Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (613)

Search Parameters:
Keywords = electric field communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1804 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 2661 KiB  
Article
Resonator Width Optimization for Enhanced Performance and Bonding Reliability in Wideband RF MEMS Filter
by Gwanil Jeon, Minho Jeong, Shungmoon Lee, Youngjun Jo and Nam-Seog Kim
Micromachines 2025, 16(8), 878; https://doi.org/10.3390/mi16080878 - 29 Jul 2025
Viewed by 203
Abstract
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. [...] Read more.
This research investigates resonator width optimization for simultaneously enhancing electrical performance and mechanical reliability in wideband RF MEMS filters through systematic evaluation of three configurations: 0% (L1), 60% (L2), and 100% (L3) matching ratios between cap and bottom wafers using Au-Au thermocompression bonding. The study demonstrates that resonator width alignment significantly influences both electromagnetic field coupling and bonding interface integrity. The L3 configuration with complete width matching achieved optimal RF performance, demonstrating 3.34 dB insertion loss across 4.5 GHz bandwidth (25% fractional bandwidth), outperforming L2 (3.56 dB) and L1 (3.10 dB), while providing enhanced electromagnetic wave coupling and minimized contact resistance. Mechanical reliability testing revealed superior bonding strength for the L3 configuration, withstanding up to 7.14 Kgf in shear pull tests, significantly exceeding L1 (4.22 Kgf) and L2 (2.24 Kgf). SEM analysis confirmed uniform bonding interfaces with minimal void formation (~180 nm), while Q-factor measurements showed L3 achieved optimal loaded Q-factor (QL = 3.31) suitable for wideband operation. Comprehensive environmental testing, including thermal cycling (−50 °C to +145 °C) and humidity exposure per MIL-STD-810E standards, validated long-term stability across all configurations. This investigation establishes that complete resonator width matching between cap and bottom wafers optimizes both electromagnetic performance and mechanical bonding reliability, providing a validated framework for developing high-performance, reliable RF MEMS devices for next-generation communication, radar, and sensing applications. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices, 2nd Edition)
Show Figures

Figure 1

21 pages, 2834 KiB  
Article
Modeling Radiofrequency Electromagnetic Field Wearable Distributed (Multi-Location) Measurements System for Evaluating Electromagnetic Hazards in the Work Environment
by Krzysztof Gryz, Jolanta Karpowicz and Patryk Zradziński
Sensors 2025, 25(15), 4607; https://doi.org/10.3390/s25154607 - 25 Jul 2025
Viewed by 266
Abstract
The investigations examined a potential reduction in discrepancies between the values of the unperturbed radiofrequency (RF) electromagnetic field (EMF) and values of the EMF measured by wearable equipment (personal exposure meters) impacted by the proximity of the human body. This was done by [...] Read more.
The investigations examined a potential reduction in discrepancies between the values of the unperturbed radiofrequency (RF) electromagnetic field (EMF) and values of the EMF measured by wearable equipment (personal exposure meters) impacted by the proximity of the human body. This was done by modelling distributed wearable (multi-location, with up to seven simultaneously locations) measurements. The performed numerical simulations mimicked distributed measurements in 24 environmental exposure scenarios (recognized as virtual measurements) covered: the horizontal or vertical propagation of the EMF and electric field vector polarization corresponding to typical conditions of far-field exposure from wireless communication systems (at a frequency of 100–3600 MHz). Physical tests using three EMF probes for simultaneous measurements have been also performed. Studies showed that the discrepancy in assessing EMF exposure by an on-body equipment and the parameters of the unperturbed EMF in the location under inspection (mimicking the contribution to measurement uncertainty from the human body proximity) may be significantly reduced by the appropriate use of a distributed measurement system. The use of averaged values, from at least three simultaneous measurements at relevant locations on the body, may reduce the uncertainty approximately threefold. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Figure 1

20 pages, 2341 KiB  
Article
Magnetic Field Measurement of Various Types of Vehicles, Including Electric Vehicles
by Hiromichi Fukui, Norihiro Minami, Masatoshi Tanezaki, Shinichi Muroya and Chiyoji Ohkubo
Electronics 2025, 14(15), 2936; https://doi.org/10.3390/electronics14152936 - 23 Jul 2025
Viewed by 602
Abstract
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), [...] Read more.
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), hybrid electric vehicles (HEVs), and internal combustion engine vehicles (ICEVs). However, those 2013 measurements were conducted using a chassis dynamometer, and no measurements were taken during actual driving. In recent years, with the rapid global spread of EVs and plug-in hybrid electric vehicles (PHEVs), the international standard IEC 62764-1:2022, which defines methods for measuring magnetic fields (MF) in vehicles, has been issued. In response, and for the first time, we conducted new MF measurements on current Japanese vehicle models in accordance with the international standard IEC 62764-1:2022, identifying the MFD levels and their sources at various positions within EVs, PHEVs, and ICEVs. The measured MFD values in all vehicle types were below the reference levels recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for public exposure. Furthermore, we performed comparative measurements with the MF data obtained in 2013 and confirmed that the MF levels remained similar. These findings are expected to provide valuable insights for risk communication with the public regarding electromagnetic fields, particularly for those concerned about MF exposure inside electrified vehicles. Full article
(This article belongs to the Special Issue Innovations in Electromagnetic Field Measurements and Applications)
Show Figures

Figure 1

21 pages, 5490 KiB  
Article
Impact of Reduced Chemical Fertilizer and Organic Amendments on Yield, Nitrogen Use Efficiency, and Soil Microbial Dynamics in Chinese Flowering Cabbage
by Jiaxin Xu, Jianshe Li, Xia Zhao, Zhen Liu, Hao Xu, Kai Cao and Lin Ye
Horticulturae 2025, 11(7), 859; https://doi.org/10.3390/horticulturae11070859 - 21 Jul 2025
Viewed by 306
Abstract
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify [...] Read more.
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify the impacts of reduced chemical fertilizer application integrated with organic amendments on cabbage yield and rhizosphere soil microenvironment characteristics. (2) Methods: A biennial field experiment was conducted during the 2022–2023 growing seasons at Lijun Town, Yinchuan City, Ningxia Hui Autonomous Region. Five treatments were tested: (i) Control (CK, no fertilizer); (ii) Conventional chemical fertilization (CF1, chemical fertilizer only); (iii) Reduced chemical fertilization (CF2, 30% less chemical fertilizer); (iv) CF2 + Well-decomposed chicken manure (FCM, 30% less chemical fertilizer + rotted chicken manure); and (v) CF2 + Vermicompost (FEM, 30% less chemical fertilizer + vermicompost). (3) Results: In 2023, the FCM treatment reduced electrical conductivity (EC) by 24.80% and pH by 2.16%, while the FEM treatment decreased EC by 31.13% and pH by 3.84% compared to controls. The FEM treatment significantly enhanced total nitrogen content by 12.71% and 8.85% relative to CF1 and FCM treatments, respectively. Compared to CF1, FEM increased soil organic matter content by 10.49% in 2022 and 11.24% in 2023. Organic fertilizer amendments elevated available nitrogen, phosphorus, and potassium levels while enhancing sucrase activity: FCM and FEM treatments increased sucrase activity by 23.62% and 32.00%, respectively, in 2022. Organic fertilization improved bacterial diversity and richness, optimized microbial community structure, and increased the relative abundance of Bacillus. It also upregulated microbial metabolic pathways related to carbohydrate and amino acid metabolism. Soil nutrients and bacterial community structure showed positive correlations with yield, whereas soil enzyme activities exhibited negative correlations. Key factors influencing yield were identified as Proteobacteria, Chloroflexi, available potassium, organic matter, available nitrogen, Actinobacteria, Firmicutes, total nitrogen, pH, and sucrase activity. (4) Conclusions: Integrated analysis of yield and soil microenvironmental parameters demonstrates that the fertilization regimen combining 30% chemical fertilizer reduction with vermicompost amendment (FEM) constitutes a more efficient fertilization strategy for Chinese flowering cabbage, making it suitable for regional promotion in the Ningxia area. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

20 pages, 1902 KiB  
Article
Prediction Model of Household Carbon Emission in Old Residential Areas in Drought and Cold Regions Based on Gene Expression Programming
by Shiao Chen, Yaohui Gao, Zhaonian Dai and Wen Ren
Buildings 2025, 15(14), 2462; https://doi.org/10.3390/buildings15142462 - 14 Jul 2025
Viewed by 198
Abstract
To support the national goals of carbon peaking and carbon neutrality, this study proposes a household carbon emission prediction model based on Gene Expression Programming (GEP) for low-carbon retrofitting of aging residential areas in arid-cold regions. Focusing on 15 typical aging communities in [...] Read more.
To support the national goals of carbon peaking and carbon neutrality, this study proposes a household carbon emission prediction model based on Gene Expression Programming (GEP) for low-carbon retrofitting of aging residential areas in arid-cold regions. Focusing on 15 typical aging communities in Kundulun District, Baotou City, a 17-dimensional dataset encompassing building characteristics, demographic structure, and energy consumption patterns was collected through field surveys. Key influencing factors (e.g., electricity usage and heating energy consumption) were selected using Pearson correlation analysis and the Random Forest (RF) algorithm. Subsequently, a hybrid prediction model was constructed, with its parameters optimized by minimizing the root mean square error (RMSE) as the fitness function. Experimental results demonstrated that the model achieved an R2 value of 0.81, reducing RMSE by 77.1% compared to conventional GEP models and by 60.4% compared to BP neural networks, while significantly improving stability. By combining data dimensionality reduction with adaptive evolutionary algorithms, this model overcomes the limitations of traditional methods in capturing complex nonlinear relationships. It provides a reliable tool for precision-based low-carbon retrofits in aging residential areas of arid-cold regions and offers a methodological advance for research on building carbon emission prediction driven by urban renewal. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 2711 KiB  
Systematic Review
Electro-Composting: An Emerging Technology
by Ahmad Shabir Hozad and Christian Abendroth
Fermentation 2025, 11(7), 401; https://doi.org/10.3390/fermentation11070401 - 14 Jul 2025
Viewed by 433
Abstract
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), [...] Read more.
This study focuses on electrical stimulation for composting. Using the PSALSAR method, a comprehensive systematic review analysis identified 22 relevant articles. The examined studies fall into four main systems: electric field-assisted aerobic composting (EAAC), electrolytic oxygen aerobic composting (EOAC), microbial fuel cells (MFCs), and thermoelectric generators (TEGs). Apart from the main systems highlighted above, bioelectrochemically assisted anaerobic composting (AnCBE, III) is discussed as an underexplored system with the potential to improve the efficiency of anaerobic degradation. Each system is described in terms of key materials, composter design, operating conditions, temperature evolution, compost maturity, microbial community, and environmental outcomes. EAAC and EOAC systems accelerate organic matter decomposition by improving oxygen distribution and microbial activity, whereas MFC and TEG systems have dual functioning due to the energy generated alongside waste degradation. These innovative systems not only significantly improve composting efficiency by speeding up organic matter breakdown and increasing oxygen supply but also support sustainable waste management by reducing greenhouse gas emissions and generating bioelectricity or heat. Together, these systems overcome the drawbacks of conventional composting systems and promote future environmental sustainability solutions. Full article
Show Figures

Figure 1

21 pages, 10550 KiB  
Article
Quinoa–Peanut Relay Intercropping Promotes Peanut Productivity Through the Temporal Optimization of Soil Physicochemical Properties and Microbial Community Composition in Saline Soil
by Xiaoyan Liang, Rao Fu, Jiajia Li, Yinyu Gu, Kuihua Yi, Meng Li, Chuanjie Chen, Haiyang Zhang, Junlin Li, Lan Ma, Yanjing Song, Xiangyu Wang, Jialei Zhang, Shubo Wan and Hongxia Zhang
Plants 2025, 14(14), 2102; https://doi.org/10.3390/plants14142102 - 8 Jul 2025
Cited by 1 | Viewed by 395
Abstract
Peanut productivity is severely restricted by soil salinization and associated nutrient deficiency in saline soil. The quinoa–peanut relay intercrop pattern (IP) is a promising planting system that utilizes the biological advantages of quinoa to improve soil ecological functions and productivity. However, the effects [...] Read more.
Peanut productivity is severely restricted by soil salinization and associated nutrient deficiency in saline soil. The quinoa–peanut relay intercrop pattern (IP) is a promising planting system that utilizes the biological advantages of quinoa to improve soil ecological functions and productivity. However, the effects of IP on soil physicochemical and biological properties and the yield formation of the combined peanut crop are still unclear. Two-year field experiments in coastal saline soil were conducted to explore the effects of IP on peanut growth and pod yield, soil physicochemical properties, and microbial community characterization at different growth stages of peanut based on the traditional monocrop pattern (MP). The results show that IP promoted peanut pod yield, although there was the disadvantage of plant growth at an early stage. Soil water content, electrical conductivity (EC), and Na+ content in the peanut rhizosphere were lower, whereas K+, NH4+, and total organic carbon (TOC) contents were higher in IP systems at both the vegetative and reproductive stages. The pod yield of peanut was significantly negatively correlated with soil EC and Na+ contents at the vegetative stage, but positively correlated with K+, NO3, NH4+, PO43−, and TOC contents at the reproductive stage. IP rebuilt the composition of the soil bacterial community in the peanut rhizosphere and increased the abundance of the beneficial bacterial community, which were positively correlated with soil TOC, K+, NH4+, NO3, and PO43− contents. These findings suggest that IP can increase peanut pod yield through optimizing soil physicochemical properties and microbial community composition, and it is a promising planting system for improving agricultural production in coastal saline lands. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

23 pages, 3434 KiB  
Article
Spatial Variability in Soil Attributes and Multispectral Indices in a Forage Cactus Field Irrigated with Wastewater in the Brazilian Semiarid Region
by Eric Gabriel Fernandez A. da Silva, Thayná Alice Brito Almeida, Raví Emanoel de Melo, Mariana Caroline Gomes de Lima, Lizandra de Barros de Sousa, Jeferson Antônio dos Santos da Silva, Marcos Vinícius da Silva and Abelardo Antônio de Assunção Montenegro
AgriEngineering 2025, 7(7), 221; https://doi.org/10.3390/agriengineering7070221 - 8 Jul 2025
Viewed by 345
Abstract
Multispectral images obtained from Unmanned Aerial Vehicles (UAVs) have become strategic tools in precision agriculture, particularly for analyzing spatial variability in soil attributes. This study aimed to evaluate the spatial distribution of soil electrical (EC) and total organic carbon (TOC) in irrigated forage [...] Read more.
Multispectral images obtained from Unmanned Aerial Vehicles (UAVs) have become strategic tools in precision agriculture, particularly for analyzing spatial variability in soil attributes. This study aimed to evaluate the spatial distribution of soil electrical (EC) and total organic carbon (TOC) in irrigated forage cactus areas in the Brazilian semiarid region, using field measurements and UAV-based multispectral imagery. The study was conducted in a communal agricultural settlement located in the Mimoso Alluvial Valley (MAV), where EC and TOC were measured at 96 points, and seven biophysical indices were derived from UAV multispectral imagery. Geostatistical models, including cokriging with spectral indices (NDVI, EVI, GDVI, SAVI, and NDSI), were applied to map soil attributes at different spatial scales. Cokriging improved the spatial prediction of EC and TOC by reducing uncertainty and increasing mapping accuracy. The standard deviation of EC decreased from 1.39 (kriging) to 0.67 (cokriging with EVI), and for TOC from 15.55 to 8.78 (cokriging with NDVI and NDSI), reflecting a 43.5% reduction in uncertainty. The indices, EVI, NDVI, and NDSI, showed strong potential in representing and enhancing the spatial variability in soil attributes. NDVI and NDSI were particularly effective at finer grid resolutions, supporting more efficient irrigation strategies and sustainable agricultural practices. Full article
Show Figures

Figure 1

14 pages, 2247 KiB  
Article
Design and Simulation of Optical Waveguide Digital Adjustable Delay Lines Based on Optical Switches and Archimedean Spiral Structures
by Ting An, Limin Liu, Guizhou Lv, Chunhui Han, Yafeng Meng, Sai Zhu, Yuandong Niu and Yunfeng Jiang
Photonics 2025, 12(7), 679; https://doi.org/10.3390/photonics12070679 - 5 Jul 2025
Viewed by 287
Abstract
In the field of modern optical communication, radar signal processing and optical sensors, true time delay technology, as a key means of signal processing, can achieve the accurate control of the time delay of optical signals. This study presents a novel design that [...] Read more.
In the field of modern optical communication, radar signal processing and optical sensors, true time delay technology, as a key means of signal processing, can achieve the accurate control of the time delay of optical signals. This study presents a novel design that integrates a 2 × 2 Multi-Mode Interference (MMI) structure with a Mach–Zehnder modulator on a silicon nitride–lithium niobate (SiN-LiNbO3) heterogeneous integrated optical platform. This configuration enables the selective interruption of optical wave paths. The upper path passes through an ultralow-loss Archimedes’ spiral waveguide delay line made of silicon nitride, where the five spiral structures provide delays of 10 ps, 20 ps, 40 ps, 80 ps, and 160 ps, respectively. In contrast, the lower path is straight through, without introducing an additional delay. By applying an electrical voltage, the state of the SiN-LiNbO3 switch can be altered, facilitating the switching and reconfiguration of optical paths and ultimately enabling the combination of various delay values. Simulation results demonstrate that the proposed optical true delay line achieves a discrete, adjustable delay ranging from 10 ps to 310 ps with a step size of 10 ps. The delay loss is less than 0.013 dB/ps, the response speed reaches the order of ns, and the 3 dB-EO bandwidth is broader than 67 GHz. In comparison to other optical switches optical true delay lines in terms of the parameters of delay range, minimum adjustable delay, and delay loss, the proposed optical waveguide digital adjustable true delay line, which is based on an optical switch and an Archimedes’ spiral structure, has outstanding advantages in response speed and delay loss. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Optics and Photonics)
Show Figures

Figure 1

22 pages, 1405 KiB  
Review
Knee Osteoarthritis Diagnosis: Future and Perspectives
by Henri Favreau, Kirsley Chennen, Sylvain Feruglio, Elise Perennes, Nicolas Anton, Thierry Vandamme, Nadia Jessel, Olivier Poch and Guillaume Conzatti
Biomedicines 2025, 13(7), 1644; https://doi.org/10.3390/biomedicines13071644 - 4 Jul 2025
Viewed by 603
Abstract
The risk of developing symptomatic knee osteoarthritis (KOA) during a lifetime, i.e., pain, aching, or stiffness in a joint associated with radiographic KOA, was estimated in 2008 to be around 40% in men and 47% in women. The clinical and scientific communities lack [...] Read more.
The risk of developing symptomatic knee osteoarthritis (KOA) during a lifetime, i.e., pain, aching, or stiffness in a joint associated with radiographic KOA, was estimated in 2008 to be around 40% in men and 47% in women. The clinical and scientific communities lack an efficient diagnostic method to effectively monitor, evaluate, and predict the evolution of KOA before and during the therapeutic protocol. In this review, we summarize the main methods that are used or seem promising for the diagnosis of osteoarthritis, with a specific focus on non- or low-invasive methods. As standard diagnostic tools, arthroscopy, magnetic resonance imaging (MRI), and X-ray radiography provide spatial and direct visualization of the joint. However, discrepancies between findings and patient feelings often occur, indicating a lack of correlation between current imaging methods and clinical symptoms. Alternative strategies are in development, including the analysis of biochemical markers or acoustic emission recordings. These methods have undergone deep development and propose, with non- or minimally invasive procedures, to obtain data on tissue condition. However, they present some drawbacks, such as possible interference or the lack of direct visualization of the tissue. Other original methods show strong potential in the field of KOA monitoring, such as electrical bioimpedance or near-infrared spectrometry. These methods could permit us to obtain cheap, portable, and non-invasive data on joint tissue health, while they still need strong implementation to be validated. Also, the use of Artificial Intelligence (AI) in the diagnosis seems essential to effectively develop and validate predictive models for KOA evolution, provided that a large and robust database is available. This would offer a powerful tool for researchers and clinicians to improve therapeutic strategies while permitting an anticipated adaptation of the clinical protocols, moving toward reliable and personalized medicine. Full article
Show Figures

Figure 1

10 pages, 2516 KiB  
Communication
A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna
by Siwei Tan, Linsen Zhang, Qiang Sun, Bo Tang and Qiyang Wang
Electronics 2025, 14(13), 2620; https://doi.org/10.3390/electronics14132620 - 28 Jun 2025
Viewed by 252
Abstract
In low-detectability application scenarios such as covert reconnaissance, wildlife behavior observation, and battlefield detection, antennas not only need to have wideband performance but also require good biomimetic camouflage characteristics. To address this issue, this article proposes a leaf-shaped biomimetic flexible wideband antenna. The [...] Read more.
In low-detectability application scenarios such as covert reconnaissance, wildlife behavior observation, and battlefield detection, antennas not only need to have wideband performance but also require good biomimetic camouflage characteristics. To address this issue, this article proposes a leaf-shaped biomimetic flexible wideband antenna. The design concept of the antenna is inspired by the symmetrical vein structure of aquifoliaceae leaves, incorporating vein-like slots into the radiation patch to form multiple inter-slot capacitances, which improves the high-frequency resonance behavior and expands the antenna’s operating bandwidth. In addition, the traditional rectangular grounding plane is replaced with a semi-elliptical shape, optimizing the electric field distribution between the feed line and the radiation part, thereby improving impedance matching. The measured results show that the leaf-shaped antenna achieves a relative bandwidth of 100% (2.4 GHz–7.1 GHz), with its operating frequency bands covering several common communication bands such as n41, n78, n79, and ISM 5.8 GHz, with a maximum gain of 5.4 dBi. Additionally, the leaf-shaped antenna has a good resemblance to the shape of aquifoliaceae leaves. The antenna’s performance remains relatively stable with bending radii of 40 mm, 50 mm, and 60 mm, demonstrating an important role in camouflage application scenarios. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 1431 KiB  
Review
Understanding the Synthesis of Turbostratic/Flash Graphene via Joule Heating
by Faisal Mahmood, Christian Fabrice Magoua Mbeugang, Furqan Asghar, Xing Xie, Dan Lin, Dongjing Liu and Bin Li
Materials 2025, 18(12), 2892; https://doi.org/10.3390/ma18122892 - 18 Jun 2025
Viewed by 643
Abstract
The introduction of the Joule heating (JH) method for synthesizing turbostratic graphene has attracted considerable attention from researchers due to its promising potential for commercialization compared to earlier techniques. Numerous studies have outlined the technology’s basic operation and how parameters such as electric [...] Read more.
The introduction of the Joule heating (JH) method for synthesizing turbostratic graphene has attracted considerable attention from researchers due to its promising potential for commercialization compared to earlier techniques. Numerous studies have outlined the technology’s basic operation and how parameters such as electric field, operating time, and temperature influence the quality and type of graphene produced. Despite this, there is still a lack of concise and comprehensive studies that exclusively focus on the JH method with turbostratic graphene as the target product. This review article is a facile attempt to provide the scientific community with an overview of the historical development and operational principles of Joule heating. It also discusses the structural and fundamental differences between turbostratic and conventional graphene, along with methodologies for characterizing turbostratic graphene. Furthermore, the synthesis mechanisms of turbostratic graphene via JH are analyzed, and the future perspectives for advancing this method are also presented. Full article
Show Figures

Graphical abstract

16 pages, 18981 KiB  
Article
Dual-Broadband Topological Photonic Crystal Edge State Based on Liquid Crystal Tunability
by Jinying Zhang, Bingnan Wang, Jiacheng Wang, Xinye Wang and Yexiaotong Zhang
Materials 2025, 18(12), 2778; https://doi.org/10.3390/ma18122778 - 12 Jun 2025
Viewed by 399
Abstract
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed [...] Read more.
The rapid advancements in optical communication and sensing technologies have significantly increased the demand for advanced tunable spectral systems. This study presents a dual-band terahertz transmission and manipulation approach by leveraging the topologically protected properties of valley-topological photonic crystal edge states. The designed structure facilitates the excitation of the K valley within the range of 0.851–0.934 THz and the K′ valley from 1.604 to 1.686 THz, while also demonstrating anomalous refraction and birefringence. The calculated emission angles, derived through momentum matching, enable transitions between single-wave and dual-wave emissions and allow for precise angle control. The introduction of the liquid crystal material NJU-LDn-4 enables continuous tuning of the dual-band spectral range under a varying electric field, broadening the operating frequency bands to the ranges of 0.757–0.996 THz and 1.426–1.798 THz, respectively. These findings suggest promising applications in tunable filter design, optical communication, photonic computing, optical sensing, and high-resolution imaging, particularly in novel optical devices requiring precise control over spectral characteristics and light propagation. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

20 pages, 2948 KiB  
Article
The Effects of Polymer–Nitrogen Fertilizer on Biomes in Drip-Irrigated Wheat Soil
by Yan Sun, Chunying Wei, Shenglin Zhang, Hua Fan, Dashuang Hong, Hong Huang and Kaiyong Wang
Microorganisms 2025, 13(6), 1334; https://doi.org/10.3390/microorganisms13061334 - 9 Jun 2025
Viewed by 497
Abstract
Polymer application combined with nitrogen (N) fertilization can increase soil N transformation efficiency. However, the mechanism of polymer influencing soil biocommunity characteristics and nitrogen transformation is still unclear. In this field experiment, a self-developed water-soluble polymer material (PPM, a mixture of anionic polyacrylamide, [...] Read more.
Polymer application combined with nitrogen (N) fertilization can increase soil N transformation efficiency. However, the mechanism of polymer influencing soil biocommunity characteristics and nitrogen transformation is still unclear. In this field experiment, a self-developed water-soluble polymer material (PPM, a mixture of anionic polyacrylamide, polyvinyl alcohol, and manganese sulfate) was combined with N fertilization N100 (300 kg/hm2 of N), PN100 (PPM + 300 kg/hm2 of N), and PN80 (PPM + 240 kg/hm2 of N) to investigate soil biodiversity, enzyme activities, and metabolomics. The results showed that under the application of PPM, the contents of soil total nitrogen (TN), alkali hydrolyzable nitrogen (ANS), nitrate nitrogen, organic carbon (SOC), and microbial biomass nitrogen (MBN) increased with a decrease in the N application rate, while soil bulk density, pH, and EC (electrical conductivity) decreased. The Chao 1 index of soil bacterial and nematode communities of the PN80 treatment was 30.6% and 10.7% higher than that of the N100 treatment, respectively, and the Shannon index was 2.72% and 2.64% higher than that of the N100 treatment, respectively. In the short term, the application of PPM affected the structure and composition of soil bacterial and nematode communities. In particular, the relative abundances of omnivorous (Aporcelaimellus) and bacterivorous (Prismatolaimus) nematodes were significantly higher than those of the N100 treatment. These changes further regulated the soil metabolites, promoting soil nitrogen transformation. This study will provide a scientific basis for nitrogen reduction in drip-irrigated wheat planting in arid regions. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling)
Show Figures

Figure 1

Back to TopTop