties, they hold significant potential in the field of energy conversion. In this review, we examine several fundamental strategies aimed at enhancing the conversion efficiency, classification, preparation methods, and applications of thermoelectric materials. First, we introduce an important parameter for evaluating the performance of thermoelectric materials, the dimensionless quality factor ZT, and present the theory of electroacoustic transport in thermoelectric materials, which provides the foundation for enhancing the performance of thermoelectric materials. Second, strategies for optimizing electroacoustic transport properties, carrier concentration, energy band engineering, phonon engineering, and entropy engineering are summarized, emphasizing that energy band engineering presents numerous possibilities for enhancing thermoelectric material performance by tuning the carrier effective mass, energy band convergence, and energy band resonance. By analyzing the importance of various optimization strategies, it is concluded that co-optimization is the primary method for improving the performance of thermoelectric materials in the future. In addition, an overview of the currently available thermoelectric materials is provided, including two categories, classical thermoelectric materials and novel thermoelectric materials, along with a highlight of two thermoelectric material preparation techniques. Finally, the principles of thermoelectric technology are illustrated, its applications in various fields are discussed, problems in the current research are analyzed, and future trends are outlined. Overall, this paper provides a comprehensive summary of optimization strategies, material classifications, and applications, offering valuable references and insights for the researchers in this field, with the aim of further advancing the development of thermoelectric material science. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

15 pages, 3394 KiB  
Article
Experimental Research on and Optimization of Plasma Emitter Sources
by Xu Gao, Jing Zhou and Xiao Du
Sensors 2025, 25(6), 1715; https://doi.org/10.3390/s25061715 - 10 Mar 2025
Viewed by 604
Abstract
Traditional emitters used for downhole acoustic detection have limited radiation frequency and energy, making it difficult to transmit high-precision acoustic signals over long distances. This paper presents a plasma emitter in which high-pressure discharge generates a powerful spherical impulse wave with a wide [...] Read more.
Traditional emitters used for downhole acoustic detection have limited radiation frequency and energy, making it difficult to transmit high-precision acoustic signals over long distances. This paper presents a plasma emitter in which high-pressure discharge generates a powerful spherical impulse wave with a wide frequency range. First, the discharge characteristics of the plasma needle-plate emitter are analyzed using high-voltage discharge experiments and discharge simulation models for underwater emitters. Subsequently, advanced modifications are made to the structure of the needle–plate emitter to meet the requirements of downhole detection. A new type of hollow needle–plate emitter with a spherical tip is developed. The results show that the structural optimization of the hollow needle–plate emitter with a spherical tip resulted in a 27.2% increase in impulse wave amplitude, a 28.1% improvement in electro-acoustic conversion efficiency, and a radiation frequency band covering up to 100 kHz. This development is conducive to more accurate and longer-range downhole structure detection. The detection range outside the borehole can reach tens to hundreds of meters. This enables the precise control of the wellbore path and reduces the demands on the rig’s build rate. The emitter has significant application potential in areas such as onshore and offshore oil and gas exploration, unconventional resource detection, impulse wave fracturing and wellbore clearance, and rescue and U-well drilling. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 3933 KiB  
Article
A Fully Coupled Electro-Vibro-Acoustic Benchmark Model for Evaluation of Self-Adaptive Control Strategies
by Thomas Kletschkowski
J 2025, 8(1), 6; https://doi.org/10.3390/j8010006 - 17 Feb 2025
Viewed by 1080
Abstract
The reduction of noise and vibration is possible with passive, semi-active and active control strategies. Especially where self-adaptive control is required, it is necessary to evaluate the noise reduction potential before the control approach is applied to the real-world problem. This evaluation can [...] Read more.
The reduction of noise and vibration is possible with passive, semi-active and active control strategies. Especially where self-adaptive control is required, it is necessary to evaluate the noise reduction potential before the control approach is applied to the real-world problem. This evaluation can be based on a virtual model that contains all relevant sub-systems, transfer paths and coupling effects on the one hand. On the other hand, the complexity of such a model has to be limited to focus on principal findings such as convergence speed, power consumption, and noise reduction potential. The present paper proposes a fully coupled electro-vibro-acoustic model for the evaluation of self-adaptive control strategies. This model consists of discrete electrical and mechanical networks that are applied to model the electro-acoustic behavior of noise and anti-noise sources. The acoustic field inside a duct, terminated by these electro-acoustic sources, is described by finite elements. The resulting multi-physical model is capable of describing all relevant coupling effects and enables an efficient evaluation of different control strategies such as the local control of sound pressure or active control of acoustic absorption. It is designed as a benchmark model for the benefit of the scientific community. Full article
Show Figures

Figure 1

17 pages, 4877 KiB  
Article
Analysis of Transient Thermoacoustic Characteristics and Performance in Carbon Nanotube Sponge Underwater Transducers
by Qianshou Qi, Zhe Li, Huilin Yin, Yanxia Feng, Zhenhuan Zhou and Dalun Rong
Nanomaterials 2024, 14(10), 817; https://doi.org/10.3390/nano14100817 - 7 May 2024
Viewed by 1588
Abstract
Recent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube [...] Read more.
Recent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube (CNT) sponge is designed to achieve wide bandwidth, high energy conversion efficiency, simple structure, good transient response, and stable sound response, utilizing the TA effect through electro-thermal modulation. The transducer has potential application in underwater acoustic communication. An electro-thermal-acoustic coupled simulation for the open model, sandwich model, and encapsulated model is presented to analyze the transient behaviors of CNT sponge TA transducers in liquid environments. The effects of key design parameters on the acoustic performances of both systems are revealed. The results demonstrate that a short pulse excitation with a low duty cycle could greatly improve the heat dissipation of the encapsulated transducer, especially when the thermoacoustic response time becomes comparable to thermal relaxation time. Full article
Show Figures

Figure 1

14 pages, 4570 KiB  
Article
A High-Performance Flexible Hydroacoustic Transducer Based on 1-3 PZT-5A/Silicone Rubber Composite
by Shaohua Hao, Chao Zhong, Likun Wang and Lei Qin
Sensors 2024, 24(7), 2081; https://doi.org/10.3390/s24072081 - 25 Mar 2024
Cited by 5 | Viewed by 2341
Abstract
In recent years, hydroacoustic transducers made of PZT/epoxy composites have been extensively employed in underwater detection, communication, and recognition for their high energy conversion efficiency. Despite the ease with which these transducers can be formed into complex shapes, their lack of mechanical flexibility [...] Read more.
In recent years, hydroacoustic transducers made of PZT/epoxy composites have been extensively employed in underwater detection, communication, and recognition for their high energy conversion efficiency. Despite the ease with which these transducers can be formed into complex shapes, their lack of mechanical flexibility limits their versatility across various sizes of underwater vehicles. This study introduces a novel flexible piezoelectric composite hydroacoustic transducer (FPCHT) based on a 1-3 PZT-5A/silicone rubber composite and an island–bridge flexible electrode, which can break the limitations of existing hydroacoustic transducers that do not have flexibility. The finite element method is used to optimize the structural parameters of high-performance 1-3 FPC. A large-sized (187 mm × 47 mm × 5.12 mm) FPC is fabricated using an improved cutting–filling method and packaged into the FPCHT. Compared with the planar rigid PZT/epoxy composite hydroacoustic transducer (RPCHT) of the same size, the TVR (186.5 db) of the FPCHT has increased by about 7 dB, indicating that it has better acoustic radiation performance and electroacoustic conversion efficiency. Furthermore, its electroacoustic performance exhibits excellent stability under different bending states. Therefore, the FPCHT with high electroacoustic performance is an ideal substitute for the existing RPCHT and promotes the development of hydroacoustic transducers towards flexibility and portability. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

27 pages, 3788 KiB  
Article
Modeling a Fluid-Coupled Single Piezoelectric Micromachined Ultrasonic Transducer Using the Finite Difference Method
by Valentin Goepfert, Audren Boulmé, Franck Levassort, Tony Merrien, Rémi Rouffaud and Dominique Certon
Micromachines 2023, 14(11), 2089; https://doi.org/10.3390/mi14112089 - 12 Nov 2023
Cited by 1 | Viewed by 1651
Abstract
A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential equation used to translate [...] Read more.
A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential equation used to translate the mechanical behavior of a PMUT. In the model, both the axial and the transverse displacements are preserved in the equation of motion and used to properly define the neutral line position. To introduce fluid coupling, a Green’s function dedicated to axisymmetric circular radiating sources is employed. The resolution of the behavioral equations is used to establish the equivalent electroacoustic circuit of a PMUT that preserves the average particular velocity, the mechanical power, and the acoustic power. Particular consideration is given to verifying the validity of certain assumptions that are usually made across various steps of previously reported analytical models. In this framework, the advantages of the membrane discretization performed in the FD-BEM model are highlighted through accurate simulations of the first vibration mode and especially the cutoff frequency that many other models do not predict. This high cutoff frequency corresponds to cases where the spatial average velocity of the plate is null and is of great importance for PMUT design because it defines the upper limit above which the device is considered to be mechanically blocked. These modeling results are compared with electrical and dynamic membrane displacement measurements of AlN-based (500 nm thick) PMUTs in air and fluid. The first resonance frequency confrontation showed a maximum relative error of 1.13% between the FD model and Finite Element Method (FEM). Moreover, the model perfectly predicts displacement amplitudes when PMUT vibrates in a fluid, with less than 5% relative error. Displacement amplitudes of 16 nm and 20 nm were measured for PMUT with 340 µm and 275 µm diameters, respectively. This complete PMUT model using the FD-BEM approach is shown to be very efficient in terms of computation time and accuracy. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications)
Show Figures

Figure 1

14 pages, 3028 KiB  
Communication
A High Sensitivity AlN-Based MEMS Hydrophone for Pipeline Leak Monitoring
by Baoyu Zhi, Zhipeng Wu, Caihui Chen, Minkan Chen, Xiaoxia Ding and Liang Lou
Micromachines 2023, 14(3), 654; https://doi.org/10.3390/mi14030654 - 14 Mar 2023
Cited by 11 | Viewed by 4054
Abstract
In this work, a miniaturized, low-cost, low-power and high-sensitivity AlN-based micro-electro-mechanical system (MEMS) hydrophone is proposed for monitoring water pipeline leaks. The proposed MEMS Hydrophone consists of a piezoelectric micromachined ultrasonic transducer (PMUT) array, an acoustic matching layer and a pre-amplifier amplifier circuit. [...] Read more.
In this work, a miniaturized, low-cost, low-power and high-sensitivity AlN-based micro-electro-mechanical system (MEMS) hydrophone is proposed for monitoring water pipeline leaks. The proposed MEMS Hydrophone consists of a piezoelectric micromachined ultrasonic transducer (PMUT) array, an acoustic matching layer and a pre-amplifier amplifier circuit. The array has 4 (2 × 2) PMUT elements with a first-order resonant frequency of 41.58 kHz. Due to impedance matching of the acoustic matching layer and the 40 dB gain of the pre-amplifier amplifier circuit, the packaged MEMS Hydrophone has a high sound pressure sensitivity of −170 ± 2 dB (re: 1 V/μPa). The performance with respect to detecting pipeline leaks and locating leak points is demonstrated on a 31 m stainless leaking pipeline platform. The standard deviation (STD) of the hydroacoustic signal and Monitoring Index Efficiency (MIE) are extracted as features of the pipeline leak. A random forest model is trained for accurately classifying the leak and no-leak cases using the above features, and the accuracy of the model is about 97.69%. The cross-correlation method is used to locate the leak point, and the localization relative error is about 10.84% for a small leak of 12 L/min. Full article
(This article belongs to the Special Issue Design, Fabrication and Testing of MEMS/NEMS, 2nd Edition)
Show Figures

Figure 1

14 pages, 5819 KiB  
Article
Acoustic and Thermal Characterization of Therapeutic Ultrasonic Langevin Transducers under Continuous- and Pulsed Wave Excitations
by Jinhyuk Kim and Jungwoo Lee
Sensors 2022, 22(22), 9006; https://doi.org/10.3390/s22229006 - 21 Nov 2022
Cited by 6 | Viewed by 2640
Abstract
We previously conducted an empirical study on Langevin type transducers in medical use by examining the heat effect on porcine tissue. For maximum acoustic output, the transducer was activated by a continuous sinusoidal wave. In this work, pulsed waves with various duty factors [...] Read more.
We previously conducted an empirical study on Langevin type transducers in medical use by examining the heat effect on porcine tissue. For maximum acoustic output, the transducer was activated by a continuous sinusoidal wave. In this work, pulsed waves with various duty factors were applied to our transducer model in order to examine their effect on functionality. Acoustic power, electro-acoustic conversion efficiency, acoustic pressure, thermal effect on porcine tissue and bovine muscle, and heat generation in the transducer were investigated under various input conditions. For example, the results of applying a continuous wave of 200 VPP and a pulse wave of 70% duty factor with the same amplitude to the transducer were compared. It was found that continuous waves generated 9.79 W of acoustic power, 6.40% energy efficiency, and 24.84 kPa acoustic pressure. In pulsed excitation, the corresponding values were 9.04 W, 8.44%, and 24.7 kPa, respectively. The maximum temperature increases in bovine muscle are reported to be 83.0 °C and 89.5 °C for each waveform, whereas these values were 102.5 °C and 84.5 °C in fatty porcine tissue. Moreover, the heat generation around the transducer was monitored under continuous and pulsed modes and was found to be 51.3 °C and 50.4 °C. This shows that pulsed excitation gives rise to less thermal influence on the transducer. As a result, it is demonstrated that a transducer triggered by pulsed waves improves the energy efficiency and provides sufficient thermal impact on biological tissues by selecting proper electrical excitation types. Full article
(This article belongs to the Special Issue Ultrasound-Based Sensors for Physical Therapy Applications)
Show Figures

Figure 1

23 pages, 9847 KiB  
Article
Structural Optimization and MEMS Implementation of the NV Center Phonon Piezoelectric Device
by Xiang Shen, Liye Zhao and Fei Ge
Micromachines 2022, 13(10), 1628; https://doi.org/10.3390/mi13101628 - 28 Sep 2022
Viewed by 2243
Abstract
The nitrogen-vacancy (NV) center of the diamond has attracted widespread attention because of its high sensitivity in quantum precision measurement. The phonon piezoelectric device of the NV center is designed on the basis of the phonon-coupled regulation mechanism. The propagation characteristics and acoustic [...] Read more.
The nitrogen-vacancy (NV) center of the diamond has attracted widespread attention because of its high sensitivity in quantum precision measurement. The phonon piezoelectric device of the NV center is designed on the basis of the phonon-coupled regulation mechanism. The propagation characteristics and acoustic wave excitation modes of the phonon piezoelectric device are analyzed. In order to improve the performance of phonon-coupled manipulation, the influence of the structural parameters of the diamond substrate and the ZnO piezoelectric layer on the phonon propagation characteristics are analyzed. The structure of the phonon piezoelectric device of the NV center is optimized, and its Micro-Electro-Mechanical System (MEMS) implementation and characterization are carried out. Research results show that the phonon resonance manipulation method can effectively increase the NV center’s spin transition probability using the MEMS phonon piezoelectric device prepared in this paper, improving the quantum spin manipulation efficiency. Full article
(This article belongs to the Special Issue MEMS Inertial Sensors)
Show Figures

Figure 1

14 pages, 3157 KiB  
Article
Thin-Film Lithium Niobate Based Acousto-Optic Modulation Working at Higher-Order TE1 Mode
by Yang Yang, Yin Xu, Dongmei Huang, Feng Li, Yue Dong, Bo Zhang, Yi Ni and P. K. A. Wai
Photonics 2022, 9(1), 12; https://doi.org/10.3390/photonics9010012 - 28 Dec 2021
Cited by 6 | Viewed by 4010
Abstract
Acousto-optic modulation (AOM) is regarded as an effective way to link multi-physical fields on-chip. We propose an on-chip AOM scheme based on the thin-film lithium niobate (TFLN) platform working at the higher-order TE1 mode, rather than the commonly used fundamental TE0 [...] Read more.
Acousto-optic modulation (AOM) is regarded as an effective way to link multi-physical fields on-chip. We propose an on-chip AOM scheme based on the thin-film lithium niobate (TFLN) platform working at the higher-order TE1 mode, rather than the commonly used fundamental TE0 mode. Multi-physical field coupling analyses were carried out to obtain the refractive index change of the optical waveguide (>6.5×1010 for a single phonon) induced by the enhanced acousto-optic interaction between the acoustic resonator mode and the multimode optical waveguide. By using a Mach-Zehnder interferometer (MZI) structure, the refractive index change is utilized to modulate the output spectrum of the MZI, thus achieving the AOM function. In the proposed AOM scheme, efficient mode conversion between the TE0 and TE1 mode is required in order to ensure that the AOM works at the higher-order TE1 mode in the MZI structure. Our results show that the half-wave-voltage-length product (VπL) is <0.01 V·cm, which is lower than that in some previous reports on AOM and electro-optic modulation (EOM) working at the fundamental TE0 mode (e.g., VπL > 0.04 V·cm for AOM, VπL > 1 V·cm for EOM). Finally, the proposed AOM has lower loss when compared with EOM because the electrode of the AOM can be placed far from the optical waveguide. Full article
(This article belongs to the Special Issue Advances in Photonic Integrated Devices and Circuits)
Show Figures

Figure 1

18 pages, 3151 KiB  
Article
Complex Rayleigh Waves in Nonhomogeneous Magneto-Electro-Elastic Half-Spaces
by Ke Li, Shuangxi Jing, Jiangong Yu and Bo Zhang
Materials 2021, 14(4), 1011; https://doi.org/10.3390/ma14041011 - 21 Feb 2021
Cited by 16 | Viewed by 2137
Abstract
The complex Rayleigh waves play an important role in the energy conversion efficiency of magneto-electro-elastic devices, so it is necessary to explore the wave propagation characteristics for the better applications in engineering. This paper modifies the Laguerre orthogonal polynomial to investigate the complex [...] Read more.
The complex Rayleigh waves play an important role in the energy conversion efficiency of magneto-electro-elastic devices, so it is necessary to explore the wave propagation characteristics for the better applications in engineering. This paper modifies the Laguerre orthogonal polynomial to investigate the complex Rayleigh waves propagating in nonhomogeneous magneto-electro-elastic half-spaces. The improved method simplifies the calculation process by incorporating boundary conditions into the constitutive relations, shortens the solving time by transforming the solution of wave equation to an eigenvalue problem, and obtains all wave modes, including real and imaginary and complex wavenumbers. The three-dimensional curves of full frequency spectrum and phase velocities are presented for the better description of the conversion from complex Rayleigh wave modes to real wave ones; besides, the displacement distributions, electric and magnetic potential curves are obtained in thickness and propagation directions, respectively. Numerical results are analyzed and discussed elaborately in three cases: variation of nonhomogeneous coefficients, absence of magnetism, and absence of electricity. The results can be used to optimize and fabricate the acoustic surface wave devices of the nonhomogeneous magneto-electro-elastic materials. Full article
Show Figures

Figure 1

12 pages, 10035 KiB  
Article
Inkjet Printing of Plate Acoustic Wave Devices
by Iren Kuznetsova, Andrey Smirnov, Vladimir Anisimkin, Sergey Gubin, Maria Assunta Signore, Luca Francioso, Jun Kondoh and Vladimir Kolesov
Sensors 2020, 20(12), 3349; https://doi.org/10.3390/s20123349 - 12 Jun 2020
Cited by 10 | Viewed by 3350
Abstract
In the paper, the results of production of Ag inkjet printed interdigital transducers to the acoustic delay line based on Y-cut X-propagation direction of lithium niobate plate for the frequency range from 1 to 14 MHz are presented. Additionally, morphological, structural, and electro-physical [...] Read more.
In the paper, the results of production of Ag inkjet printed interdigital transducers to the acoustic delay line based on Y-cut X-propagation direction of lithium niobate plate for the frequency range from 1 to 14 MHz are presented. Additionally, morphological, structural, and electro-physical characteristics of the obtained electrodes were investigated. Mathematical modeling of the excitation of acoustic waves by these electrode structures was carried out. Comparison of the theoretical results with experimental ones showed their qualitative and quantitative coincidences. It was shown that conventional inkjet printing can replace the complex photolithographic method for production of interdigital transducers for acoustic delay lines working up to 14 MHz. The resulting electrode structures make it possible to efficiently excite acoustic waves with a high value of electromechanical coupling coefficient in piezoelectric plates. Full article
(This article belongs to the Special Issue Acoustic Wave Sensors for Gaseous and Liquid Environments)
Show Figures

Figure 1

15 pages, 2593 KiB  
Article
Design of a Piezoelectric Multilayered Structure for Ultrasound Sensors Using the Equivalent Circuit Method
by Muhammad Shakeel Afzal, Hayeong Shim and Yongrae Roh
Sensors 2018, 18(12), 4491; https://doi.org/10.3390/s18124491 - 18 Dec 2018
Cited by 6 | Viewed by 5852
Abstract
This study investigates the electroacoustic behavior of a piezoelectric multilayered structure for ultrasonic sensors using the equivalent circuit method (ECM). We first derived the vertical deflection of the multilayered structure as a function of pressure and voltage using equilibrium equations of the structure. [...] Read more.
This study investigates the electroacoustic behavior of a piezoelectric multilayered structure for ultrasonic sensors using the equivalent circuit method (ECM). We first derived the vertical deflection of the multilayered structure as a function of pressure and voltage using equilibrium equations of the structure. The deflection derived in this work is novel in that it includes the effect of piezoelectricity as well as the external pressure on the radiating surface. Subsequently, the circuit parameters were derived from the vertical deflection. The acoustic characteristics of the structure were then analyzed using the electro-acoustical model of an ultrasonic sensor for in-air application. Using the equivalent circuit, we analyzed the effects of various structural parameters on the acoustic properties of the structure such as resonance frequency, radiated sound pressure, and beam pattern. The validity of the ECM was verified initially by comparing the results with those from the finite element analysis (FEA) of the same structure. Furthermore, experimental testing of an actual ultrasonic sensor was carried out to verify the efficacy of the ECM. The ECM presented in this study can estimate the performance characteristics of a piezoelectric multilayered structure with high rapidity and efficiency. Full article
(This article belongs to the Special Issue Ultrasound Transducers)
Show Figures

Figure 1

8 pages, 2683 KiB  
Proceeding Paper
Theoretical Study of Quasi-Longitudinal Lamb Modes in SiN/c-AlN Thin Composite Plates for Liquid Sensing Applications
by Cinzia Caliendo, Ennio Giovine and Muhammad Hamidullah
Proceedings 2018, 2(3), 134; https://doi.org/10.3390/ecsa-4-04906 - 14 Nov 2017
Viewed by 1491
Abstract
The propagation of quasi-longitudinal Lamb mode along SiN/c-AlN thin composite plates was modeled and analyzed aimed at the design of a sensor able to detect the parameters change of a liquid environment, such as added mass and viscosity changes. Three modes were identified [...] Read more.
The propagation of quasi-longitudinal Lamb mode along SiN/c-AlN thin composite plates was modeled and analyzed aimed at the design of a sensor able to detect the parameters change of a liquid environment, such as added mass and viscosity changes. Three modes were identified that have high phase velocity and quite good electroacoustic coupling efficiency: the fundamental quasi symmetric mode (qS0) and two higher order quasi-longitudinal modes (qL1 and qL2) with a dominantly longitudinal displacement component at one plate side. The velocity and attenuation of these modes were calculated for different liquid viscosities, and the gravimetric and viscosity sensitivities of both the phase velocity and attenuation were theoretically calculated. Full article
Show Figures

Figure 1

Back to TopTop