Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = electric aircraft power battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2436 KB  
Article
Modulization and Simulation of Thermal Management System Based on Pumped Two-Phase Loop for Hybrid-Electric Aircraft
by Meissara Houalef and Marco Fioriti
Energies 2026, 19(2), 491; https://doi.org/10.3390/en19020491 - 19 Jan 2026
Viewed by 149
Abstract
An efficient thermal management system (TMS) is essential for ensuring hybrid-electric aircraft (HEA) can handle the significant heat rejection required by electrified propulsion. This paper presents a system-level analysis of a compact P2PL TMS for a 1.4 MW battery generating a 70 kW [...] Read more.
An efficient thermal management system (TMS) is essential for ensuring hybrid-electric aircraft (HEA) can handle the significant heat rejection required by electrified propulsion. This paper presents a system-level analysis of a compact P2PL TMS for a 1.4 MW battery generating a 70 kW heat load. A modular modeling method was used to size the key components, and then dynamic simulations were conducted under varying environmental conditions. The results indicate that a compact TMS weighing 22 kg can be developed, with a condenser heat transfer area of 26.20 m2 and operating with a refrigerant mass flow rate of 0.56 kg/s while maintaining low pump power consumption at 22 W. This system can successfully regulate a battery’s temperature so that it remains below 40 °C in both standard (15 °C) and cold (−20 °C) environments. Pressure analysis confirmed the system’s flexibility and its ability to control battery temperature between 27 °C and 38 °C by adjusting the working pressure (6–8 bar). Furthermore, under hot day conditions (40 °C), battery temperature can be maintained at 47.6 °C. Even under extreme conditions (50 °C), the TMS limits the temperature to 57.45 °C, ensuring it stays within the safe operating range. Full article
Show Figures

Figure 1

31 pages, 6651 KB  
Article
Integrated Approach to Design and Additive Manufacturing of Solar Unmanned Aerial Vehicles
by Ioana Nistor and Sebastian-Marian Zaharia
Appl. Sci. 2025, 15(24), 12964; https://doi.org/10.3390/app152412964 - 9 Dec 2025
Viewed by 524
Abstract
The development of solar-powered UAVs offers major advantages, such as extended mission autonomy, marking a significant technological advance in the aerospace industry. In this context, the study demonstrated the feasibility of additive manufacturing of a solar-powered UAV by successfully completing all the steps [...] Read more.
The development of solar-powered UAVs offers major advantages, such as extended mission autonomy, marking a significant technological advance in the aerospace industry. In this context, the study demonstrated the feasibility of additive manufacturing of a solar-powered UAV by successfully completing all the steps necessary for the development of an aeronautical product. The conceptual design was the initial phase in which the needs were defined, and the basic vision of the UAV model was outlined, exploring multiple possible solutions to identify the concept capable of meeting the mission requirements (search and rescue and surveillance). The preliminary design stage included aerodynamic analysis of the aircraft and preliminary sizing of the propulsion system and solar cells. The preliminary design stage included aerodynamic analysis of the UAV model, resulting in a lift coefficient of 1.05 and a drag coefficient of 0.08 at an angle of attack of 15°. A major advantage of the design is the integration of the electrical circuit, where solar input reduced battery consumption from 92.5 W to just 40.4 W in standard operational conditions, thereby more than doubling the UAV’s autonomy (from 48 min to approximately 110 min). The detailed design stage consisted of the final design of the solar UAV model for additive manufacturing, after which the final electrical architecture of the energy system was established. The model was subsequently validated by a finite element analysis, which confirmed the strength of the wing structure by achieving a safety factor of 6.6. The use of additive manufacturing allowed the rapid and accurate production of the structural components of the UAV model, ensuring that their subsequent physical assembly would be straightforward. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

26 pages, 4587 KB  
Article
Configuration Trade-Off and Co-Design Optimization of Hybrid-Electric VTOL Propulsion Systems
by Yanan Li, Haiwang Li, Gang Xie and Zhi Tao
Drones 2025, 9(11), 800; https://doi.org/10.3390/drones9110800 - 17 Nov 2025
Viewed by 1149
Abstract
Unmanned vertical takeoff and landing (VTOL) aircraft are increasingly deployed for logistics, surveillance, and urban air mobility (UAM) applications. However, the limitations of full-electric (FE) and internal combustion engine (ICE) systems in meeting diverse mission requirements have motivated the development of hybrid-electric (HE) [...] Read more.
Unmanned vertical takeoff and landing (VTOL) aircraft are increasingly deployed for logistics, surveillance, and urban air mobility (UAM) applications. However, the limitations of full-electric (FE) and internal combustion engine (ICE) systems in meeting diverse mission requirements have motivated the development of hybrid-electric (HE) propulsion systems. The design of HE powertrains remains challenging due to configuration flexibility and the lack of unified criteria for performance trade-offs among FE, ICE-powered, and HE configurations. This study proposes an integrated propulsion co-design framework coupling power allocation, energy management, and component capacity constraints through parametric system modeling. These interdependencies are represented by three key matching parameters: the power ratio (Φ), energy ratio (Ω), and maximum continuous discharge rate (rc). Through Pareto-optimal design space exploration, trade-off analysis results and optimization principles are derived for diverse mission scenarios such as UAM, remote sensing, and military surveillance. Different technological conditions are considered to guide component-level technological advancements. The method was applied to the power system retrofit of the Great White eVTOL. Subsystem steady-state tests provided accurate design inputs, and a simulation model was developed to reproduce the full flight mission. By comparing the simulation with flight-test measurements, mean absolute percentage errors of 8.91% for instantaneous fuel consumption and 0.26% for battery voltage were obtained. Based on these error magnitudes, a dynamic design margin was defined and then incorporated into a subsequent re-optimization, which achieved the 1.5 h endurance target with a 10.49% increase in cost per ton-kilometer relative to the initial design. These results demonstrate that the proposed co-design methodology offers a scalable, data-driven foundation for early-stage hybrid-electric VTOL powertrain design, enabling iterative performance correction and supporting system optimization in subsequent design stages. Full article
Show Figures

Figure 1

21 pages, 3368 KB  
Article
Analysis of Thermal Runaway Performance of Power Batteries for Airworthy Electric Aircraft
by Po Hu, Xinbo Chai, Chenghao Hou and Chengxin Guan
Processes 2025, 13(11), 3515; https://doi.org/10.3390/pr13113515 - 2 Nov 2025
Viewed by 941
Abstract
Electric aircraft powered by lithium batteries (LIBs) have seen rapid development in recent years, making research into their thermal runaway (TR) characteristics crucial for ensuring flight safety. This study focused on the individual battery cells of a specific electric aircraft power battery system, [...] Read more.
Electric aircraft powered by lithium batteries (LIBs) have seen rapid development in recent years, making research into their thermal runaway (TR) characteristics crucial for ensuring flight safety. This study focused on the individual battery cells of a specific electric aircraft power battery system, conducting TR experiments under both the aircraft’s service ceiling temperature (−8.5 ± 2 °C) and ground ambient temperature (30 ± 2 °C). The experiments analyzed changes in battery temperature, voltage, and mass during TR. Experimental results indicate that the peak TR temperatures reached 589.6 °C and 654 °C under the two environments, respectively, with maximum heating rates of 8.6 °C/s and 16.9 °C/s. At ambient ground temperatures, battery voltage drops more rapidly, with the voltage of a 100% SOC battery decreasing over just 10 s. Peak mass loss during TR reached 265.48 g and 247.52 g, respectively. Combining TR temperature data with the Semenov thermal runaway model, the minimum ambient temperature causing TR in this electric aircraft power battery under sustained external heating was determined to be approximately 39 °C. Finally, a multi-level protection strategy covering the “airframe–battery compartment–cabin” was established. The findings from this research can serve as a reference for subsequent safety design of this aircraft type and the formulation of relevant airworthiness standards. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 3020 KB  
Article
Experimental Evaluation of UAV Energy Management Using Solar Panels and Battery Systems
by Pedro Fernandes, Ricardo Santos and Francisco Rego
Appl. Sci. 2025, 15(19), 10689; https://doi.org/10.3390/app151910689 - 3 Oct 2025
Viewed by 1826
Abstract
Solar-electric propulsion offers a practical way to lengthen the endurance of small fixed-wing unmanned aerial vehicles while removing the noise, emissions, and upkeep that come with combustion engines. This work describes and tests a lightweight platform that couples a flexible thin-film photovoltaic array, [...] Read more.
Solar-electric propulsion offers a practical way to lengthen the endurance of small fixed-wing unmanned aerial vehicles while removing the noise, emissions, and upkeep that come with combustion engines. This work describes and tests a lightweight platform that couples a flexible thin-film photovoltaic array, a high-efficiency power-tracking controller, and a lithium–polymer battery to an electric brushless drivetrain. A ground-based flight emulator reproducing steady cruise allows continuous logging of the electrical flows between panel, battery, and motor. The results show that the solar subsystem can sustain most of the cruise demand, so the battery is called on only sparingly and is even able to recharge when sunlight is higher than a specific threshold. This balance translates into a clear endurance gain without upsetting the aircraft’s weight or handling. Full article
(This article belongs to the Special Issue Advanced Control Systems and Control Engineering)
Show Figures

Figure 1

14 pages, 2114 KB  
Article
Discharge-Based DC-Bus Voltage Link Capacitor Monitoring with Repetitive Recursive Least Squares Method for Hybrid-Electric Aircraft
by Stanisław Oliszewski, Marcin Pawlak and Mateusz Dybkowski
Energies 2025, 18(17), 4743; https://doi.org/10.3390/en18174743 - 5 Sep 2025
Viewed by 1234
Abstract
Hybrid-electric aircraft require a reliable power distribution architecture. The electrical drive system is connected to the power source via a DC-link composed mostly of capacitors—one of the faultiest power electronic components. In order to ensure the safe operation of the aircraft, DC-link capacitor [...] Read more.
Hybrid-electric aircraft require a reliable power distribution architecture. The electrical drive system is connected to the power source via a DC-link composed mostly of capacitors—one of the faultiest power electronic components. In order to ensure the safe operation of the aircraft, DC-link capacitor condition monitoring is needed. The main requirements for such an algorithm are low data consumption and the possibility to use it in generator- or battery-powered systems. The proposed discharge-based repetitive recursive least squares (RRLS) method provides satisfactory estimates utilizing small data packages. Its execution during capacitor discharge makes it independent from the power source type. Based on the capacitor’s physical parameters, the computational complexity of the estimation process is reduced. Simulation validation and experimental tests were conducted. An analysis was carried out in a capacitance range between 705 μF and 1175 μF. The effective range of the algorithm is 881 μF–1044 μF, with an estimation error of less than 5%. Additionally, a range of changes in the time constant of the multiplier of 0.1–10 was tested in the simulation study. Full article
(This article belongs to the Special Issue Electric Machinery and Transformers III)
Show Figures

Figure 1

30 pages, 5139 KB  
Article
Design to Deployment: Flight Schedule-Based Analysis of Hybrid Electric Aircraft Variants in U.S. Regional Carrier Operations
by Emma Cassidy, Paul R. Mokotoff, Yilin Deng, Michael Ikeda, Kathryn Kirsch, Max Z. Li and Gokcin Cinar
Aerospace 2025, 12(7), 598; https://doi.org/10.3390/aerospace12070598 - 30 Jun 2025
Viewed by 1153
Abstract
This study evaluates the feasibility and benefits of introducing battery-powered hybrid electric aircraft (HEA) into regional airline operations. Using 2019 U.S. domestic flight data, the ERJ175LR is selected as a representative aircraft, and several HEA variants are designed to match its mission profile [...] Read more.
This study evaluates the feasibility and benefits of introducing battery-powered hybrid electric aircraft (HEA) into regional airline operations. Using 2019 U.S. domestic flight data, the ERJ175LR is selected as a representative aircraft, and several HEA variants are designed to match its mission profile under different battery technologies and power management strategies. These configurations are then tested across over 800 actual daily flight sequences flown by a regional airline. The results show that well-designed HEA can achieve 3–7% fuel savings compared to conventional aircraft, with several variants able to complete all scheduled missions without disrupting turnaround times. These findings suggest that HEA can be integrated into today’s airline operations, particularly for short-haul routes, without the need for major infrastructure or scheduling changes, and highlight opportunities for future co-optimization of aircraft design and operations. Full article
Show Figures

Figure 1

25 pages, 1875 KB  
Article
Hybrid Powerplant Design and Energy Management for UAVs: Enhancing Autonomy and Reducing Operational Costs
by Javier A. Quintana, Carlos Bordons, Sergio Esteban and Julian Delgado
Energies 2025, 18(12), 3101; https://doi.org/10.3390/en18123101 - 12 Jun 2025
Cited by 3 | Viewed by 2377
Abstract
This study presents the design of a hybrid powerplant for unmanned aerial vehicles (UAVs), improving its autonomy compared to power systems based solely on batteries. The powerplant is designed for the Mugin EV-350 aircraft. Using experimental data from electric motors in a wind [...] Read more.
This study presents the design of a hybrid powerplant for unmanned aerial vehicles (UAVs), improving its autonomy compared to power systems based solely on batteries. The powerplant is designed for the Mugin EV-350 aircraft. Using experimental data from electric motors in a wind tunnel and fuel cells, a comparative analysis of different energy management strategies, such as fuzzy logic and passive, is conducted to reduce the operational and maintenance costs. A Python-based software program is developed and utilized for the real-time implementation and simulation of energy management strategies, with data collected in databases. This study integrates experimental data (wind tunnel and fuel cells) with real-time EMS strategies, and simulation-based predictions indicate practical improvements in endurance and cost reduction, as well as an increase in flight autonomy of 50%. Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

26 pages, 3839 KB  
Article
Preliminary Design and Optimization Approach of Electric FW-VTOL UAV Based on Cell Discharge Characteristics
by Cheng He, Yuqi Tong, Diyi Liu, Shipeng Yang and Fengjiang Zhan
Drones 2025, 9(6), 415; https://doi.org/10.3390/drones9060415 - 6 Jun 2025
Cited by 1 | Viewed by 3264
Abstract
The electric vertical take-off and landing fixed-wing (FW-VTOL) unmanned aerial vehicle (UAV) combines the advantages of fixed-wing aircraft and multi-rotor aircraft. Based on the cell discharge characteristics and the power system features, this paper proposes a preliminary design and optimization method suitable for [...] Read more.
The electric vertical take-off and landing fixed-wing (FW-VTOL) unmanned aerial vehicle (UAV) combines the advantages of fixed-wing aircraft and multi-rotor aircraft. Based on the cell discharge characteristics and the power system features, this paper proposes a preliminary design and optimization method suitable for electric FW-VTOL UAVs. The purpose of this method is to improve the design accuracy of electric propulsion systems and overall parameters when dealing with the special power and energy requirements of this type of aircraft. The core of this method involves testing the performance data of the cell inside the battery pack, using small-capacity cells as the basic unit for battery sizing, thereby constructing a power battery performance model. Additionally, it establishes optimization design models for propellers and rotors and develops a brushless DC motor performance model based on a first-order motor model and statistical data, ultimately achieving optimized matching of the propulsion system and completing the preliminary design of the entire aircraft. Using a battery discharge model established based on real cell parameters and test data, the impact of the discharge process on battery performance is evaluated at the cell level, reducing the subjectivity of battery performance evaluation compared to the constant power/energy density method used in traditional battery sizing processes. Furthermore, matching the optimization design of power and propulsion systems effectively improves the accuracy of the preliminary design for FW-VTOL UAVs. A design case of a 30 kg electric FW-VTOL UAV is conducted, along with the completion of flight tests. The design parameters obtained using the proposed method show minimal discrepancies with the actual data from the actual aircraft, confirming the effectiveness of the proposed method. Full article
Show Figures

Figure 1

28 pages, 4244 KB  
Article
Optimized Non-Integer with Disturbance Observer Frequency Control for Resilient Modern Airport Microgrid Systems
by Amr A. Raslan, Mokhtar Aly, Emad A. Mohamed, Waleed Alhosaini, Emad M. Ahmed, Loai S. Nasrat and Sayed M. Said
Fractal Fract. 2025, 9(6), 354; https://doi.org/10.3390/fractalfract9060354 - 28 May 2025
Cited by 3 | Viewed by 1304
Abstract
Various sectors focus on transitioning to clean and renewable energy sources, particularly airport microgrids (AMGs), which offer the potential for highly reliable and resilient operations. As airports increasingly integrate renewable energy sources, ensuring stable and efficient power becomes a critical challenge. In this [...] Read more.
Various sectors focus on transitioning to clean and renewable energy sources, particularly airport microgrids (AMGs), which offer the potential for highly reliable and resilient operations. As airports increasingly integrate renewable energy sources, ensuring stable and efficient power becomes a critical challenge. In this context, maintaining proper frequency is essential for the reliable operation of AMGs, which helps maintain grid stability and reliable operation. This paper proposes a new hybrid disturbance observer-based controller with a fractional-order controller (DOBC/FOC) for operating AMGs with high levels of renewable energy integration and advanced frequency regulation (FR) capabilities. The proposed controller utilizes DOBC coupled with a non-integer FOC for load frequency control (LFC), optimized for peak performance under varying operational conditions. In addition, a decentralized control strategy is introduced to manage the participation of electric vehicles and lithium-ion battery systems within the airport’s energy ecosystem, enabling effective demand response and energy storage utilization. Furthermore, the parameters of these controllers are optimized simultaneously to ensure optimal performance in both transient and steady-state conditions. The proposed DOBC/FOC controller demonstrates strong performance and reliability according to simulation outcomes, showcasing its superior performance in maintaining frequency stability, reducing fluctuations, and ensuring continuous power supply in diverse operating scenarios, such as 55.5% and 76.5% in step load perturbations when compared to the utilization of electric vehicles (EVs) and electric aircraft (EAC), respectively. These results underline the potential of this approach in enhancing the resilience and sustainability of AMG and contributing to more intelligent and eco-friendly airport infrastructure. Full article
(This article belongs to the Special Issue Fractional-Order Dynamics and Control in Green Energy Systems)
Show Figures

Figure 1

30 pages, 11029 KB  
Article
Adapting e-Genius for Next-Level Efficient Electric Aerotow with High-Power Propulsion and Automatic Flight Control System
by Stefan Zistler, Dalong Shi, Walter Fichter and Andreas Strohmayer
Aerospace 2025, 12(5), 409; https://doi.org/10.3390/aerospace12050409 - 6 May 2025
Viewed by 1311
Abstract
Aiming to reduce energy demand and carbon footprint, minimize noise impact, and enhance flight safety and efficiency during aerotow operations, this study integrates an electric propulsion system and an automatic flight control system (AFCS) into the electric research aircraft e-Genius. An advanced propulsion [...] Read more.
Aiming to reduce energy demand and carbon footprint, minimize noise impact, and enhance flight safety and efficiency during aerotow operations, this study integrates an electric propulsion system and an automatic flight control system (AFCS) into the electric research aircraft e-Genius. An advanced propulsion system is developed using high-performance batteries and available electric drive components, while the AFCS is designed following a systematic process of developing flight control algorithms. Flight tests are then conducted to evaluate the performance of individual components and the overall system. The test results demonstrate that the upgraded propulsion system provides sufficient power to launch sailplanes, even with the maximum takeoff mass, while significantly reducing energy demand when compared to contemporary fossil fueled towplanes. Additionally, the AFCS proves to be stable and robust, successfully following specified commanded states, executing path tracking, and performing aerotow operations. Full article
Show Figures

Figure 1

23 pages, 10074 KB  
Article
Drone Electric Propulsion System with Hybrid Power Source
by Jenica-Ileana Corcau, Liviu Dinca, Andra-Adelina Cucu and Dmitrii Condrea
Drones 2025, 9(4), 301; https://doi.org/10.3390/drones9040301 - 11 Apr 2025
Cited by 1 | Viewed by 6371
Abstract
Unmanned aerial vehicles, known today as drones, in the beginning, were small-dimension research models powered by small electric motors fed from electrical batteries. The propulsion system for these drones had to be adapted to the specific applications along their development. Electric and hybrid-electric [...] Read more.
Unmanned aerial vehicles, known today as drones, in the beginning, were small-dimension research models powered by small electric motors fed from electrical batteries. The propulsion system for these drones had to be adapted to the specific applications along their development. Electric and hybrid-electric propulsion drones represent a rapidly developing field in the aerospace industry. Electric drones are those with purely electric propulsion fed from batteries, while hybrid-electric ones have a hybrid propulsion system combining a thermal engine and an electric motor. Another class of hybrid-electric drones includes those with an electric propulsion system fed from fuel cells and batteries. This paper proposes the configuration of an electric propulsion system with a hybrid power source for a transport drone, as well as an analysis of the special electrical components onboard an electric drone, such as batteries, fuel cells, and electric motors. In the final part of the paper, this propulsion system is modeled and analyzed in Matlab/Simulink version 2021a. Design software and simulation tools specifically developed for hybrid-electric drones are essential for ensuring the accuracy and efficiency of these processes. Electric drones have the advantage of zero emissions, but at present, the batteries are still too heavy for aviation applications. By using hydrogen fuel cells as the main power source, it is possible to considerably reduce the power source weight. This is an important advantage of the system proposed in this work. Using hydrogen fuel cells in aircraft and drone propulsion is an important trend in the scientific world. This technology seems to be mature enough to be implemented in aviation. From a technical point of view, these kinds of systems are already feasible. Their usefulness and reliability have to be proven in time. Full article
Show Figures

Figure 1

31 pages, 6055 KB  
Review
Status and Development Prospects of Solar-Powered Unmanned Aerial Vehicles—A Literature Review
by Krzysztof Sornek, Joanna Augustyn-Nadzieja, Izabella Rosikoń, Róża Łopusiewicz and Marta Łopusiewicz
Energies 2025, 18(8), 1924; https://doi.org/10.3390/en18081924 - 10 Apr 2025
Cited by 10 | Viewed by 4304
Abstract
Solar-powered unmanned aerial vehicles are fixed-wing aircraft designed to operate solely on solar power. Their defining feature is an advanced power system that uses solar cells to absorb sunlight during the day and convert it into electrical energy. Excess energy generated during flight [...] Read more.
Solar-powered unmanned aerial vehicles are fixed-wing aircraft designed to operate solely on solar power. Their defining feature is an advanced power system that uses solar cells to absorb sunlight during the day and convert it into electrical energy. Excess energy generated during flight can be stored in batteries, ensuring uninterrupted operation day and night. By harnessing the power of the sun, these aircraft offer key benefits such as extended flight endurance, reduced dependence on fossil fuels, and cost efficiency improvements. As a result, they have attracted considerable attention in a variety of military and civil applications, including surveillance, environmental monitoring, agriculture, communications, weather monitoring, and fire detection. This review presents selected aspects of the development and use of solar-powered aircraft. First, the general classification of unmanned aerial vehicles is presented. Then, the design process of solar-powered unmanned aerial vehicles is discussed, including issues such as the structure and materials used in solar-powered aircraft, the integration of solar cells into the wings, the selection of appropriate battery technologies, and the optimization of energy management to ensure their efficient and reliable operation. General information on the above areas is supplemented by the presentation of results discussed in the selected literature sources. Finally, the practical applications of solar-powered aircraft are discussed, with examples including surveillance, environmental monitoring, agriculture, and wildfire detection. The work is summarized via a discussion of the future research directions for the development of solar-powered aircraft. The review is intended to motivate further work focusing on the widespread use of clean, efficient, and environmentally friendly unmanned aerial vehicles for various applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

26 pages, 5366 KB  
Article
Concepts and Experiments on More Electric Aircraft Power Systems
by Andrzej Gębura, Andrzej Szelmanowski, Ilona Jacyna-Gołda, Paweł Gołda, Magdalena Kalbarczyk and Justyna Tomaszewska
Energies 2025, 18(7), 1653; https://doi.org/10.3390/en18071653 - 26 Mar 2025
Cited by 6 | Viewed by 4365
Abstract
The evolution of aircraft power systems has been driven by increasing electrical demands and advancements in aviation technology. Background: This study provides a comprehensive review and experimental validation of on-board electrical network development, analyzing power management strategies in both conventional and modern aircraft, [...] Read more.
The evolution of aircraft power systems has been driven by increasing electrical demands and advancements in aviation technology. Background: This study provides a comprehensive review and experimental validation of on-board electrical network development, analyzing power management strategies in both conventional and modern aircraft, including the Mi-24 helicopter, F-22 multirole aircraft, and Boeing 787 passenger airplane. Methods: The research categorizes aircraft electrical systems into three historical phases: pre-1960s with 28.5 V DC networks, up to 2000 with three-phase AC networks (3 × 115 V/200 V, 400 Hz), and post-2000 with 270 V DC networks derived from AC generators via transformer–rectifier units. Beyond theoretical analysis, this work introduces experimental findings on hybrid-electric aircraft power solutions, particularly evaluating the performance of the Modular Power System for Aircraft (MPSZE). The More Electric Aircraft (MEA) concept is analyzed as a key innovation, with a focus on energy efficiency, frequency stability, and ground power applications. The study investigates the integration of alternative energy sources, including photovoltaic-assisted power supplies and fuel-cell-based auxiliary systems, assessing their feasibility for aircraft system checks, engine startups, field navigation, communications, and radar operations. Results: Experimental results demonstrate that hybrid energy storage systems, incorporating lithium-ion batteries, fuel cells, and photovoltaic modules, can enhance MEA efficiency and operational resilience under real-world conditions. Conclusions: The findings underscore the importance of MEA technology in the future of sustainable aviation power solutions, highlighting both global and Polish research contributions, particularly from the Air Force Institute of Technology (ITWL). Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

33 pages, 371 KB  
Article
Preliminary Aircraft Design for Hybrid Electric Propulsion Architectures: A Focus on Critical Loss of Thrust
by Jonas Mangold and Andreas Strohmayer
Aerospace 2025, 12(4), 275; https://doi.org/10.3390/aerospace12040275 - 25 Mar 2025
Viewed by 2212
Abstract
Hybrid electric propulsion architectures offer a promising solution for reducing fuel consumption and emissions in aviation. However, the introduction of dual-energy carriers adds complexity to preliminary aircraft design, particularly in terms of power distribution, failure analysis, and compliance with operational regulations. Key challenges [...] Read more.
Hybrid electric propulsion architectures offer a promising solution for reducing fuel consumption and emissions in aviation. However, the introduction of dual-energy carriers adds complexity to preliminary aircraft design, particularly in terms of power distribution, failure analysis, and compliance with operational regulations. Key challenges include defining failure cases, which requires refining conventional constraint analysis for hybrid electric aircraft and integrating failure scenarios into mission analysis to meet certification specifications and regulatory requirements. This study presents a unified methodology that combines an analytical constraint analysis with a higher-fidelity numerical design loop implemented in the SUAVE framework to address these challenges. Key innovations include the introduction of new parameters—such as the supplied shaft power ratio—and the ability to assess failure scenarios through the definition of the critical loss of thrust, thereby extending the analysis beyond conventional one-engine-inoperative cases. The methodology also integrates an energy management strategy that dynamically allocates power between the primary and secondary energy carriers, thereby capturing the interaction between energy (mission analysis) and power (constraint analysis) requirements. The results from both the constraint and mission analyses, including en-route alternate aerodrome scenarios, demonstrate that employing batteries as the secondary energy carrier can reduce the oversizing of primary power sources. However, their effective utilization is highly sensitive and may necessitate adjustments in energy sizing. These findings underscore the importance of incorporating dual-energy carrier considerations early in the design process and highlight the impact of critical loss of thrust conditions on hybrid electric aircraft configurations, ultimately benefiting researchers and engineers. Full article
Show Figures

Figure 1

Back to TopTop