Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,333)

Search Parameters:
Keywords = efficiency criteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

21 pages, 3429 KiB  
Article
Structural Integrity Assessments of an IMO Type C LCO2 Cargo Tank
by Joon Kim, Kyu-Sik Park, Inhwan Cha and Joonmo Choung
J. Mar. Sci. Eng. 2025, 13(8), 1479; https://doi.org/10.3390/jmse13081479 - 31 Jul 2025
Abstract
With the rise of carbon capture and storage, liquefied carbon dioxide (LCO2) has emerged as a promising medium for large-scale marine transport. This study evaluates the structural integrity of an IMO Type C cargo tank for a medium-range LCO2 carrier [...] Read more.
With the rise of carbon capture and storage, liquefied carbon dioxide (LCO2) has emerged as a promising medium for large-scale marine transport. This study evaluates the structural integrity of an IMO Type C cargo tank for a medium-range LCO2 carrier under four conditions: ultimate limit state, accidental limit state, hydrostatic pressure test, and fatigue limit state, based on IGC Code and classification rules. Seventeen load cases were analyzed using finite element methods with multi-step loading to ensure stability. The highest stress occurred at the pump dome–shell junction due to geometric discontinuities, but all stress and buckling criteria were satisfied. The fatigue damage from wave-induced loads was negligible, with low-cycle fatigue from loading/unloading operations governing the fatigue life, which exceeded 31,000 years. The findings confirm the tank’s structural robustness and its suitability for safe, efficient medium-pressure LCO2 transport. Full article
(This article belongs to the Special Issue New Advances in the Analysis and Design of Marine Structures)
24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 (registering DOI) - 31 Jul 2025
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

20 pages, 3593 KiB  
Article
A Feature Engineering Framework for Smart Meter Group Failure Rate Prediction
by Yihong Li, Xia Xiao, Zhengbo Zhang and Wenao Liu
Mathematics 2025, 13(15), 2472; https://doi.org/10.3390/math13152472 (registering DOI) - 31 Jul 2025
Abstract
Smart meters play a significant role in power systems, but their condition assessment faces challenges such as inconsistent evaluation criteria and inaccurate assessment results. This paper proposes feature engineering including feature construction and feature selection for smart meter group failure rate prediction. First, [...] Read more.
Smart meters play a significant role in power systems, but their condition assessment faces challenges such as inconsistent evaluation criteria and inaccurate assessment results. This paper proposes feature engineering including feature construction and feature selection for smart meter group failure rate prediction. First, the basic structure and common fault types of smart meters are introduced. Smart meters are grouped by batch and distribution area. Next, 25 condition features are constructed based on failure mechanisms and technical specifications. Then, an evolutionary multi-objective feature selection algorithm combining NSGA-II, Jaccard similarity, and XGBoost is developed, where feature subsets are encoded as binary individuals optimized for three objectives: MSE, 1 − R2, and the number of features. The experimental results demonstrate that the proposed method not only reduces the number of features (25→7) but also improves the prediction accuracy (MSE: 0.0049 → 0.0042, R2: 0.6638 → 0.7228) of smart meter group failure rates. Comparative studies with other feature selection methods further confirm the superiority of our approach. The optimized features enhance interpretability and computational efficiency, providing a practical solution for large-scale smart meter condition assessment in power systems. Full article
(This article belongs to the Special Issue Evolutionary Algorithms and Applications)
Show Figures

Figure 1

30 pages, 10655 KiB  
Review
Accidents in Oil and Gas Pipeline Transportation Systems
by Nediljka Gaurina-Međimurec, Karolina Novak Mavar, Katarina Simon and Fran Djerdji
Energies 2025, 18(15), 4056; https://doi.org/10.3390/en18154056 (registering DOI) - 31 Jul 2025
Abstract
The paper provides an analysis of the causes of accidents in oil and gas pipeline systems. As part of a comprehensive overview of the topic, it also presents the historical development of pipeline systems, from the first commercial oil pipelines in the United [...] Read more.
The paper provides an analysis of the causes of accidents in oil and gas pipeline systems. As part of a comprehensive overview of the topic, it also presents the historical development of pipeline systems, from the first commercial oil pipelines in the United States to modern infrastructure projects, with a particular focus on the role of regulatory requirements and measures (prevention, detection, and mitigation) to improve transport efficiency and pipeline safety. The research uses historical accident data from various databases to identify the main causes of accidents and analyse trends. The focus is on factors such as corrosion, third-party interference, and natural disasters that can lead to accidents. A comparison of the various accident databases shows that there are different practises and approaches to operation and reporting. As each database differs in terms of inclusion criteria, the categories are divided into five main groups to allow systematic interpretation of the data and cross-comparison of accident causes. Regional differences in the causes of accidents involving oil and gas pipelines in Europe, the USA, and Canada are visible. However, an integrated analysis shows that the number of accidents is declining in almost all categories. The majority of all recorded accidents are in the “Human factors and Operational disruption” and “Corrosion and Material damage” groups. It is recommended to use the database as required, as each category has its own specifics. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

25 pages, 2854 KiB  
Article
Autonomous Trajectory Control for Quadrotor eVTOL in Hover and Low-Speed Flight via the Integration of Model Predictive and Following Control
by Yeping Wang, Honglei Ji, Qingyu Kang, Haotian Qi and Jinghan Wen
Drones 2025, 9(8), 537; https://doi.org/10.3390/drones9080537 - 30 Jul 2025
Abstract
This paper proposes a novel hierarchical control architecture that combines Model Predictive Control (MPC) with Explicit Model-Following Control (EMFC) to enable accurate and efficient trajectory tracking for quadrotor electric Vertical Takeoff and Landing (eVTOL) aircraft operating in urban environments. The approach addresses the [...] Read more.
This paper proposes a novel hierarchical control architecture that combines Model Predictive Control (MPC) with Explicit Model-Following Control (EMFC) to enable accurate and efficient trajectory tracking for quadrotor electric Vertical Takeoff and Landing (eVTOL) aircraft operating in urban environments. The approach addresses the challenges of strong nonlinear dynamics, multi-axis coupling, and stringent safety constraints by separating the planning task from the fast-response control task. The MPC layer generates constrained velocity and yaw rate commands based on a simplified inertial prediction model, effectively reducing computational complexity while accounting for physical and operational limits. The EMFC layer then compensates for dynamic couplings and ensures the rapid execution of commands. A high-fidelity simulation model, incorporating rotor flapping dynamics, differential collective pitch control, and enhanced aerodynamic interference effects, is developed to validate the controller. Four representative ADS-33E-PRF tasks—Hover, Hovering Turn, Pirouette, and Vertical Maneuver—are simulated. Results demonstrate that the proposed controller achieves accurate trajectory tracking, stable flight performance, and full compliance with ADS-33E-PRF criteria, highlighting its potential for autonomous urban air mobility applications. Full article
Show Figures

Figure 1

28 pages, 6349 KiB  
Article
Valorization of Waste from Lavender Distillation Through Optimized Encapsulation Processes
by Nikoletta Solomakou, Dimitrios Fotiou, Efthymia Tsachouridou and Athanasia M. Goula
Foods 2025, 14(15), 2684; https://doi.org/10.3390/foods14152684 - 30 Jul 2025
Abstract
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization [...] Read more.
This study evaluated and compared two encapsulation techniques—co-crystallization and ionic gelation—for stabilizing bioactive components derived from lavender distillation residues. Utilizing aqueous ethanol extraction (solid residues) and concentration (liquid residues), phenolic-rich extracts were incorporated into encapsulation matrices and processed under controlled conditions. Comprehensive characterization included encapsulation efficiency (Ef), antioxidant activity (AA), moisture content, hygroscopicity, dissolution time, bulk density, and color parameters (L*, a*, b*). Co-crystallization outperformed ionic gelation across most criteria, achieving significantly higher Ef (>150%) and superior functional properties such as lower moisture content (<0.5%), negative hygroscopicity (−6%), and faster dissolution (<60 s). These features suggested enhanced physicochemical stability and suitability for applications requiring long shelf life and rapid solubility. In contrast, extruded beads exhibited high moisture levels (94.0–95.4%) but allowed better control over morphological features. The work introduced a mild-processing approach applied innovatively to the valorization of lavender distillation waste through structurally stable phenolic delivery systems. By systematically benchmarking two distinct encapsulation strategies under equivalent formulation conditions, this study advanced current understanding in bioactive microencapsulation and offers new tools for developing functional ingredients from aromatic plant by-products. Full article
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 126
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

20 pages, 1175 KiB  
Article
A Study on the Site Selection of Urban Logistics Centers Utilizing Public Infrastructure
by Jiarong Chen, Jungwook Lee and Hyangsook Lee
Sustainability 2025, 17(15), 6846; https://doi.org/10.3390/su17156846 - 28 Jul 2025
Viewed by 184
Abstract
The COVID-19 pandemic has highlighted critical vulnerabilities in urban logistics systems, particularly in last-mile delivery. To enhance logistics resilience and efficiency, the Korean government has initiated an innovative project that repurposes idle spaces in subway vehicle bases within the Seoul Metropolitan Area into [...] Read more.
The COVID-19 pandemic has highlighted critical vulnerabilities in urban logistics systems, particularly in last-mile delivery. To enhance logistics resilience and efficiency, the Korean government has initiated an innovative project that repurposes idle spaces in subway vehicle bases within the Seoul Metropolitan Area into logistics centers. This study proposes a comprehensive multi-criteria evaluation framework combining the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to assess the suitability of ten candidate sites. The evaluation criteria span four dimensions, facility, geographical, environmental, and social factors, derived from the literature and expert consultations. AHP results indicate that geographical factors, especially proximity to urban centers and major logistics facilities, hold the highest weight. Based on the integrated analysis using TOPSIS, the most suitable locations identified are Sinnae, Godeok, and Cheonwang. The findings suggest the strategic importance of aligning infrastructure development with spatial accessibility and stakeholder cooperation. Policy implications include the need for targeted investment, public–private collaboration, and sustainable logistics planning. Future research is encouraged to incorporate dynamic data and consider social equity and environmental impact for long-term urban logistics planning. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 326
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

22 pages, 5613 KiB  
Article
Generative Design-Driven Optimization for Effective Concrete Structural Systems
by Hossam Wefki, Mona Salah, Emad Elbeltagi and Majed Alinizzi
Buildings 2025, 15(15), 2646; https://doi.org/10.3390/buildings15152646 - 27 Jul 2025
Viewed by 337
Abstract
The process of designing reinforced concrete (RC) buildings has traditionally relied on manually evaluating a limited number of layout alternatives—a time-intensive process that may not always yield the most functionally efficient solution. This research introduces a parametric algorithmic model for the automated optimization [...] Read more.
The process of designing reinforced concrete (RC) buildings has traditionally relied on manually evaluating a limited number of layout alternatives—a time-intensive process that may not always yield the most functionally efficient solution. This research introduces a parametric algorithmic model for the automated optimization of RC buildings with solid slab systems. The model automates and optimizes the layout process, yielding measurable improvements in spatial efficiency while maintaining compliance with structural performance criteria. Unlike prior models that address structural or architectural parameters separately, the proposed framework integrates both domains through a unified generative design approach within a BIM environment, enabling automated evaluation of structurally viable and architecturally coherent slab layouts. Developed within the parametric visual programming environment in Dynamo for Revit, the model employs a generative design (GD) engine to explore and refine various design alternatives while adhering to structural constraints. By leveraging a BIM-based framework, this method enhances efficiency, optimizes resource utilization, and systematically balances structural and architectural requirements. The model was validated through three case studies, demonstrating cost reductions between 2.7% and 17%, with material savings of up to 13.38% in concrete and 20.87% in reinforcement, achieved within computational times ranging from 120 to 930 s. Despite the current development being limited to vertical load scenarios and being most suitable for regular slab-based configurations, the results demonstrated the model’s effectiveness in optimizing grid dimensions and reducing material quantities and costs, and highlighted its ability to streamline early-stage design processes. Full article
(This article belongs to the Special Issue Advancing Construction and Design Practices Using BIM)
Show Figures

Figure 1

37 pages, 1895 KiB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Viewed by 400
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 2992 KiB  
Article
Research on Two-Stage Investment Decision-Making in Park-Level Integrated Energy Projects Considering Multi-Objectives
by Jiaxuan Yu, Wei Sun, Rongwei Ma and Bingkang Li
Processes 2025, 13(8), 2362; https://doi.org/10.3390/pr13082362 - 24 Jul 2025
Viewed by 331
Abstract
The scientific investment decision of Park-level Integrated Energy System (PIES) projects is of great significance to energy enterprises for improving the efficient utilization of funds, promoting green and low-carbon transformation, and achieving the goal of carbon neutrality. This paper proposed a two-stage investment [...] Read more.
The scientific investment decision of Park-level Integrated Energy System (PIES) projects is of great significance to energy enterprises for improving the efficient utilization of funds, promoting green and low-carbon transformation, and achieving the goal of carbon neutrality. This paper proposed a two-stage investment framework that integrates a multi-objective 0–1 programming model with a multi-criteria decision-making (MCDM) technique to determine the optimal PIES project investment portfolios under the constraint of quota investment. First, a multi-objective (MO) 0–1 programming model was constructed for typical PIES projects in Stage-I, which considers economic and environmental benefits to obtain Pareto frontier solutions, i.e., PIES project portfolios. Second, an evaluation index system from multiple dimensions was established, and a hybrid MCDM technique was adopted to comprehensively evaluate the Pareto frontier solutions in Stage-II. Finally, the proposed model was applied to an empirical case, and the simulation results show that the decision framework can achieve the best overall benefit of PIES project portfolios with maximal economic benefit and minimum carbon emissions. In addition, the robustness analysis was performed by changing the indicator weights to verify the stability of the proposed framework. This research work could provide a theoretical tool for investment decisions regarding PIES projects for energy enterprises. Full article
Show Figures

Figure 1

26 pages, 2843 KiB  
Article
Optimizing Circular Economy Choices: The Role of the Analytic Hierarchy Process
by Víctor Fernández Ocamica, David Zambrana-Vasquez and José Carlos Díaz Murillo
Sustainability 2025, 17(15), 6759; https://doi.org/10.3390/su17156759 - 24 Jul 2025
Viewed by 289
Abstract
This study investigates the application of the Analytic Hierarchy Process (AHP) as a decision-support mechanism for managing complex sustainability issues in industrial settings, specifically within the framework of circular economy principles. Focusing on a case from the brewery sector, developed under the EU [...] Read more.
This study investigates the application of the Analytic Hierarchy Process (AHP) as a decision-support mechanism for managing complex sustainability issues in industrial settings, specifically within the framework of circular economy principles. Focusing on a case from the brewery sector, developed under the EU ECOFACT initiative, this research evaluates ten distinct configurations for the must cooling process. These alternatives are assessed using environmental, economic, and technical criteria, drawing on data from life cycle assessment (LCA) and life cycle costing (LCC) methodologies. The findings indicate that selecting an optimal scenario involves balancing trade-offs among electricity and water consumption, operational efficiency, and overall environmental impacts. Notably, Scenario 3 emerges as the most balanced option, consistently demonstrating superior performance across the primary evaluation criteria. The use of AHP in this context proves valuable by introducing structure and transparency to a multifaceted decision-making process where quantitative metrics and sustainability objectives intersect. By integrating empirical industrial data with an established multi-criteria decision approach, this study highlights both the practical utility and existing limitations of conventional AHP, particularly its diminished ability to discriminate between alternatives when their scores are closely aligned. These insights suggest that hybrid or advanced AHP methodologies may be necessary to facilitate more nuanced decision-making for circular economy transitions in industrial environments. Full article
Show Figures

Figure 1

26 pages, 10740 KiB  
Article
A Nonlinear Computational Framework for Optimizing Steel End-Plate Connections Using the Finite Element Method and Genetic Algorithms
by Péter Grubits, Tamás Balogh and Majid Movahedi Rad
Algorithms 2025, 18(8), 460; https://doi.org/10.3390/a18080460 - 24 Jul 2025
Viewed by 220
Abstract
The design of steel connections presents considerable complexity due to their inherently nonlinear behavior, cost constraints, and the necessity to comply with structural design codes. These factors highlight the need for advanced computational algorithms to identify optimal solutions. In this study, a comprehensive [...] Read more.
The design of steel connections presents considerable complexity due to their inherently nonlinear behavior, cost constraints, and the necessity to comply with structural design codes. These factors highlight the need for advanced computational algorithms to identify optimal solutions. In this study, a comprehensive computational framework is presented in which the finite element method (FEM) is integrated with a genetic algorithm (GA) to optimize material usage in bolted steel end-plate joints, while structural safety is ensured based on multiple performance criteria. By incorporating both material and geometric nonlinearities, the mechanical response of the connections is accurately captured. The proposed approach is applied to a representative beam-to-column assembly, with numerical results verified against experimental data. By employing the framework, an optimized layout is obtained, yielding a 10.4% improvement in the overall performance objective compared to the best-performing validated model and a 39.3% reduction in material volume relative to the most efficient feasible alternative. Furthermore, a 53.6% decrease in equivalent plastic strain is achieved compared to the configuration exhibiting the highest level of inelastic deformation. These findings demonstrate that the developed method is capable of enhancing design efficiency and precision, underscoring the potential of advanced computational tools in structural engineering applications. Full article
Show Figures

Figure 1

Back to TopTop