Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,906)

Search Parameters:
Keywords = electrical/thermal properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2643 KB  
Article
Modeling the Rate- and Temperature-Dependent Behavior of Sintered Nano-Silver Paste Using a Variable-Order Fractional Model
by Qinglong Tian, Changyu Liu and Wei Cai
Materials 2025, 18(19), 4595; https://doi.org/10.3390/ma18194595 - 3 Oct 2025
Abstract
Sintered nano-silver paste is widely used in electronic packaging due to its excellent thermal and electrical conductivity. A phenomenological variable-order fractional constitutive model has been developed to characterize the evolution of its mechanical properties, incorporating dependencies on both temperature and strain rate. Based [...] Read more.
Sintered nano-silver paste is widely used in electronic packaging due to its excellent thermal and electrical conductivity. A phenomenological variable-order fractional constitutive model has been developed to characterize the evolution of its mechanical properties, incorporating dependencies on both temperature and strain rate. Based on the Weissenberg number and classical Arrhenius equation, a formulation for relaxation time with temperature and strain rate dependence has been proposed. A temperature- and rate-sensitive fractional order is introduced to capture the coupled influences of thermal and strain rate effects. Furthermore, the effects of temperature and the strain rate on the elastic modulus and relaxation time are quantitatively described through established coupling criteria. Simulation results demonstrate that the proposed model offers high accuracy and strong predictive capability. Comparisons with the classical Anand model highlight the effectiveness of the variable-order fractional model, particularly at lower temperatures. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Micro-/Nanoscale Materials)
Show Figures

Figure 1

86 pages, 1368 KB  
Article
Nonlinear Quasi-Classical Model of Isothermal Relaxation Polarization Currents in Functional Elements of Microelectronics, Optoelectronics, and Fiber Optics Based on Crystals with Ionic-Molecular Chemical Bonds with Complex Crystalline Structure
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aleksey Yurchenko, Aliya Аlkina, Felix Bulatbayev, Valeriy Issayev, Kanat Makhanov, Dmitriy Lukin, Damir Kayumov and Alexandr Zaplakhov
Crystals 2025, 15(10), 863; https://doi.org/10.3390/cryst15100863 - 30 Sep 2025
Abstract
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of [...] Read more.
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of the nonlinear system of Fokker–Planck and Poisson equations (for the blocking electrode model) and perturbation theory (by expanding into an infinite series in powers of a dimensionless small parameter) were used. Generalized nonlinear mathematical expressions for calculating the complex amplitudes of relaxation modes of the volume-charge distribution of the main charge carriers (ions, protons, water molecules, etc.) were obtained. On this basis, formulas for the current density of relaxation polarization (for transient processes in a dielectric) in the k-th approximation of perturbation theory were constructed. The isothermal polarization currents are investigated in detail in the first four approximations (k = 1, 2, 3, 4) of perturbation theory. These expressions will be applied in the future to compare the results of theory and experiment, in analytical studies of the kinetics of isothermal ion-relaxation (in crystals with hydrogen bonds (HBC), proton-relaxation) polarization and in calculating the parameters of relaxers (molecular characteristics of charge carriers and crystal lattice parameters) in a wide range of field parameters (0.1–1000 MV/m) and temperatures (1–1550 K). Asymptotic (far from transient processes) recurrent formulas are constructed for complex amplitudes of relaxation modes and for the polarization current density in an arbitrary approximation k of perturbation theory with a multiplicity r by the polarizing field (a multiple of the fundamental frequency of the field). The high degree of reliability of the theoretical results obtained is justified by the complete agreement of the equations of the mathematical model for transient and stationary processes in the system with a harmonic external disturbance. This work is of a theoretical nature and is focused on the construction and analysis of nonlinear properties of a physical and mathematical model of isothermal ion-relaxation polarization in CIMB crystals under various parameters of electrical and temperature effects. The theoretical foundations for research (construction of equations and working formulas, algorithms, and computer programs for numerical calculations) of nonlinear kinetic phenomena during thermally stimulated relaxation polarization have been laid. This allows, with a higher degree of resolution of measuring instruments, to reveal the physical mechanisms of dielectric relaxation and conductivity and to calculate the parameters of a wide class of relaxators in dielectrics in a wide experimental temperature range (25–550 K). Full article
(This article belongs to the Section Inorganic Crystalline Materials)
12 pages, 3386 KB  
Article
Effect of Grain Size on Polycrystalline Copper Finish Quality of Ultra-Precision Cutting
by Chuandong Zhang, Xinlei Yue, Kaiyuan You and Wei Wang
Micromachines 2025, 16(10), 1133; https://doi.org/10.3390/mi16101133 - 30 Sep 2025
Abstract
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical [...] Read more.
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical modeling to simulate nanoscale cutting processes in polycrystalline copper with controlled grain structures, coupled with experimental ultra-precision machining validation. Comprehensive analysis of stress distribution, subsurface damage formation, and cutting force evolution reveals that refined grain structures promote more homogeneous plastic deformation, resulting in superior surface finish with reduced roughness and diminished grain boundary step formation. However, the enhanced grain boundary density in fine-grained specimens necessitates increased cutting energy input. These findings establish critical process–structure–property relationships essential for advancing precision manufacturing of copper-based optical systems. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
14 pages, 4404 KB  
Article
The Influence of Pulsed Superimposed DC Electric Field Synergistically Inducing Orientation Arrangement of BNNSs on Thermal Properties of Epoxy Composites
by Xiaopeng Wang, Songyuan Li, Zhen Yin, Qi Zhang, Lei Deng, Yiqin Peng and Yan Mi
Micromachines 2025, 16(10), 1126; https://doi.org/10.3390/mi16101126 - 30 Sep 2025
Abstract
Modern power systems require better heat dissipation and thermal stability, but traditional low-filler composites cannot significantly enhance thermal conductivity. To address this issue, electric field induction technology orientation can efficiently orient boron nitride nanosheets (BNNSs), thereby improving the thermal conductivity of epoxy composites [...] Read more.
Modern power systems require better heat dissipation and thermal stability, but traditional low-filler composites cannot significantly enhance thermal conductivity. To address this issue, electric field induction technology orientation can efficiently orient boron nitride nanosheets (BNNSs), thereby improving the thermal conductivity of epoxy composites composed of BNNSs as the thermally conductive filler. In this study, an innovative approach employing a pulsed superimposed direct current (DC) electric field to synergistically induce filler orientation is used to construct efficient thermally conductive channels. The study found that the thermal conductivity of the composite prepared by superimposing an 8 kV/mm pulsed electric field on a 30 V/mm DC electric field is about 0.474 W/(m·K), which is 34.66% higher than that prepared by only a pulsed-induced field and 17.5% higher than the theoretical superposition value. Similarly, the composite prepared by superimposing a 4 kV/mm pulsed electric field on a 70 V/mm DC electric field increased to about 0.464 W/(m·K), which is 27.47% higher than that prepared by only a DC-induced field and 12.4% higher than the theoretical superposition value. These results indicate that the superimposed electric field treatment synergistically improves the thermal conductivity of the composite. Compared to other materials, composites prepared using the superimposed pulsed and DC electric field induction also exhibit superior thermal stability. This strategy effectively addresses the issue of material thermal aging caused by insufficient thermal conductivity, providing innovative ideas and a solid theoretical foundation for material design and thermal management. Full article
(This article belongs to the Special Issue Low-Dimensional Materials and Applications in Electronics)
Show Figures

Figure 1

18 pages, 4932 KB  
Article
An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining
by Ülke Şimşek and Can Çoğun
Crystals 2025, 15(10), 849; https://doi.org/10.3390/cryst15100849 - 29 Sep 2025
Abstract
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is [...] Read more.
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is employed to model anisotropic slip behavior and microscale deformation mechanisms. The primary objective is to elucidate how initial crystallographic orientation influences hardness, thermal conductivity, and electrical conductivity. Simulations are performed on single-crystal copper for three representative Face Centered Cubic (FCC) orientations. Using an explicit CPFEM model, the study examines texture evolution and deformation heterogeneity during the ECAP process of single-crystal copper. The results indicate that the <100> single-crystal orientation exhibits the highest Taylor factor and the most homogeneous distribution of plastic equivalent strain (PEEQ), suggesting enhanced resistance to plastic flow. In contrast, the <111> single-crystal orientation displays localized deformation and reduced hardening. A decreasing Taylor factor correlates with more uniform slip, which improves both electrical and thermal conductivity, as well as machinability, by minimizing dislocation-related resistance. These findings make a novel contribution to the field by highlighting the critical role of crystallographic orientation in governing slip activity and deformation pathways, which directly impact thermal wear resistance and the fabrication efficiency of ECAP-processed copper electrodes in EDM. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

14 pages, 2468 KB  
Article
Optimizing Annealing Temperature for Enhanced Electrical Performance and Stability of Solution-Processed In2O3 Thin-Film Transistors
by Taehui Kim, Seullee Lee, Ye-Won Lee, Dongwook Kim, Youngjun Yun, Jin-Hyuk Bae, Hyeonju Lee and Jaehoon Park
Micromachines 2025, 16(10), 1091; https://doi.org/10.3390/mi16101091 - 26 Sep 2025
Abstract
This study investigates the influence of post-deposition thermal annealing temperature on the crystal structure, chemical composition, and electrical performance of solution-processed indium oxide (In2O3) thin films. Based on thermogravimetric analysis (TGA) of the precursor solution, annealing temperatures of 350, [...] Read more.
This study investigates the influence of post-deposition thermal annealing temperature on the crystal structure, chemical composition, and electrical performance of solution-processed indium oxide (In2O3) thin films. Based on thermogravimetric analysis (TGA) of the precursor solution, annealing temperatures of 350, 450, and 550 °C were adopted. The resulting In2O3 films were characterized using ultraviolet–visible (UV–Vis) spectroscopy, atomic force microscopy (AFM), Raman spectroscopy, and Hall-effect measurements to evaluate their optical, morphological, crystalline polymorphism, and electrical properties. The results revealed that the film annealed at 450 °C exhibited a field-effect mobility of 4.28 cm2/V·s and an on/off current ratio of 2.15 × 107. The measured hysteresis voltages were 3.11, 1.80, and 0.92 V for annealing temperatures of 350, 450, and 550 °C, respectively. Altogether, these findings indicate that an annealing temperature of 450 °C provides an optimal balance between the electrical performance and device stability for In2O3-based thin-film transistors (TFTs), making this condition favourable for high-performance oxide electronics. Full article
Show Figures

Figure 1

20 pages, 6771 KB  
Article
A Comparative Analysis of the Fatigue Strength of Aluminium and Copper Wires Used for Power Cables
by Tadeusz Knych, Beata Smyrak and Bartosz Jurkiewicz
Materials 2025, 18(18), 4426; https://doi.org/10.3390/ma18184426 - 22 Sep 2025
Viewed by 222
Abstract
Recent studies have demonstrated that the utilisation of aluminium in electrical applications has increased substantially, particularly in the context of power cables. The substitution of copper with aluminium in cable fabrication is predominantly driven by economic considerations. When designing such cables, it is [...] Read more.
Recent studies have demonstrated that the utilisation of aluminium in electrical applications has increased substantially, particularly in the context of power cables. The substitution of copper with aluminium in cable fabrication is predominantly driven by economic considerations. When designing such cables, it is imperative to ascertain their functional properties, including their electrical conductivity and mechanical properties, and their operational properties, which include rheological, thermal, and material fatigue resistance. This is to ensure that the aluminium and copper cables are compatible. The primary challenge confronting researchers in this domain pertains to predicting and forecasting the failure of overhead cables during their operational lifecycle. One of the most significant and prevalent operational hazards is fatigue damage. This article presents the experimental results of fatigue tests on single Al and Cu wires in various states of mechanical reinforcement. The parameters of the Wöhler curve were determined, and a comparative analysis of the morphology of fatigue damage in single copper and aluminium wires was performed. It was found that copper wires are more fatigue-resistant than aluminium wires. In the case of high-cycle fatigue, this difference can amount to 106 cycles. An analysis of fatigue fracture morphology showed that fractures have a developed surface and that plastic deformation makes a significant contribution in the case of low-cycle fatigue. In the case of high-cycle fatigue, many cracks were observed in the copper wires. No such cracks were observed in the aluminium wires. Full article
Show Figures

Figure 1

11 pages, 2198 KB  
Article
Effect of Hafnium-Based Thin Film Thickness on Microstructure and Electrical of Yttrium-Doped Hafnium Oxide Ferroelectric Devices Prepared by Magnetron Sputtering
by Bei Ma, Ke Ma, Xinhui Qin, Yingxue Xi, Jin Zhang, Xinyu Yang, Pengfei Yang and Weiguo Liu
Micromachines 2025, 16(9), 1066; https://doi.org/10.3390/mi16091066 - 21 Sep 2025
Viewed by 187
Abstract
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical [...] Read more.
This study employs reactive magnetron sputtering technology to fabricate TiN/Y-HfO2/TiN multilayer thin film devices using titanium targets and yttrium-doped high-purity hafnium targets. A systematic investigation was conducted to explore the influence of hafnium-based thin film thickness on the structural and electrical properties of TiN/Y-HfO2/TiN thin film devices. Radio frequency magnetron sputtering was utilized to deposit Y-HfO2 films of varying thicknesses on TiN electrodes by controlling deposition time, with a yttrium doping concentration of 8.24 mol.%. The surface morphology and crystal structure of the thin films were characterized using atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD). Results indicate that as film thickness increases, surface roughness and Raman peak intensity increase correspondingly, with the tetragonal phase (t) characteristic peak being most prominent at 65 nm. DC magnetron sputtering was employed to deposit TiN top electrodes, resulting in TiN/Y-HfO2/TiN thin film devices. Following rapid thermal annealing at 700 °C, electrical properties were evaluated using a ferroelectric tester. Leakage current density exhibited a decreasing trend with increasing film thickness, while the maximum polarization intensity gradually increased, reaching a maximum of 11.5 μC/cm2 at 120 nm. Full article
(This article belongs to the Special Issue Recent Advances in Thin-Film Devices)
Show Figures

Figure 1

15 pages, 4531 KB  
Article
Impact Factors on Oven-Dry Density Measurements of Wood
by Lukas Emmerich, Moritz Kampherm and Christian Brischke
Materials 2025, 18(18), 4396; https://doi.org/10.3390/ma18184396 - 20 Sep 2025
Viewed by 215
Abstract
Wood density is a key property since it affects almost every other property of wood such as its elasto-mechanical, acoustic, thermal, or electrical properties. Hence, it is essential to determine wood density for the interpretation of any other property test. Density measurements are [...] Read more.
Wood density is a key property since it affects almost every other property of wood such as its elasto-mechanical, acoustic, thermal, or electrical properties. Hence, it is essential to determine wood density for the interpretation of any other property test. Density measurements are usually carried out gravimetrically by measuring the wood specimens’ dimensions and taking their weight. In order to be independent of moisture, wood density is measured at an absolute dry state. However, depending on which wood properties shall be measured after the oven-dry density is determined, heating the wood up to 103 °C can be problematic because the volatile components of the wood can evaporate. For this reason, the drying conditions (temperature in °C (60, 80, 103 °C)), duration in h (8, 16, 24, 48 h)) required to achieve an absolute dry state inside wood specimens—being obligatory for the analysis of various physical, mechanical, or even biological properties—were examined for different softwood and hardwood species. Basically, oven-dry measurements (i.e., 48 h at 103 °C) themselves contained a significant error, which was considered to be the result of deviations in the handling of the specimens and the scales used. Using temperatures below 103 °C was critical for the determination of absolute dry mass and dimensions. Wood specimens with a high content of volatile ingredients led to an apparently increased residual MC (e.g., shown for Scots pine heartwood), thus volatile ingredients were considered an additional source of error during oven-dry measurements. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

28 pages, 5785 KB  
Review
From Thermosetting Resins to Energy Devices: A Review on Polybenzoxazine-Derived Materials for Supercapacitors
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Batteries 2025, 11(9), 345; https://doi.org/10.3390/batteries11090345 - 19 Sep 2025
Viewed by 359
Abstract
Polybenzoxazines (PBZs) have garnered significant attention as a versatile class of precursors for the development of advanced carbon-based materials, particularly in the field of electrochemical energy storage. This review comprehensively examines recent progress in the synthesis, structural design, and application of polybenzoxazine-derived materials [...] Read more.
Polybenzoxazines (PBZs) have garnered significant attention as a versatile class of precursors for the development of advanced carbon-based materials, particularly in the field of electrochemical energy storage. This review comprehensively examines recent progress in the synthesis, structural design, and application of polybenzoxazine-derived materials for supercapacitor electrodes. Owing to their intrinsic nitrogen content, tunable functionality, and excellent thermal and mechanical stability, polybenzoxazines serve as ideal precursors for producing nitrogen-doped porous carbons with high surface areas and desirable electrochemical properties. This review discusses the influence of molecular design, polymerization conditions, and carbonization parameters on the resulting microstructure and performance of the materials. Furthermore, the electrochemical behavior of these materials in both electric double-layer capacitors (EDLCs) and pseudocapacitors is analyzed in detail. Challenges such as optimizing pore architecture, improving conductivity, and achieving scalable synthesis are also addressed. This article highlights emerging trends and offers perspectives on the future development of polybenzoxazine-derived materials for next-generation high-performance supercapacitors. Full article
Show Figures

Figure 1

36 pages, 3444 KB  
Review
Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies
by Mubasshira, Md. Mahbubur Rahman, Md. Nizam Uddin, Mukitur Rhaman, Sourav Roy and Md Shamim Sarker
Processes 2025, 13(9), 2991; https://doi.org/10.3390/pr13092991 - 19 Sep 2025
Cited by 2 | Viewed by 446
Abstract
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable [...] Read more.
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable responsiveness to external stimuli such as strain, pressure, temperature, light, and chemical environments. This review provides a comprehensive overview of recent advances in the design and synthesis of CPNCs, focusing on their application in multifunctional sensors and actuator technologies. Key carbon nanomaterials including graphene, carbon nanotubes (CNTs), and MXenes were examined in the context of their integration into polymer matrices to enhance performance parameters such as sensitivity, flexibility, response time, and durability. The review also highlights novel fabrication techniques, such as 3D printing, self-assembly, and in situ polymerization, that are driving innovation in device architectures. Applications in wearable electronics, soft robotics, biomedical diagnostics, and environmental monitoring are discussed to illustrate the transformative impact of CPNCs. Finally, this review addresses current challenges and outlines future research directions toward scalable manufacturing, environmental stability, and multifunctional integration for the real-world deployment of smart sensing and actuation systems. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Smart Applications)
Show Figures

Figure 1

21 pages, 4033 KB  
Article
Thermal Performance Study of a Novel Double-Phase Cooling Strategy in Electric Vehicle Battery Systems
by Federico Sacchelli, Luca Cattani and Fabio Bozzoli
Energies 2025, 18(18), 4937; https://doi.org/10.3390/en18184937 - 17 Sep 2025
Viewed by 357
Abstract
In recent years, interest in lithium-ion batteries has grown significantly due to their dominance in electric mobility, driven by their high energy density. However, their performance and longevity are strongly influenced by the effectiveness of heat dissipation and thermal management. The literature indicates [...] Read more.
In recent years, interest in lithium-ion batteries has grown significantly due to their dominance in electric mobility, driven by their high energy density. However, their performance and longevity are strongly influenced by the effectiveness of heat dissipation and thermal management. The literature indicates that battery temperature should be maintained within the optimal range of 20–40 °C, while also ensuring minimal temperature gradients within the battery pack. In this study, a thermal management system for electric vehicle batteries which combines two different cooling approaches (i.e., direct immersion cooling and pulsating heat pipes) is presented. In particular, the battery pack is placed inside a PVC case and completely submerged by a low-boiling dielectric fluid (Tbp = 33.4 °C at 1 atm) to take advantage of the excellent thermal properties of the liquid and of the latent heat during phase change. The evaporator section of the pulsating heat pipe is positioned in the vapor phase region of the dielectric fluid, while the condenser section is located outside the PVC box and cooled by an airflow in natural convection. This setup is a completely passive system. To evaluate the cooling performance of the dual two-phase cooling system, tests were conducted on the battery pack at three different discharge C-rates 0.5C, 1C, and 2C that reproduce the working conditions of a real-world battery. To evaluate the effectiveness of the new setup, its performance was compared with cooling based on natural convection and direct immersion cooling alone. These approaches were assessed under two controlled ambient temperatures—5 °C and 20 °C—to compare their performance in varying conditions. The results show that the hybrid system performs particularly well, especially because it can operate passively without requiring external power or active control mechanisms. Full article
Show Figures

Figure 1

16 pages, 13804 KB  
Article
The Effect of Cobalt Incorporation on the Microstructure and Properties of Cu(Co) Alloys for Use in Hybrid Bonding
by Sarabjot Singh and Kathleen Dunn
Metals 2025, 15(9), 1023; https://doi.org/10.3390/met15091023 - 15 Sep 2025
Viewed by 314
Abstract
In this study, the properties of Cu(Co) alloy films were investigated to assess their utility as an alternative material for interconnections in hybrid bonding applications. Thin films of Cu(Co) were deposited using electrochemical deposition in a standard sulfate-based electrolyte. X-ray photoelectron spectroscopy (XPS) [...] Read more.
In this study, the properties of Cu(Co) alloy films were investigated to assess their utility as an alternative material for interconnections in hybrid bonding applications. Thin films of Cu(Co) were deposited using electrochemical deposition in a standard sulfate-based electrolyte. X-ray photoelectron spectroscopy (XPS) of the films revealed that an increasing current density during deposition resulted in an increase in cobalt concentration. Bright-field scanning transmission electron microscopy (STEM) coupled with energy-dispersive x-ray spectroscopy (EDS) was used to visualize the fine-grained microstructure and confirmed grain boundary segregation of cobalt in the films. X-ray diffraction with a heated stage determined that the coefficient of thermal expansion (CTE) increased linearly with increasing cobalt content, from 17.5 ppm/K for pure copper to a maximum of 27.5 ppm/K for a film containing 24 at.% Co. Nanoindentation experiments found that the mechanical properties depended non-linearly on composition, with hardness increasing from 3.5 GPa for a 0% cobalt film to a maximum of 4.5 GPa (24 at.% Co) and the Young’s modulus increasing from 118 GPa to 214 GPa, respectively. Four-point probe electrical measurements confirmed the expected linear increase in resistivity as Co content increased. Since electrical and mechanical properties have differing dependences on the film composition, an optimal alloy composition that balances an acceptable increase in resistance with improved mechanical properties could enable more reliable, low-temperature bonding solutions in advanced microelectronic devices. Full article
(This article belongs to the Special Issue Solidification and Microstructure of Metallic Alloys)
Show Figures

Figure 1

35 pages, 10124 KB  
Review
Production, Thermal, Durability, and Mechanical Properties of Translucent Concrete and Its Applications in Sustainable Construction: A Review
by Khaled A. Alawi Al-Sodani
Buildings 2025, 15(18), 3314; https://doi.org/10.3390/buildings15183314 - 12 Sep 2025
Viewed by 396
Abstract
This study examines transparent concrete (TC) utilizing bibliometric analysis of articles from the Scopus database to identify its performance, knowledge gaps, limitations, and applications. TC is a new type of sustainable building material that combines optical fibers with concrete and is lighter in [...] Read more.
This study examines transparent concrete (TC) utilizing bibliometric analysis of articles from the Scopus database to identify its performance, knowledge gaps, limitations, and applications. TC is a new type of sustainable building material that combines optical fibers with concrete and is lighter in weight than traditional concrete. Incorporating optical fibers in concrete enables light transmission, thereby reducing the need for artificial lighting in TC structures. TC is also referred to as light-transmitting concrete due to its unique properties. By utilizing natural light resources instead of electric lighting, buildings can better harness sunlight, providing both architectural beauty and energy savings. This approach decreases reliance on non-renewable resources and ultimately conserves energy. Scholars have focused a lot of attention on the superb light transmission and decorative appeal of TC. However, its applications in the construction sector have yet to gain traction due to the time-consuming production process, high labor costs, and limited studies on its durability and mechanical properties. This article reviews the applications, production processes, types of TC, bibliometric analysis, cost analysis, and the research findings related to mechanical, thermal, energy-saving, light-transmitting, and durability properties. TC showed a substantial decrease in the building’s total energy use and maintained strength comparable to conventional concrete. It also displayed minimal water resistance, porosity, and density, making it suitable for constructing buildings and lightweight road surfaces. Additionally, it offers notable aesthetic value. The study identifies gaps in durability and standardization while highlighting significant developments in TC’s mechanical behavior, thermal and energy performance, and applications. Furthermore, it summarizes the future research paths for TC, which are likely to enhance its implementation as a promising sustainable construction material. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 10791 KB  
Review
Research Progress in Carbon Nanotube-Based Cold Cathode Electron Guns
by Jiupeng Li, Yu Tu, Dewei Ma and Yun Yang
Nanomaterials 2025, 15(18), 1403; https://doi.org/10.3390/nano15181403 - 12 Sep 2025
Viewed by 449
Abstract
Field emission (FE) cold-cathodes have some important characteristics, including instant turn-on, room temperature operation, miniaturization, low power consumption, and nonlinearity. As emitters, Carbon nanotubes (CNTs) exhibit a high field enhancement factor, low turn-on voltage, high current density, high thermal conductivity, and temporal stability. [...] Read more.
Field emission (FE) cold-cathodes have some important characteristics, including instant turn-on, room temperature operation, miniaturization, low power consumption, and nonlinearity. As emitters, Carbon nanotubes (CNTs) exhibit a high field enhancement factor, low turn-on voltage, high current density, high thermal conductivity, and temporal stability. These properties make them highly suitable for applications in FE cold-cathodes. In addition, Carbon nanotube (CNT) cold cathodes have specialized applications in electron beams, which are modulated by high-frequency electric fields and exhibit low energy dispersion. There have been substantial studies on CNT-based cold cathode electron guns with diverse structural configurations. These studies have laid the foundation for the applications of microwave vacuum electron devices, X-ray equipments, flat-panel displays, and scanning electron microscopes. The review primarily introduces cold cathode electron guns based on CNT emitters with diverse morphologies, including disordered CNTs, aligned CNTs, CNT paste, and other CNTs with special surface morphologies. Additionally, the research results of microwave electron guns based on CNT cathodes are also mentioned. Finally, the problems that need to be resolved in the practical applications of CNT cold cathode electron guns are summarized, and some suggestions for future development are provided. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Graphical abstract

Back to TopTop